首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,25-Dihydroxyvitamin D-3 has been shown to increase phosphatidylcholine and decrease phosphatidylethanolamine levels of myoblasts. Recent studies have suggested that the metabolite stimulates the methylation of phosphatidylethanolamine into phosphatidylcholine. In addition, the sterol increases the arachidonate content of phosphatidylcholine. Experiments were carried out to identify the steps of muscle cell lipid metabolism affected by 1,25-dihydroxyvitamin D-3. Primary cultures of chick embryo myoblasts pretreated with physiological concentrations of 1,25-dihydroxyvitamin D-3 were labelled with [14C]ethanolamine. The sterol increased the incorporation of precursor into dimethylphosphatidylethanolamine and phosphatidylcholine, whereas it decreases the labelling of phosphatidylethanolamine. Prior treatment with cycloheximide and actinomycin D blocked these changes. 1,25-Dihydroxyvitamin D-3 also stimulated the incorporation of [14C]ethanolamine into CDP-ethanolamine. In addition, the sterol increased the incorporation of [3H]arachidonic acid into the phosphatidylcholine fraction but did not affect the incorporation of [14C]palmitic acid. The incorporation of labelled fatty acids into diacylglycerol was not changed by the sterol, whereas it stimulated incorporation of both precursors into triacylglycerol. The data indicate that 1,25-dihydroxyvitamin D-3 enhances the synthesis of phosphatidylcholine through a stimulation of de novo synthesis and methylation of phosphatidylethanolamine via a nuclear mechanism. The sterol may also increase the polyunsaturated fatty acid content of phosphatidylcholine by means of an activation of its deacylation-reacylation cycle.  相似文献   

2.
The presence in myoblasts of an intracellular receptor specific for 1,25-dihydroxyvitamin D-3 [1,25(OH)2D3) and 1,25(OH)2D3-dependent changes in myoblast Ca2+ transport and phospholipid metabolism which are suppressed by RNA and protein synthesis inhibitors have been shown. In agreement with these observations, incubation of chick embryo myoblasts, precultured for 24 h in a medium containing low levels of vitamin D-3 metabolites, with 1,25(OH)2D3 at conditions which induce maximum cell responses (10(-10) M, 24 h) markedly stimulated the incorporation of [3H]leucine into total cell proteins and this effect was abolished when sterol treatment was performed in the presence of cycloheximide or puromycin. To investigate whether 1,25(OH)2D3 selectively stimulates the de novo synthesis of muscle cell proteins, mixtures of myoblast proteins from control and sterol-treated cultures labelled with [14C]leucine and [3H]leucine, respectively, were separated by SDS-polyacrylamide gel electrophoresis and isoelectric focussing. Examination of 3H/14C ratios in gel fractions revealed that 1,25-(OH)2D3 stimulates the production of proteins of molecular masses (isoelectric points) of 9 kDa (4.1 and 8.5), 17 kDa (7.5), 30 kDa (7.2), 40 kDa (5.5), 55 kDa (4.5) and 100 kDa (8.6). Cell fractionation studies showed the following subcellular distribution: 9 kDa (85% cytosol, 15% microsomes); 17 and 100 kDa (100%, 1200 X g pellet); 30 kDa (65% cytosol, 35% mitochondria); 40 kDa (100% microsomes); 55 kDa (65% microsomes, 35% mitochondria). Marker enzyme data indicated that this distribution is not due to cross-contamination between fractions. Affinity chromatography of double-labelled myoblast proteins on an immobilized lectin showed that the 55 kDa protein contains carbohydrate. Labelling of myoblast proteins with 45CaCl2 after their separation on SDS-polyacrylamide gels showed in addition that the 1,25(OH)2D3-dependent proteins of 9, 17, 40 and 100 kDa are major Ca2+-binding components of the cells. Synthesis of these proteins may mediate the effects of the sterol on myoblast calcium metabolism.  相似文献   

