首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of prolactin secretion and cyclic AMP accumulation in GH3 cells by muscarinic agonists was blocked by preincubation of the cells with pertussis toxin (islet-activating protein). There was a lag of approx. 80 min in the onset of the effect on secretion. These results suggest that muscarinic agonists decrease prolactin secretion by inhibiting adenylate cyclase activity.  相似文献   

2.
Tumor promoters, such as phorbol esters and teleocidin, amplified the ability of growth hormone releasing factor to increase pituitary cyclic AMP levels. This effect of tumor promoters was concentration-dependent, could be observed in 5 minutes, and was over by 4 hours. Inactive tumor promoters (i.e., 4-alpha-didecanoate) had no effect on this system, whereas a synthetic diacylglycerol (i.e., 1-oleoly-2-acetyl glycerol), mimicked the action of tumor promoters. Due to the known stimulation of protein kinase C by both tumor promoters and diacylglycerols, we suggest that this calcium and phospholipid dependent protein kinase C can enhance the ability of the growth hormone releasing factor receptor to activate the cyclic AMP generating system.  相似文献   

3.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

4.
Although relaxin acts at several abdominal sites and mammary tissue associated with pregnancy and parturition, the scope of target tissues and the signals conveying the relaxin message into the cell are poorly defined. We found that human relaxin rapidly elevates the cyclic AMP content of cultured rat anterior pituitary cells. This is a graded response (EC50 0.3 nM relaxin) that can be blocked by anti-relaxin antibodies or the hormones somatostatin and dopamine. Furthermore, other hormones with some sequence homology to relaxin, such as insulin and insulin-like growth factor-I, have no such action. We conclude that the anterior pituitary may be a target tissue for relaxin and that cyclic AMP may act as an intracellular messenger for relaxin in these cells.  相似文献   

5.
Prostaglandins (PGs) were found to lead to a marked stimulation of cyclic AMP accumulation in rat anterior pituitary gland in vitro in the following decreasing order of potency: PG E-1 E-2 GREATER THAN A-1 A-I GREATER THAN F-1ALPHA F-2ALPHA. The effect of PGs is potentiated by theophylline. The stimulatory effect of PGs on cyclic AMP accumulation is already detected 2min after the addition of 1-x 10-7 to 1-x 10-6 M PG E-2 and its maximal effect is reached after approximated 30 min of incubation, with a progressive decrease toward basal cyclic AMP levels at later time intervals. Increased intracellular cyclic AMP concentrations are accompanied by an increased release of the nucleotide into incubation medium. Complete removal of Ca-e+ from the incubation medium by addition of EGTA was found to increase the stimulatory effect of PG E-2 ON CYCLIC AMP accumulation. The action of PGs on hormonal release and cyclic AMP accumulation support the hypothesis of a role of PGs in the mechanism of anterior pituitary hormone (particularly growth hormone) release.  相似文献   

6.
Acetylcholine, oxotremorine and carbachol, compounds that exhibit muscarinic agonist activity, maximally inhibited basal prolactin secretion from GH3 cells by approx. 50% and intracellular cyclic AMP levels by approx. 20%. Both parameters were inhibited with similar potencies by each agonist. These inhibitory effects were blocked by a muscarinic but not by a nicotinic receptor antagonist. In the presence of VIP or IBMX, which raise intracellular cyclic AMP levels and stimulate hormone release, the degree of muscarinic inhibition was increased, but the potency remained unchanged. Similar changes in the secretory rate of prolactin and growth hormone occurred in these and in cell perifusion experiments. These results suggest that the inhibition of hormone secretion from GH3 cells by muscarinic agonists is mediated by a decrease in intracellular cyclic AMP levels.  相似文献   

7.
The hypothesis that Gi might be involved in the alpha 1-adrenergic, protein kinase C (PKC)-mediated amplification of beta-adrenergic cyclic AMP stimulation in rat pinealocytes was investigated. Treatment of pinealocytes with a high concentration of pertussis toxin (500 ng/ml, 18 h) almost completely (approximately 95%) inactivated two cell membrane G-proteins (kDa 40.7 and 39.8) judged by back ADP-ribosylation of pinealocyte membrane proteins. However, this treatment failed to inhibit either the beta-adrenergic (isoprenaline, ISO 10(-6) M), alpha 1-plus beta-adrenergic (noradrenaline, NA 10(-5) M) or beta-adrenergic plus 12-O-tetradecanoylphorbol 13-acetate (TPA 10(-7) M) induced stimulation of cyclic AMP or cyclic GMP. These results suggest that alpha 1-adrenergic potentiation of beta-adrenergic stimulation of cyclic AMP and cyclic GMP does not involve a pertussis toxin-sensitive G-protein.  相似文献   

8.
The effects of dopamine on pituitary prolactin secretion and pituitary cyclic AMP accumulation were studied by using anterior pituitary glands from adult female rats, incubated in vitro. During 2h incubations, significant inhibition of prolactin secretion was achieved at concentrations between 1 and 10nm-dopamine. However, 0.1–1μm-dopamine was required before a significant decrease in pituitary cyclic AMP content was observed. In the presence of 1μm-dopamine, pituitary cyclic AMP content decreased rapidly to reach about 75% of the control value within 20min and there was no further decrease for at least 2h. Incubation with the phosphodiesterase inhibitors theophylline (8mm) or isobutylmethylxanthine (2mm) increased pituitary cyclic AMP concentrations 3- and 6-fold respectively. Dopamine (1μm) had no effect on the cyclic AMP accumulation measured in the presence of theophylline, but inhibited the isobutylmethylxanthine-induced increase by 50%. The dopamine inhibition of prolactin secretion was not affected by either inhibitor. Two derivatives of cyclic AMP (dibutyryl cyclic AMP and 8-bromo cyclic AMP) were unable to block the dopamine (1μm) inhibition of prolactin secretion, although 8-bromo cyclic AMP (2mm) significantly stimulated prolactin secretion and both compounds increased somatotropin (growth hormone) release. Cholera toxin (3μg/ml for 4h) increased pituitary cyclic AMP concentrations 4–5-fold, but had no effect on prolactin secretion. The inhibition of prolactin secretion by dopamine was unaffected by cholera toxin, despite the fact that dopamine had no effect on the raised pituitary cyclic AMP concentration caused by this factor. Dopamine had no significant effect on either basal or stimulated somatotropin secretion under any of the conditions tested. We conclude that the inhibitory effects of dopamine on prolactin secretion are probably not mediated by lowering of cyclic AMP concentration, although modulation of the concentration of this nucleotide in some other circumstances may alter the secretion of the hormone.  相似文献   

