首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.  相似文献   

3.
4.
The high selectivity, low conductance, amiloride-blockable, sodium channel of the mammalian distal nephron (i.e. cortical collecting tubule) is the site of discretionary regulation which allows maintainance of total body sodium balance. In order to understand the physiological events that participate in this regulation, we have used the patch-clamp technique which allows us to measure individual Na+ channel currents and permits access to the cytosolic side of the channel-protein as well as its associated regulatory components. Most of our experiments have utilized the A6 amphibian renal cell line, which when grown on permeable supports is an excellent model for the mammalian distal nephron. Different mechanisms have been examined: (1) regulation by hormonal factors such as Anti-Diuretic Hormone (ADH) and aldosterone, (2) regulation by G-proteins, (3) modulation by protein kinase C (PK-C), and (4) modulation by products of arachidonic acid metabolism. Consistent with noise analysis of tight epithelial tissues, ADH treatment increased the number of active channels in apical membrane patches of A6 cells, without any apparent change in the open probability (Po) of the individual channels. Agents that increased intracellular cAMP mimicked the effects of ADH. In contrast, aldosterone was found to act through a dramatic increase in Po rather than through changes in channel density. Inhibition of methylation by deazaadenosine antagonizes the stimulatory effect of aldosterone. In excised inside-out patches GTPS inhibits channel activity, whereas GDPS or pertussis toxin stimulates activity suggesting regulatory control by G-proteins. PK-C has been shown to contribute to feed-back inhibition of apical Na+ conductance in tight epithelia. Raising luminal bath sodium and therefore intracellular Na+ inhibits sodium channel activity, an effect that is prevented by PK-C inhibitors and mimicked by PK-C agonists. Cyclooxygenase metabolites of arachidonic acid have an inhibitory effect on channel activity. Finally, a possible role for tyrosine kinase as well as membrane cytoskeleton in the regulation of sodium channel function is also suggested.Abbreviations ADH Anti Diuretic Hormone - AVP Arginine Vasopressin - dBcAMP diButyryl-cyclic Adenosine Mono Phosphate - NMDG N-methyl-D-glucamine - PK-A Protein Kinase A - PK-C Protein kinase C - GTP Guanosine 5-Triphosphate - GDPS Guanosine 5-O-(2-thiodiphosphate) - GTPS Guanosine 5-O-(3-thiotri-phosphate) - G-protein Trimeric Guanosine Dependent Protein - Gi–3 subunit of the Gi–3 type G- protein - CCT Cortical Collecting Tubule - PTX Pertussis Toxin - IMCD Inner Medulary Collecting Duct - cAMP Adenosine 3:5-cyclic Monophosphate - cGMP Guanosine 3:5-cyclic Monophosphate  相似文献   

5.
Summary The mammalian urinary bladder epithelium accommodates volume changes by the insertion and withdrawal of cytoplasmic vesicles. Both apical membrane (which is entirely composed of fused vesicles) and the cytoplasmic vesicles contain three types of ionic conductances, one amiloride sensitive, an-other a cation-selective conductance and the third a cation conductance which seems to partition between the apical membrane and the mucosal solution. The transport properties of the apical membrane (which has been exposed to urine in vivo) differ from the cytoplasmic vesicles by possessing a lower density of amiloride-sensitive channels and a variable level of leak conductance. It was previously shown that glandular kallikrein was able to hydrolyze epithelial sodium channels into the leak conductance and that this leak conductance was further degraded into a channel which partitioned between the apical membrane and the mucosal solution. This report investigates whether kallikrein is the only urinary constituent capable of altering the apical membrane ionic permeability or whether other proteases or ionic conditions also irreversible modify apical membrane permeability.Alterations of mucosal pH, urea concentrations, calcium concentrations or osmolarity did not irreversible affect the apical membrane ionic conductances. However, urokinase and plasmin (both serine proteases found in mammalian urine) were found to cause an irreversible loss of amiloride-sensitive current, a variable change in the leak current as well as the appearance of a third conductance which was unstable in the apical membrane and appears to partition between the apical membrane and the mucosal solution. Amiloride protects the amiloride-sensitive conductance from hydrolysis but does not protect the leak pathway. Neither channel is protected by sodium. Fluctuation analysis demonstrated that the loss of amiloride-sensitive current was due to a decrease in the sodium-channel density and not a change in the single-channel current. Assuming a simple model of sequential degradation, estimates of single-channel currents and conductances for both the leak channel and unstable leak channel are determined.  相似文献   