3.
Pretreatment of the D-deficient chick with 1,25-dihydroxyvitamin D3 increases de novo synthesis of phosphatidylcholine by a stimulation of CDP-choline: sn-1,2-diacylglycerol choline-phosphotransferase reaction. The time course of change in the incorporation of [3H]choline and [14C]ethanolamine into the brush border lipid fraction after 1,25-dihydroxyvitamin D3 treatment correlates closely with the time course of change in calcium uptake into the brush border membrane vesicles. Prior treatment with cycloheximide does not block this increase in phosphatidylcholine synthesis. In addition, 1,25-dihydroxyvitamin D3 administration increases the incorporation of [3H]arachidonic acid into the phosphatidylcholine fraction of the brush border to a great extent but does not increase the incorporation of [3H]palmitic acid into the phosphatidylcholine fraction. The incorporation of these 3H labeled fatty acids into diacylglycerol is not changed by 1,25-dihydroxyvitamin D3. These data indicate that 1,25-dihydroxyvitamin D3 enhances the synthesis of phosphatidylcholine independent of new protein synthesis, and also increases the incorporation of unsaturated fatty acids into phosphatidylcholine. From these results we suggest that changes in phospholipid metabolism in the enterocyte are the mechanisms by which 1,25-dihydroxyvitamin D3 acts to enhance calcium entry across the brush border membrane.  相似文献   

4.
5.
Regulation of 25-hydroxyvitamin D-3 24-hydroxylase by 1,25-dihydroxyvitamin D-3 and synthetic human parathyroid hormone fragment 1-34 (PTH1-34) was investigated using a cloned monkey kidney cell line, JTC-12. Treatment of the cells with 1,25-dihydroxyvitamin D-3 markedly enhanced the conversion of [3H]-25-hydroxyvitamin D-3 into a more polar metabolite. The metabolite was identified as 24,25-dihydroxyvitamin D-3 by normal phase and reverse phase high-performance liquid chromatography and periodate oxidation. The 24-hydroxylase activity appeared to follow Michaelis-Menten kinetics, and 1,25-dihydroxyvitamin D-3 treatment increased the Vmax of 24-hydroxylase from 33 to 95 pmol/h per 10(6) cells without affecting the apparent Km value of the enzyme (220 nM in control vs. 205 nM in 1,25-dihydroxyvitamin D-3 treated cells). The enzyme activity reached a maximum between 4 and 8 h of treatment with 1,25-dihydroxyvitamin D-3. The dose of 1,25-dihydroxyvitamin D-3 required to cause a half-maximal stimulation was about 3 X 10(-10) M. The 1,25-dihydroxyvitamin D-3-induced increase in 24-hydroxylase was almost completely inhibited by the presence of 1 microM cycloheximide. Treatment of the cells with PTH1-34 caused a dose-dependent increase in cyclic AMP production. Half-maximal stimulation of cyclic AMP production was obtained at about 5 X 10(-9) M PTH1-34. When 2.4 X 10(-9) M PTH1-34 was added after 1,25-dihydroxyvitamin D-3 treatment, the 1,25-dihydroxyvitamin D-3-stimulated 24-hydroxylase was inhibited to 70.7 +/- 2.9% of control. Higher concentrations of PTH1-34 caused less inhibition of the enzyme activity. When cyclic AMP was added instead of PTH1-34, the enzyme activity was also suppressed significantly. These results indicate that, in JTC-12 cells, 1,25-dihydroxyvitamin D-3 stimulates 24-hydroxylase in a dose- and time-dependent manner by increasing the Vmax of the enzyme through a mechanism dependent upon new protein synthesis, and suggest that PTH1-34 inhibits the 1,25-dihydroxyvitamin D-3-induced stimulation of 24-hydroxylase through its effect on cyclic AMP production.  相似文献   

6.
Underivatized 1,25-dihydroxy[26,27-3H]vitamin D-3 was successfully used to photoaffinity label the 1,25-dihydroxyvitamin D-3 receptor. The covalent incorporation of tritium into the receptor protein was induced by ultraviolet irradiation of the receptor-1,25-dihydroxy[26,27-3H]vitamin D-3 complex in crude pig intestinal nuclear extract. The amount of incorporated label increased with increasing time of irradiation and was dependent on light of wavelengths 220-280 nm. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography were used to demonstrate that label was incorporated primarily into the 1,25-dihydroxyvitamin D-3 receptor. In addition, the label incorporation was eliminated by competition with a 100-fold excess nonradioactive 1,25-dihydroxyvitamin D-3, indicating that the label was specific for the steroid binding site. Since 1,25-(OH)2[26,27-3H]vitamin D-3 is readily available and requires no special precautions for its preparation and handling, it should be a useful photoaffinity label for future studies of the receptor.  相似文献   

