首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The susceptibility of Anopheles aquasalis (F3 generation) and An. darlingi (F1 generation) to Plasmodium vivax circumsporozoite protein phenotypes from a limited number of blood samples of malaria patients in Belém, state of Pará, Brazil, was examined A polymerase chain reaction was used to determine the P. vivax phenotypes in blood samples and the blood-fed infected mosquitoes were dissected and tested by ELISA. In all patient infections, more infected An. aquasalis and An. darlingi were positive for VK210 compared with VK247.  相似文献   

2.
Phenotypic diversity has been described in the central repeated region of the circumsporozoite protein (CSP) from Plasmodium vivax. Two sequences VK210 (common) and VK247 (variant) have been found widely distributed in P. vivax isolates from several malaria endemic areas around the world. A third protein variant called P. vivax-like showing a sequence similar to the simian parasite P. simioovale has also been described. Here, using an immunofluorescent test and specific monoclonal antibodies, we assessed the presence of two of these protein variants (VK210 and VK247) in laboratory produced sporozoite. Both sequences were found in parasite isolates coming from different geographic regions of Colombia. Interestingly, sporozoites carrying the VK247 sequence were more frequently produced in Anopheles albimanus than sporozoites with the VK210 sequence. This difference in sporozoites production was statistically significant (p <0.05, Kruskal-Wallis); not correlation was found with parameters as the total number of parasites or gametocytes in blood from human donors used to feed mosquitoes. Previous studies in the same region have shown a higher prevalence of anti-VK210 antibodies which in theory may suggest their role in blocking the development of sporozoites carrying the CSP VK210 sequence.  相似文献   

3.
Previous studies have shown that the central American mosquito vector, Anopheles albimanus, is generally refractory to oocyst infection with allopatric isolates of the human malaria parasite Plasmodium falciparum. However, the reasons for the refractoriness of A. albimanus to infection with such isolates of P. falciparum are unknown. In the current study, we investigated the infectivity of the P. falciparum clone 3D7A to laboratory-reared A. albimanus and another natural vector of human malaria, Anopheles stephensi. Plasmodium falciparum gametocytes grown in vitro were simultaneously fed to both mosquito species and the progress of malaria infection compared. In 22 independent paired experimental feeds, no mature oocysts were observed on the midguts of A. albimanus 10days after bloodfeeding. In contrast, high levels of oocyst infection were found on the midguts of simultaneously fed A. stephensi. Direct immunofluorescence microscopy and light microscopical examination of Giemsa-stained histological sections were used to identify when the P. falciparum clone 3D7A failed to establish mature oocyst infections in A. albimanus. Similar densities of macrogametes/zygotes, and immature retort-form and mature ookinetes were found within the bloodmeals of both mosquito species. However, in A. albimanus, ookinetes were seldom associated with the peritrophic matrix, and were neither observed in the ectoperitrophic space nor the midgut epithelium. In contrast, ookinetes were frequently observed in these midgut compartments in A. stephensi. Additionally, young oocysts were observed on the midguts of A. stephensi but not A. albimanus 2days after bloodfeeding. Vital staining of the immature retort-form and mature ookinetes found within the luminal bloodmeal, demonstrated that a significantly greater proportion of these malaria parasite stages were non-viable in A. albimanus compared with A. stephensi. Overall, our observations indicate that ookinetes of the P. falciparum clone 3D7A are destroyed within the bloodmeal of A. albimanus and that the midgut lumen, rather than the midgut epithelium, is the site of mosquito refractoriness in this particular malaria parasite-mosquito vector combination.  相似文献   

4.
Three anopheline mosquitoes in Korea were studied for their abilities as vectors for Plasmodium vivax. The female mosquitoes of Anopheles lesteri, An. pullus and An. sinensis were allowed to suck malaria patient blood until fully fed, and they were then bred for 2 weeks to develop from malaria parasites to sporozoites. The result from the above confirmed the sporozoites in one An. lesteri of one individual and five An. sinensis of six individuals. We also confirmed that An. sinensis was the main vector to transmit malaria and An. lesteri as well as An. sinensis were able to carry Korean malaria parasites. Therefore, we propose that diversified study is needed to manage malaria projects.  相似文献   