6.
The hypothesis that there is a highlyconserved, positively charged region distal to the second transmembranedomain in -ENaC (epithelial sodium channel) that acts as a putativereceptor site for the negatively charged COOH-terminal - and-ENaC tails was tested in mutagenesis experiments. After expressionin Xenopus oocytes, -ENaC constructs in which positivelycharged arginine residues were converted into negatively chargedglutamic acids could not be inhibited by blocking peptides. Theseobservations provide insight into the gating machinery of ENaC.

  相似文献   

7.
Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y. Sun, and D.G. Drubin. 2003. Cell. 115:475-487). However, the nature of the primary endocytic profile in yeast and how clathrin and actin cooperate to generate an endocytic vesicle is unknown. In this study, we analyze the distribution of nine different proteins involved in endocytic uptake along plasma membrane invaginations using immunoelectron microscopy. We find that the primary endocytic profiles are tubular invaginations of up to 50 nm in diameter and 180 nm in length, which accumulate the endocytic coat components at the tip. Interestingly, significant actin labeling is only observed on invaginations longer than 50 nm, suggesting that initial membrane bending occurs before initiation of the slow inward movement. We also find that in the longest profiles, actin and the myosin-I Myo5p form two distinct structures that might be implicated in vesicle fission.  相似文献   

8.
The coprodeum is a very efficient Na+-retaining epithelium. Coprodeum from birds on a high Na+ diet has virtually no ion transport, while an Amiloride-sensitive Na+ absorption of 10–12 μ equiv·cm?2·h?1 is induced in the coprodeal epithelium from birds on a low Na+ diet. Both measurements of the Na+ influx and Na+-diffusion potentials across the luminal cell membrane have revealed a selective opening of this membrane to Na+ in birds on a low Na+ diet. Freeze-fracture P faces of the luminal membrane in coprodea taken from birds on a low Na+ diet have rod-shaped particles, 100 × 240 A?, in more than 20% of the principal cells. Rod-shaped particles appear in less than 1% of these cells in coprodea from high Na+-diet birds. Thus a low Na+ diet induces rod-shaped particles in the luminal cell membrane of the hen coprodeum. These new particles may function as Na+-channels mediating the increased Na+-influx across the apical cell membrane.  相似文献   

9.
10.
11.
In Friend murine erythroleukemia cells the presence of ion channels was investigated with the patch-clamp technique. During the first 48 hours after cell seeding, three types of ion channels, with the following order of membrane density, were found: i) a Ca2+-dependent K+ channel, fully activated at a cytosolic Ca2+ concentration of 10(-6) M and moderately activated at 10(-7)M; ii) a monovalent cation channel non voltage-activated, with an open-close kinetics dependent on the pressure gradient across the patch; iii) a chloride channel with a slow open-close kinetics. The latter two channels were labile and did not survive during intracellular perfusion. The membrane potential of the leukemia cells was not constant, but underwent large (tens of millivolts) fluctuations due to the opening of a few channels. The average resting membrane potential recorded in this study agrees with that measured in these cells by means of the accumulation ratio of the lipophilic cation Tetraphenylphosphonium.  相似文献   