7.
Stio M  Celli A  Treves C 《IUBMB life》2002,53(3):175-181
The response of C2C12 myoblasts to 1 nM 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 100 nM retinoids (9-cis retinoic acid, all-trans retinoic acid) and to combination treatments, after 72 h incubation, was studied. The incubation with 1,25(OH)2D3 was ineffective on either cell proliferation or [3H]thymidine incorporation (expressed as DPM per cell) or protein content per cell. On the contrary, all the other treatments inhibited cell proliferation, this inhibition being synergistic when the vitamin D derivatives were combined with 9-cis or all-trans retinoic acid, and increased [3H]thymidine incorporation and protein content per cell. The levels of the VDR protein remarkably increased in comparison with control cells, except for the incubation with 9-cis retinoic acid. This increase was particularly accentuated in C2C12 cells treated with KH 1060 and 9-cis retinoic acid in combination. These results, taken together, suggest a role for vitamin D derivatives and retinoids on C2C12 cells.  相似文献   

8.
Specific aspects of the prolactin stimulation of RNA, DNA and protein synthesis in the Nb2 node lymphoma cell line were determined. In time sequence studies the onset of the prolactin stimulation of the incorporation of radiolabeled precursors into these macromolecules was found to be 0.5-1 h for [3H]uridine incorporation into RNA, 1-2 h for [3H]leucine incorporation into protein, and 4-8 h for [3H]thymidine incorporation into DNA. The total DNA content of the cell cultures was increased by 12-18 hours after addition of prolactin. Amiloride, an inhibitor of the plasma-membrane-bound Na+/H+ antiporter, was found to inhibit the mitogenic effects of prolactin. Amiloride was also found to inhibit the prolactin stimulation of DNA, RNA and protein synthesis, thus suggesting that the initial regulation of the Na+/H+ antiporter may initiate these responses as well as the mitogenic effect of prolactin. In contrast, H-7, a drug which inhibits protein kinase C, had no effect on the magnitude of the prolactin stimulation of DNA, RNA or protein synthesis at a drug concentration (100 muM) that abolished the mitogenic effect of prolactin. The early effects of prolactin on RNA, DNA and protein synthesis would therefore appear not to involve an activation of protein kinase C.  相似文献   

9.
We studied the effect of several growth factors on DNA synthesis and function of FRTL-5 rat thyroid cells by simultaneous measurement of [3H]thymidine incorporation and [125I]iodide uptake. Endothelial cell growth factor, fibroblast growth factor, platelet-derived growth factor, and insulin-like growth factor I stimulated thymidine incorporation in a dose-dependent manner without the parallel increase of [125I]iodide uptake. These growth factors had an additive effect with thyroid-stimulating hormone (TSH) on thymidine incorporation, but they inhibited TSH-stimulated iodide uptake. Bombesin stimulated thymidine incorporation and inhibited TSH-stimulated iodide uptake; epidermal growth factor and gastrin-releasing peptide 10 had neither effect. None of the growth factors studied affected iodide uptake in the absence of TSH. Of the growth factors tested, endothelial cell growth factor, fibroblast growth factor, insulin-like growth factor bombesin, and platelet-derived growth factor all share similar differential effects on FRTL-5 cells: stimulation of DNA synthesis, potentiation of the effects of TSH on DNA synthesis, and attenuation of the effects of TSH on cell function. The data suggest that these growth factors may play important roles in regulation of thyroid function.  相似文献   

10.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of (3H] uridine incorporation into RNA and [3H] leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10-21 M). Insulin stimulated the rate of [3H] thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100-1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H] thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of 3H- uridine, [3H] thymidine and [3H] leucine into their respective precursor pools is not responsible for the apparent stimulation of RNA, DNA and protein synthesis.  相似文献   

11.
The role of vitamin D metabolites in the regulation of hepatic 25-hydroxyvitamin D production was investigated by examining the effects of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and 24,25-dihydroxyvitamin D on the synthesis of [25-3H]hydroxyvitamin D by rachitic rat liver homogenates. Production of [25-3H]hydroxyvitamin D was inhibited by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, but not by 24,25-dihydroxyvitamin D. 25-Hydroxyvitamin D increased the Km of the vitamin D-25-hydroxylase enzyme(s), while 1,25-dihydroxyvitamin D decreased the Vmax with a Ki of 88.7 ng/ml. Inhibition of hepatic 25-hydroxyvitamin D production by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D may be another control mechanism to regulate circulating vitamin D levels.  相似文献   