5.
6.
Several Plasmodium vivax merozoite proteins have been characterized over the past few years, including two that bind specifically to reticulocytes. Here, Mare Galinski and John Barnwell examine P. vivax merozoites and constituent molecules that are involved in host cell selection and invasion, and that also are viewed as malaria vaccine candidates. They also discuss how knowledge of the reticulocyte-binding proteins furthers the development of a conceptual framework for malaria merozoite invasion at the molecular level, not only for P. vivax, but for all species of the parasite.  相似文献   

7.
Introduction. The susceptibility of Anopheles albimanus to organophosphates, carbamates and pyrethroid insecticides was unknown in the Panama communities of Aguas Claras, Pintupo and Puente Bayano, located in the Amerindian Reservation of Madungandi. This region is considered a malaria transmission area, where An. albimanus is the main vector. Objective. The resistance to organophosphate insecticides, carbamates and pyrethroids was evaluated in field populations of the Anopheles albimanus in Panama. Materials and methods. Progeny of An. albimanus collected in three localities in the indigenous Madugandi region were exposed to bioassays of susceptibility to organophosphate insecticides (fenitrothion, malathion and chlorpyrifos), the carbamate (propoxur) and pyrethroids (deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin). The protocols were in accordance with those established for adult mosquitoes by World Health Organization. Results. The three strains of the An. albimanus were resistant to the pyrethroid insecticides deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin. Susceptibility remained for the organophosphate insecticides fenitrothion, malathion, chlorpyrifos, and the carbamate insecticide propoxur. Conclusion. The results provided important information to the vector control program, contributing to the application of new strategies on the use of insecticides, and thereby lengthening the life of the insecticide in use.  相似文献   

8.
The effect of anti-mosquito-midgut antibodies on the development of the malaria parasite, P. vivax was studied by feeding the vector mosquito, An. culicifacies with infected blood supplemented with serum from immunized rabbits. In order to get antisera, rabbits were immunized with midgut proteins of three siblings species of Anopheles culicifacies, reported to exhibit differential vectorial capacity. The mosquitoes that ingested anti-midgut antibodies along with infectious parasites had significantly fewer oocysts compared to the control group of mosquitoes. The immunized rabbits generated high titer of antibodies. Their cross reactivity amongst various tissues of the same species and with other sibling species was also determined. Immunogenic polypeptides expressed in the midgut of glucose or blood fed An. culicifacies sibling species were identified by Western blotting. One immunogenic polypeptide of 62 kDa was exclusively present in the midgut of species A. Similarly, three polypeptides of 97, 94 and 58 kDa and one polypeptide of 23 kDa were present exclusively in species B and C respectively. Immunoelectron microscopy revealed the localization of these antigens on baso-lateral membrane and microvilli. The effects of anti-mosquito midgut antibodies on fecundity, longevity, mortality and engorgement of mosquitoes were studied. Fecundity was also reduced significantly. These observations open an avenue for research toward the development of a vector-based malaria parasite transmission-blocking vaccine.  相似文献   

9.
Despite substantial work, the phylogeny of malaria parasites remains debated. The matter is complicated by concerns about patterns of evolution in potentially strongly selected genes as well as the extreme AT bias of some Plasmodium genomes. Particularly contentious has been the position of the most virulent human parasite Plasmodium falciparum, whether grouped with avian parasites or within a larger clade of mammalian parasites. Here, we study 3 classes of rare genomic changes, as well as the sequences of mitochondrial ribosomal RNA (rRNA) genes. We report 3 lines of support for a clade of mammalian parasites: 1) we find no instances of spliceosomal intron loss in a hypothetical ancestor of P. falciparum and the avian parasite Plasmodium gallinaceum, suggesting against a close relationship between those species; 2) we find 4 genomic mitochondrial indels supporting a mammalian clade, but none grouping P. falciparum with avian parasites; and 3) slowly evolving mitochondrial rRNA sequences support a mammalian parasite clade with 100% posterior probability. We further report a large deletion in the mitochondrial large subunit rRNA gene, which suggests a subclade including both African and Asian parasites within the clade of closely related primate malarias. This contrasts with previous studies that provided strong support for separate Asian and African clades, and reduces certainty about the historical and geographic origins of Plasmodium vivax. Finally, we find a lack of synapomorphic gene losses, suggesting a low rate of ancestral gene loss in Plasmodium.  相似文献   