12.
The density of sodium channels was measured in growing and mature axons of the olfactory nerve of the bullfrog, using as a probe the drug saxitoxin (STX). The toxin binds to control nerves from adult animals in a saturable manner with a dissociation constant of approximately 23 nM at 4 degrees C and a capacity of 72 fmol/mg wet weight, equivalent to about five sites per square micrometer of axolemma. In growing nerves, obtained from adult frogs 4-5 wk following removal of the original nerve, the STX-binding capacity per wet weight of tissue is markedly reduced, to approximately 25% of control values, and appears to decrease in the proximodistal direction. STX-binding data, expressed as STX/mg wet weight, was converted to STX/micron 2 of axolemma using stereologically derived values of membrane area per milligram wet weight of nerve. The axolemmal content (area/mg wet weight) of all regions of growing nerve is substantially decreased compared to controls, but increases in the proximodistal direction by 60%. These changes in axolemmal area result in calculated STX receptor densities (per unit axolemmal area) which, in distal regions, are approximately at the level of the mature nerve and, in proximal regions, are actually increased above controls by 50 to 70%. Upon comparing the axolemmal density of intramembrane particles, reported in the companion paper, with the calculated density of STX receptors in both mature and growing nerves, we find a correlation between STX receptors and intramembrane particles with diameters of 11.5-14.0 nm. The growing axon's gradient of sodium channels and the shift from this gradient to a uniform distribution in the mature axon suggest (a) that sodium channels are inserted into the perikaryal plasmalemma and diffuse from there into the growing axolemma, and (b) that the axolemma undergoes functional maturation during growth.  相似文献   

13.
Cation channels in the Arabidopsis plasma membrane   总被引:7,自引:0,他引:7  
In vivo analyses have identified different functional types of ion channels in various plant tissues and cells. The Arabidopsis genome contains approximately 70 genes for ion channels, of which 57 might be cation-selective channels (K(+), Ca(2+) or poorly discriminating channels). Here, we describe the different families of (putative) cation channels: the Shakers, the two-P-domain and Kir K(+) channels (encoded by the KCO genes), the cyclic-nucleotide-gated channels, the glutamate receptors, and the Ca(2+) channel TPC1. We also compare molecular data with the data obtained in planta, which should lead to a better understanding of the identity of these channels and provide clues about their roles in plant nutrition and cell signalling.  相似文献   

14.
15.
Xue L  Zhang Z  McNeil BD  Luo F  Wu XS  Sheng J  Shin W  Wu LG 《Cell reports》2012,1(6):632-638
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.  相似文献   

16.
The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel.  相似文献   

17.
Epithelial Na+ channels (ENaCs) are regulated by the phospholipase A2 (PLA2) product arachidonic acid. Pharmacological inhibition of PLA2 with aristolochic acid induced a significant increase in amiloride-sensitive currents in Xenopus oocytes expressing ENaC. Arachidonic acid or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolized analog of arachidonic acid, induced a time-dependent inhibition of Na+ transport. These effects were also observed by co-expression of a calcium-independent or a calcium-dependent PLA2. Channels with a truncated alpha, beta,or gamma C terminus were not inhibited by arachidonic acid or ETYA. Furthermore, mutation of Tyr618 in the PY motif of the beta subunit abrogated the inhibitory effect of ETYA, suggesting that intact PY motifs participate in arachidonic acid-mediated ENaC inhibition. Analyses of channels expressing a series of beta subunit C-terminal truncations revealed a second region N-terminal to the PY motif (spanning residues betaVal580-betaGly599) that allowed for ETYA-mediated ENaC inhibition. Analyses of both ENaC surface expression and ENaC trafficking with mutants that either gate channels open or closed in response to [(2-(trimethylammonium) ethyl] methanethiosulfonate bromide, or with brefeldin A, suggest that ETYA reduces channel surface expression by inhibiting ENaC exocytosis and increasing ENaC endocytosis.  相似文献   