12.
To study general stimulatory effects of 1,25-dihydroxyvitamin D3 on intestinal protein synthesis, slices of duodenal villi from 1,25-dihydroxyvitamin D3-treated and vitamin D-deficient rats were incubated in vitro for 90 min at the surface of medium containing [3H]leucine. Incorporation of the [3H]leucine into TCA-precipitated protein, which was shown to be linear for 12 h and 90% inhibited by cycloheximide, was increased by 50-60% at 26 h after a single injection of 125 ng of 1,25-dihydroxyvitamin D3 (three experiments, P less than 0.001). The increase, which was not due to circadian rhythm fluctuations of the intestine, was in synchrony with the second Ca2+ transport response observed by Halloran and DeLuca (Arch. Biochem. Biophys. 208, 477-486, 1981). However, no significant difference in [3H]leucine incorporation was observed before or during the initial Ca2+ transport response observed by Halloran and DeLuca, i.e., at 1.0, 3.0, and 6.5 h following an injection of 1,25-dihydroxyvitamin D3. The late onset of the 1,25-dihydroxyvitamin D3-induced increase in total protein synthesis implies that it is an indirect rather than a direct effect of the hormone.  相似文献   

13.
The effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on phospholipid metabolism was examined in clonal rat osteogenic sarcoma cells, UMR 106, of osteoblastic phenotype. Treatment of UMR 106 cells with 10(-8)M 1,25-(OH)2D3 for 48 h caused an increase in [14C]serine incorporation into phosphatidylserine (PS) and a decrease in [3H]ethanolamine, [3H]linositol, and [14C]choline incorporation into phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylcholine, respectively; the decrease in [3H]ethanolamine incorporation into PE was the largest. The total contents of phospholipids were similarly affected by 10(-8)M 1,25-(OH)2D3 treatment, suggesting that the effects of 1,25-(OH)2D3 are due largely to alterations in the synthesis of these phospholipids. The effects of 1,25-(OH)2D3 were evident at 10(-10) M 1,25-(OH)2D3, and 10(-8)M 1,25-(OH)2D3 caused a maximal stimulation of [14C]PS synthesis (167% of control) and a maximal reduction in the [3H]PE synthesis (41% of control). The [14C]PS/[3H]PE ratio increased gradually and reached a maximum after 70 h of treatment with 10(-8)M 1,25-(OH)2D3. When the cells were cultured in calcium-free medium containing 0.5 mM EGTA or when 5 microM cycloheximide was added to the medium, the effect of 1,25-(OH)2D3 on phospholipid metabolism was almost completely inhibited. Neither 25-hydroxyvitamin D3 nor 24,25-dihydroxyvitamin D3 caused significant changes in phospholipid metabolism. These results suggest that 1,25-(OH)2D3 alters phospholipid metabolism by enhancing PS synthesis through a calcium-dependent stimulation of the base exchange reaction of serine with other phospholipids and that the effect of 1,25-(OH)2D3 requires the synthesis of new proteins. Because PS is thought to be important for apatite formation and bone mineralization by binding calcium and phosphate to form calcium-PS-phosphate complexes, the present data suggest that 1,25-(OH)2D3 may stimulate bone mineralization by a direct effect on osteoblasts, stimulating PS synthesis.  相似文献   

14.
The phospholipid and fatty acid composition of primary cultures (24 h) of chick embryo skeletal muscle myoblasts treated for 4-24 h with physiological concentrations of 1,25-dihydroxyvitamin D-3 and 25-hydroxyvitamin D-3 were analyzed. 25-Hydroxyvitamin D-3 did not alter the relative amounts of individual muscle cell phospholipids whereas 1,25-dihydroxyvitamin D-3 significantly increased phosphatidylcholine content, mainly at the expense of a decrease in phosphatidylethanolamine concentration. The increase in phosphatidylcholine occurred at a faster rate during the first 8 h than in the subsequent 8-24 h treatment period. A similar time course in 1,25-dihydroxyvitamin D3-dependent changes in myoblast calcium uptake has been observe. In addition, this metabolite markedly increased (100%) the arachidonate content of myoblast phosphatidylcholine near the fusion stage of the cells (24 h of treatment). The levels of docosahexaenoate, a minor polyunsaturated fatty acid, in phosphatidylcholine and phosphatidylethanolamine were also substantially elevated by 1,25-dihydroxyvitamin D-3. No significant changes in fatty acid composition in response to 25-hydroxyvitamin D-3 were observed. Modifications in phospholipids and polyunsaturated fatty acids may play a role in the effects of 1,25-dihydroxyvitamin D-3 on muscle cell calcium transport and differentiation.  相似文献   