10.
An experimental study of the mechanisms and patterns of resistance to Plasmodium berghei in different mosquito species revealed a diversity of factors which prevent or inhibit sporogonic development in its different phases and in different sites in the mosquito vector. The experiments showed that Culex salinarius was a totally resistant species in which exflagellation and ookinete formation are prevented. In Aedes aegypti, ookinetes in small or moderate numbers are formed but penetration of the mosquito midgut wall is blocked and oocysts are not formed. In the three experimental vectors, Anopheles quadrimaculatus, Anopheles aztecus, and Anopheles stephensi grades of enhanced susceptibility are recognized. They are expressed in lesser numbers of abnormal and degenerative oocysts, in higher numbers of sporozoites in the salivary gland, and greater viability and invasiveness of these sporozoites. In Anopheles dureni, the natural vector of rodent malaria, one observes both in nature and under experimental conditions the highest adaptation and most pronounced grade of susceptibility to P. berghei.  相似文献   

11.
Malaria infection in the mosquito vector can be modulated by the vertebrate host, mosquito factors, and interactions between different parasite populations. Modulation of parasite development can be assessed through the study of gene expression. The present report describes a specific, sensitive, and nonradioactive method that permits assessment of parasite load and quantification of circumsporozoite protein gene expression during the sporogonic stages of Plasmodium yoelii yoelii and P. y. nigeriensis. A decrease in parasite load was observed when comparing DNA of oocysts on day 7 postinfection with that of oocysts and sporozoites on day 19. On day 7, parasites (oocysts) showed a marked increase of circumsporozoite protein expression when compared with that (sporozoites and oocysts) on day 19. The method developed in this work can be a valuable tool to understand parasite interaction mechanisms that are involved in mosquito malaria infections.  相似文献   

12.
 Collagen type II-induced arthritis (CIA) develops in susceptible mouse strains after intradermal injections of type II collagen (CII) in complete Freund's adjuvant (CFA). Susceptibility to CIA in mice is linked to genes of the major histocompatibility complex (MHC). Although the SWR mouse has a susceptible MHC haplotype (H2 q ), it is resistant to CIA. SWR exhibits at least two known immunological defects: (1) it contains a germline deletion of about 50% of T-cell receptor (TCR) Vβ-chain gene segments, and (2) SWR is deficient in complement component C5. It has been shown that T cells that express TCRVα11.1 and TCRVβ8.2 play a substantial role in the pathogenesis of arthritis in the DBA/1 mouse (H2 q ). We generated SWR transgenic (tg) mice to determine whether the expression of pathogenic Vα11.1 and/or Vβ8.2 transgenes would confer arthritis susceptibility. Arthritis was induced in the SWR TCRαβ tg mice, but not in SWR TCRβ tg mice. To address the role of Vα11.1 in arthritis susceptibility, we examined the allelic polymorphisms of the Tcra-V11-gene subfamily members between the arthritis susceptible DBA/1 mouse and the arthritis-resistant SWR mouse strain. The amino acid sequences of the Vα11.1 alleles differ at two positions (codons 18 and 68). Accordingly, these two amino acid changes are sufficient to allow the production of pathogenic T cells in SWR mice. This is the first demonstration of the association of a particular Tcra-V allele and arthritis susceptibility in mice. Received: 20 November 1998 / Revised: 15 February 1999  相似文献   

13.
Thioester-containing protein 1 (TEP1) is a central component in the innate immune response of Anopheles gambiae to Plasmodium infection. Two classes of TEP1 alleles, TEP1*S and TEP1*R, are found in both laboratory strains and wild isolates, related by a greater or lesser susceptibility, respectively to both P. berghei and P. falciparum infection. We report the crystal structure of the full-length TEP1*S1 allele which, while similar to the previously determined structure of full-length TEP1*R1, displays flexibility in the N-terminal fragment comprising domains MG1-MG6. Amino acid differences between TEP1*R1 and TEP1*S1 are localized to the TED-MG8 domain interface that protects the thioester bond from hydrolysis and structural changes are apparent at this interface. As a consequence cleaved TEP1*S1 (TEP1*S1cut) is significantly more susceptible to hydrolysis of its intramolecular thioester bond than TEP1*R1cut. TEP1*S1cut is stabilized in solution by the heterodimeric LRIM1/APL1C complex, which preserves the thioester bond within TEP1*S1cut. These results suggest a mechanism by which selective pressure on the TEP1 gene results in functional variation that may influence the vector competence of A. gambiae towards Plasmodium infection.  相似文献   

14.