18.
Tubulins, as major components involved in the organization of microtubules, play an important role in plant development. We describe here the expression profiles of all known α-tubulin (TUA), β-tubulin (TUB) and γ-tubulin (TUG) genes of barley ( Hordeum vulgare ), involving eight newly identified TUB sequences, five established TUA genes and one TUG gene. Macroarray and Northern blot-based expression patterns in the pericarp, endosperm and embryo were obtained over the course of the development of the grain between anthesis and maturation. These revealed that the various tubulin genes differed in their levels of expression, and to some extent were tissue specific. Two expression peaks were detected in the developing endosperm. The first and more prominent peak, at 2 days after flowering, included expression of almost all the tubulin genes. These tubulins are thought to be involved in mitoses during the formation of the syncytial endosperm. The second, less pronounced but more extended, peak included only some of the tubulin genes ( HvTUA3 , HvTUB1 and HvTUG ) and might be associated with the cell wall organization in aleurone and starchy endosperm. The HvTUA5 gene is expressed only in embryo of the developing grain and may be associated with shoot establishment. The expression profiles of the tubulin folding cofactors HvTFC A and HvTFC B as well as small G-protein HvArl2 genes were almost perfectly correlated with the global levels of tubulin mRNA, implying that they have a role in the control of the polymerization of α/β-tubulin heterodimers.  相似文献   

19.
Epithelial Na+ channels (ENaCs) comprise three subunits that have been proposed to be arranged in either an alpha2betagamma or a higher ordered configuration. Each subunit has two putative membrane-spanning segments (M1 and M2), intracellular amino and carboxyl termini, and a large extracellular loop. We have used the TOXCAT assay (a reporter assay for transmembrane segment homodimerization) to identify residues within the transmembrane segments of ENaC that may participate in important structural interactions within ENaC, with which we identified a candidate site within alphaM1. We performed site-directed mutagenesis at this site and found that, although the mutants reduced channel activity, ENaC protein expression at the plasma membrane was unaffected. To deduce the role of alphaM1 in the pore structure of ENaC, we performed tryptophan-scanning mutagenesis throughout alphaM1 (residues 110-130). We found that mutations within the amino-terminal part of alphaM1 had effects on activity and selectivity with a periodicity consistent with a helical structure but no effect on channel surface expression. We also observed that mutations within the carboxyl-terminal part of alphaM1 had effects on activity and selectivity but with no apparent periodicity. Additionally, these mutants reduced channel surface expression. Our data support a model in which the amino-terminal half of alphaM1 is alpha-helical and packs against structural element(s) that contribute to the ENaC pore. Furthermore, these data suggest that the carboxyl-terminal half of alphaM1 may be helical or assume a different conformation and may be involved in tertiary interactions essential to proper channel folding or assembly. Together, our data suggest that alphaM1 is divided into two distinct regions.  相似文献   

20.
Modulation of nerve membrane sodium channels by chemicals   总被引:1,自引:0,他引:1  
1. Modulations of sodium channel kinetics by grayanotoxins and pyrethroids have been studied using voltage clamped, internally perfused giant axons from crayfish and squid. 2. Grayanotoxin I and alpha-dihydrograyanotoxin II greatly depolarize the nerve membrane through an increase in resting sodium channel permeability to sodium ions. 3. Grayanotoxins modify a fraction of sodium channel population to give rise to a slow conductance increase with little or no inactivation, and the slow conductance-membrane potential curve is shifted toward hyperpolarization. This accounts for the depolarization. 4. The tail current associated with step repolarization during the slow current in grayanotoxins decays with a dual exponential time course. 5. (+)-trans tetramethrin and (+)-trans allethrin also modify a fraction of sodium channel population in generating a slow current, which attains a maximum slowly and decays very slowly during a maintained depolarizing step. The membrane is depolarized only slightly. 6. The tail current associated with step repolarization during the slow current in the pyrethroids is very large in initial amplitude and decays very slowly. 7. The rate at which the sodium channel arrives at the modified open state in the presence of pyrethroids is expressed by a dual exponential function, and the slow phase disappears following removal of the sodium inactivation mechanism by internal perfusion of pronase. 8. A kinetic model is proposed to account for the actions of both grayanotoxins and pyrethroids on sodium channels. Both chemicals interact with the channel at both open and closed states to yield a modified open state which results in a slow sodium current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号