15.
The active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2-D3), suppresses in vitro immunoglobulin (Ig) production by activated peripheral blood mononuclear cells (PBM) from normal human subjects by inhibiting T helper/inducer TH cell activity. Normal PBM were fractionated into B, TH and T suppressor/cytotoxic (Ts) cells by fluorescence-activated cell sorting techniques. The resultant subsets were activated with mitogens and were cultured in the presence or absence of a receptor-saturating concentration of 1,25-(OH)2-D3. The sterol reduced [3H]thymidine incorporation in TH cells by 56%, with no effect on Ts or B cells. When 1,25-(OH)2-D3-treated TH cells were co-cultured with untreated B cells and culture supernatants assayed for Ig production, 1,25-(OH)2-D3 abrogated the inducing effect of TH cells on Ig synthesis by B cells. There was no inhibitory effect of the sterol on Ts or B cell activity. In addition, 1,25-(OH)2-D3 produced a dramatic inhibition of interleukin 2 (IL 2) production by activated PBM, but did not inhibit IL 2 receptor generation by these cells. Other vitamin D metabolites tested did not produce this effect. These results suggest that the TH lymphocyte is the specific cellular target for the immunoinhibitory effects of 1,25-(OH)2-D3.  相似文献   

16.
The stimulation of DNA synthesis in primary cell cultures of chicken chondrocytes by parathyroid hormone was studied by assaying [3H]thymidine incorporation into DNA. Optimal assay conditions were determined by varying cell age, plating density, and incubation time. Under these conditions DNA synthesis was significantly stimulated by parathyroid hormone (PTH) and some of its fragments: cells treated with human (h)PTH(1-84), bovine (b)PTH(1-34) and [Nle8,18,Tyr34]bPTH(3-34)amide and hPTH(13-34) displayed 2.6-fold enhanced [3H]thymidine incorporation in a dose-dependent manner. The fragment hPTH(28-48) led to a similar stimulation, whereas [Tyr43]hPTH(43-68) and [Tyr52,Asp76]hPTH(52-84) had no effect. Using a series of synthetic hPTH peptides covering the central region of the hormone molecule (residues 25-47), we could delimitate further this putative mitogenic functional domain to a core region between amino acid residues 30 and 34. The effect of PTH on [3H]thymidine incorporation could not be mimicked by forskolin, indicating that the corresponding signal is not mediated by cAMP. It is, however, inhibited by EGTA and cannot be provoked in the absence of calcium ions in the medium. Therefore, the results presented indicate a hitherto unidentified functional domain of PTH in the central part of the molecule which exerts its mitogenic effect on chondrocytes in a cAMP-independent manner but seems to involve calcium ions for signal transduction.  相似文献   

17.
Regulation of 25-hydroxyvitamin D-3 24-hydroxylase by 1,25-dihydroxyvitamin D-3 and synthetic human parathyroid hormone fragment 1–34 (PTH1–34) was investigated using a cloned monkey kidney cell line, JTC-12. Treatment of the cells with 1,25-dihydroxyvitamin D-3 markedly enhanced the conversion of [3H]-25-hydroxyvitamin D-3 into a more polar metabolite. The metabolite was identified as 24,25-dihydroxyvitamin D-3 by normal phase and reverse phase high-performance liquid chromatography and periodate oxidation. The 24-hydroxylae activity appeared to follow Michaelis-Menten kintics, and 1,25-dihydroxyvitamin D-3 treatment increased the Vmax of 24-hydroxylase from 33 to 95 pmol/h per 106 cells without affecting the apparent Km value of the enzyme (220 nM in control vs. 205 nM in 1,25-dihydroxyvitamin D-3 treated cells). The enzyme activity reached a maximum between 4 and 8 h of treatment with 1,25-dihydroxyvitamin D-3. The dose of 1,25-dihydroxyvitamin D-3 required to cause a half-maximal stimulation was about 3 · 10?10 M. The 1,25-dihydroxyvitamin D-3-induced increase in 24-hydroxylase was almost completely inhibited by the presence of 1 μM cycloheximide. Treatment of the cells with PTH1–34 caused a dose-dependent increase in cyclic AMP production. Half-maximal stimulation of cyclic AMP production was obtained at about 5 · 10?9 M PTH1–34. When 2.4 · 10?9 M PTH1–34 was added after 1,25-dihydroxyvitamin D-3 treatment, the 1,25-dihydroxyvitamin D-3-stimulated 24-hydroxylase was inhibited to 70.7 ± 2.9% of control. Higher concentrations of PTH1–34 caused less inhibition of the enzyme activity. When cyclic AMP was added instead of PTH1–34, the enzyme activity was also suppressed significantly. These results indicate that, in JTC-12 cells, 1,25-dihydroxyvitamin D-3 stimulates 24-hydroxylase in a dose- and time-dependent manner by increasing the Vmax of the enzyme through a mechanism dependent upon new protein synthesis, and suggest that PTH1–34 inhibits the 1,25-dihydroxyvitamin D-3-induced stimulation of 24-hydroxylase through its effect on cyclic AMP production.  相似文献   