Background

Intermittent preventive treatment in infants (IPTi) has been shown in randomized trials to reduce malaria-related morbidity in African infants living in areas of high Plasmodium falciparum (Pf) transmission. It remains unclear whether IPTi is an appropriate prevention strategy in non-African settings or those co-endemic for P. vivax (Pv).

Methods and Findings

In this study, 1,121 Papua New Guinean infants were enrolled into a three-arm placebo-controlled randomized trial and assigned to sulfadoxine-pyrimethamine (SP) (25 mg/kg and 1.25 mg/kg) plus amodiaquine (AQ) (10 mg/kg, 3 d, n = 374), SP plus artesunate (AS) (4 mg/kg, 3 d, n = 374), or placebo (n = 373), given at 3, 6, 9 and 12 mo. Both participants and study teams were blinded to treatment allocation. The primary end point was protective efficacy (PE) against all episodes of clinical malaria from 3 to 15 mo of age. Analysis was by modified intention to treat. The PE (compared to placebo) against clinical malaria episodes (caused by all species) was 29% (95% CI, 10–43, p≤0.001) in children receiving SP-AQ and 12% (95% CI, −11 to 30, p = 0.12) in those receiving SP-AS. Efficacy was higher against Pf than Pv. In the SP-AQ group, Pf incidence was 35% (95% CI, 9–54, p = 0.012) and Pv incidence was 23% (95% CI, 0–41, p = 0.048) lower than in the placebo group. IPTi with SP-AS protected only against Pf episodes (PE = 31%, 95% CI, 4–51, p = 0.027), not against Pv episodes (PE = 6%, 95% CI, −24 to 26, p = 0.759). Number of observed adverse events/serious adverse events did not differ between treatment arms (p>0.55). None of the serious adverse events were thought to be treatment-related, and the vomiting rate was low in both treatment groups (1.4%–2.0%). No rebound in malaria morbidity was observed for 6 mo following the intervention.

Conclusions

IPTi using a long half-life drug combination is efficacious for the prevention of malaria and anemia in infants living in a region highly endemic for both Pf and Pv.

Trial registration

ClinicalTrials.gov NCT00285662 Please see later in the article for the Editors'' Summary  相似文献   

15.
The effects of testosterone on acquired resistance to ticks, Ixodes ricinus, in their natural rodent hosts (voles, Clethrionomys glareolus, and wood-mice, Apodemus sylvaticus) were investigated by manipulating testosterone levels and exposing the hosts to repeated tick infestations. Testosterone reduced both innate and acquired resistance to tick feeding. During primary infestations, attachment rates were higher on rodents with high testosterone levels than on oil-implanted controls. Successive infestations on voles were accompanied by a decrease in tick feeding success and survival, but this decrease was significantly greater in ticks fed on control voles than in those fed on voles implanted with testosterone. When reduced feeding success had been induced, either by vaccination with tick salivary gland extract or by 4 successive infestations, implantation with testosterone partially reversed the acquired resistance. These effects of testosterone will generate heterogeneities within the rodent population with respect to tick distribution and microparasite transmission. The lowest innate and acquired resistance to tick feeding occurs in that fraction of the host population, i.e., sexually active males, most actively involved in the transmission of both Babesia microti and Borrelia burgdorferi s.l.  相似文献   

16.
The global pandemic of COVID-19 caused by SARS-CoV-2 (also known as 2019-nCoV and HCoV-19) has posed serious threats to public health and economic stability worldwide, thus calling for development of vaccines against SARS-CoV-2 and other emerging and reemerging coronaviruses. Since SARS-CoV-2 and SARS-CoV have high similarity of their genomic sequences and share the same cellular receptor (ACE2), it is essential to learn the lessons and experiences from the development of SARS-CoV vaccines for the development of SARS-CoV-2 vaccines. In this review, we summarized the current knowledge on the advantages and disadvantages of the SARS-CoV vaccine candidates and prospected the strategies for the development of safe, effective and broad-spectrum coronavirus vaccines for prevention of infection by currently circulating SARS-CoV-2 and other emerging and reemerging coronaviruses that may cause future epidemics or pandemics.  相似文献   