18.
Two-dimensional electrophoresis together with radiolabeling experiments was used to examine cytosolic proteins of embryonic chick duodenum for responses to 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 caused a striking decrease in [3H]leucine content of an 18,000-dalton protein (approximate pI, 5.1) after a 10-min pulse with radioisotope followed by a 4-h chase. Decreased [14C]leucine content of the same protein was also observed at various times following 1,25-dihydroxyvitamin D3 addition to culture media; a significant decrease in radiolabel incorporation occurred within 30 min after addition of the hormone. The results argue that 1,25-dihydroxyvitamin D3 causes either a decreased synthesis rate or a post-translational modification of this protein. This change joins the biosynthesis of calcium-binding protein as an early event in the response of chick embryonic intestine to 1,25-dihydroxyvitamin D3.  相似文献   

19.
The influence of 1,25-dihydroxyvitamin D-3 on the cAMP response to parathyroid hormone was studied in the osteoblast-like rat osteosarcoma cells ROS 17/2.8. The stimulation by parathyroid hormone of cAMP production in intact cells and of adenylate cyclase activity in isolated plasma membranes was attenuated by 1,25-dihydroxyvitamin D-3 treatment. This was associated with a reduction of the stimulatory guanine nucleotide regulatory protein, as demonstrated by a lower response to NaF and guanosine 5'-[beta, gamma-imido]triphosphate, and by a lower activity of solubilized plasma membrane extracts in the reconstitution assay. 1,25-dihydroxyvitamin D-3 blunted also the cAMP response to parathyroid hormone in cells incubated with the glucocorticoid dexamethasone, where a higher activity of the adenylate cyclase catalytic unit was observed. Thus, the two steroids appear to affect distinct levels of the adenylate cyclase system. Furthermore, the two hormones also showed an antagonistic effect upon the production of osteocalcin, an osteoblast-specific extracellular matrix protein. The release of this non-collagenous matrix protein by ROS 17/2.8 cells was increased by 1,25-dihydroxyvitamin D-3 and decreased by dexamethasone.  相似文献   

20.
A multienzyme complex containing at least DNA polymerase (EC 2.7.7.7), thymidine kinase (EC 2.7.1.21), dTMP kinase (EC 2.7.4.9) nucleoside diphosphokinase (EC 2.7.4.6) and thymidylate synthetase was separated from the corresponding free enzymes of DNA precursor synthesis by gel filtration of a gently lysed preparation of HPB-ALL cells (a human lymphoblastoid cell line). The isolated incorporated the distal DNA precursors [3H]thymidine or [3H]dTMP into an added DNA template at rates comparable to those observed using the immediate precursor [3H]dTTP. Measurement of the apparent overall concentrations of [3H]dTTP produced during incorporation of [3H]thymidine and of [3H]dTMP were so low as to suggest that these precursors were channelled into DNA by the operation of a kinetically linked complex of precursor-synthesizing enzymes and of DNA polymerase. The DNA polymerase inhibitor 1-beta-D-arabinofuranosylcytosine triphosphate reduced incorporation of distal precursors into DNA. However [3H]dTTP did not accumulate in the reaction mixture. This suggested that the DNA polymerase regulated the flow of substrates through the complex. The results in this paper constitute direct evidence for the existence of multienzyme complexes of DNA synthesis in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号