17.
A powerful IFN-gamma response is triggered upon infection with the protozoan parasite, Toxoplasma gondii. Several cell populations, including dendritic cells (DCs), macrophages, and neutrophils, produce IL-12, a key cytokine for IFN-gamma induction. However, it is still unclear which of the above cell populations is its main source. Diphtheria toxin (DT) injection causes transient DC depletion in a transgenic mouse expressing Simian DT receptors under the control of the CD11c promoter, allowing us to investigate the role of DCs in IL-12 production. T. gondii-inoculated DT-treated and control groups were monitored for IL-12 levels and survival. We show in this study that DC depletion abolished IL-12 production and led to mortality. Furthermore, replenishment with wild-type, but not MyD88- or IL-12p35-deficient, DCs rescued IL-12 production, IFN-gamma-induction, and resistance to infection in DC-depleted mice. Taken together, the results presented in this study indicate that DCs constitute the major IL-12-producing cell population in vivo during T. gondii infection.  相似文献   

18.
 Extreme resistance to the potato V potyvirus (PVV) was found in four potato cultivars that contain Ry genes from Solanum stoloniferum. When plants of these cultivars, were inoculated by grafting in shoot tips from PVV-infected tomato plants, necrotic symptoms developed in some cultivars, although a full hypersensitive reaction was not elicited, while other cultivars were symptomless. PVV replication was not detected in any of the inoculated plants by ELISA, an infectivity assay of leaf extracts by manual inoculation to Nicotiana benthamiana indicator plants, or by ‘return grafting’ of shoot tips taken from newly developed shoots of the potato plants to virus-free indicator plants of tomato. These methods readily detected PVV infection in inoculated plants of cv ‘Flourball’, which does not contain an Ry gene and is susceptible, and in cvs ‘Maris Piper’ and ‘Dr Macintosh’, which contain gene Nv conditioning a hypersensitive reaction to inoculation. One of the Ry-containing cultivars, ‘Barbara’, has been previously shown to contain two genes that control extreme resistance, defined as no viral replication in intact plants, to the potyviruses potato viruses Y and A (PVY and PVA). These genes are: Ry sto , which conditions resistance to PVY and PVA, and gene Ra, which conditions resistance to PVA only. It was found that in genotypes from a progeny of the cross ‘Barbara’ (Ry sto /Ra)בFlourball’ (ry/ra), extreme resistance to PVV segregated with gene Ry sto . It is proposed that either gene Ry sto conditions broad-spectrum extreme resistance to the distinct potyviruses PVY, PVA, and PVV or that Ry sto represents a family of genetically closely linked genes each controlling resistance to a specific virus. Received: 27 December 1996 / Accepted: 9 June 1997  相似文献   

19.
Family selection for directional asymmetry in the expression of the Drosophila melanogaster mutant scute had no result. Fluctuating asymmetry did not show a selection differential correlated with directional asymmetry. The unfolding of bilateral symmetry in embryogenesis can be used to explain the lack of genetic variation for directional asymmetry. Directional asymmetry provides a well-understood example of a developmental constraint in evolution. It is proposed that as no evidence is available for an independent left-right gradient in the embryo, quantitative traits can only be expressed variably along an existing gradient of positional information or a morphogen.  相似文献   

20.
Streptococcus pyogenes (group A streptococcus) colonizes skin and throat tissues resulting in a range of benign and serious human diseases. Opsonization and phagocytosis are important defence mechanisms employed by the host to destroy group A streptococci. Antisera against the cell-surface M protein, of which over 150 different types have been identified, are opsonic and contribute to disease protection. In this issue of Molecular Microbiology, Sandin and colleagues have comprehensively analysed the regions of M5 protein that contribute to phagocytosis resistance and opsonization. Human plasma proteins bound to M5 protein B- and C-repeats were shown to block opsonization, an observation that needs to be carefully considered for the development of M protein-derived vaccines. While safe and efficacious human group A streptococcal vaccines are not commercially available, candidate M protein-derived vaccines have shown promise in murine vaccine models and a recent phase 1 human clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号