9.
Calmodulin-activated, adenylate cyclase toxin, a virulence factor produced by the human respiratory pathogen Bordetella pertussis, elicits marked accumulation of cyclic AMP in cell lines from rat pituitary tumors. This effect is associated with and apparently responsible for an enhanced release of prolactin and/or growth hormone from GH3, GH4C1 and 235-1 cells. The utility of this novel toxin in probing cyclic AMP-mediated responses is supported by these observations and studies with pertussis and cholera toxins.  相似文献   

10.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
The hypophysiotrophic hormone corticotropin releasing factor (CRF) stimulates the anterior pituitary corticotroph to export stress hormones such as adrenocorticotrophic hormone (ACTH). In rat anterior pituitary cells, CRF-induced elevation of cyclic AMP was profoundly potentiated (by an order of magnitude) by stimulators of protein kinase C. This effect occurred within minutes, was concentration dependent, and exhibited the appropriate pharmacological specificity to attribute the effects to protein kinase C. Phorbol myristate acetate (PMA), phorbol dibutyrate (PDB) and teleocidin were active with appropriate EC50's, while 4-alpha-PMA was inactive. PMA and PDB were also ACTH secretagogues in their own right. We suggest that protein kinase C can modulate CRF receptor coupling to the adenylate cyclase holoenzyme in anterior pituitary cells.  相似文献   

13.
The present work shows that α-adrenergic agonists induce the suppression of basal and hormone-stimulated cyclic AMP levels in rat intestinal epithelial cells. Epinephrine (100 μM) suppresses by 35% the cyclic AMP levels evoked by the vasoactive intestinal peptide (VIP). The adrenergic agent induces a similar percentage of inhibition at 15, 30 and 37°C. Addition of epinephrine 20 min prior to, on 5 or 20 min after VIP yields the same magnitude of inhibition as when performed together with the stimulus. The α-adrenergic agent does not alter the K0.5 of VIP in stimulating cyclic AMP production but reduces its efficacy. Epinephrine also suppresses prostaglandin E1- and E2-stimulated cyclic AMP levels by about 35%. The lowest effective concentration of epinephrine required to suppress VIP-stimulated cyclic AMP levels is 0.1 μM, half-maximal (K0.5) and maximal effects being observed at 5 and 100 μM, respectively. Norepinephrine has the same efficacy but a slightly lower potency (K0.5 = 18 μM) than epinephrine. Phenylephrine acts as a partial agonist of very low potency; clonidine has very little intrinsic activity and antagonizes the inhibition by epinephrine. The inhibition of VIP-stimulated cyclic AMP levels is observed in the absence of any blocking agents. It is not affected by the β blocker propranolol, but is completely reversed with α blockers with the following order of potency: dihydroergotamine>yohimbine>phentolamine. Yohimbine is much more potent than prazosin, which only partially reverses the inhibition induced by epinephrine. It is concluded that α-adrenoreceptors of the α2 subtype mediate the suppression of VIP-stimulated cyclic AMP levels in intestinal epithelial cells. This effect is likely to be due to the inhibition of adenylate cyclase within intact cells as epinephrine is able to reduce adenylate cyclase activity of intestinal epithelial cell plasma membranes.  相似文献   

14.
Regulation of adenohypophyseal hormone secretions has been shown to involve cyclic AMP production, modulation of phosphatidyl inositol diphosphate breakdown and Ca2+ mobilization. Various neurohormone receptors are positively or negatively coupled to adenylate cyclase activity in anterior pituitary cells. The effects of these neurohormones on adenylate cyclase activity are consistent with the effect on hormone secretions, suggesting that modulation of the enzyme activity is actually involved in the regulation of adenohypophyseal secretions. Thus DA inhibits, whereas VIP stimulates adenylate cyclase activity of the same cell type, which, according to the effect of these neurohormones on prolactin secretion, appear to be lactotrophs. On the other hand, SRIF inhibits, whereas GRF stimulates the adenylate cyclase activity of another cell type, namely somatotrophs, whereas CRF appears to act on a third cell type, corticotrophs. Peripheral hormones have been shown to modulate the sensitivity of anterior pituitary cells to these neurohormones. Estradiol long-term treatment has an anti-dopaminergic effect on prolactin secretion. The steroid also suppresses the dopamine inhibition of adenylate cyclase. This effect appears selective to the DA inhibition, since AII inhibition of the enzyme is only partially reduced, whereas the somatostatin inhibition is markedly increased. Peripheral hormones seem to affect the sensitivity of adenohypophyseal cells not only by modulating the number of receptors for a given neurohormone but also by interfering with the coupling mechanisms of these receptors. AII and DA inhibit the adenylate cyclase activity of lactotroph cells. The prolactin stimulation induced by angiotensin is not consistent with the effect of the peptide on adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Adipocytes from hypothyroid rats have a decreased responsiveness to agents that activate adenylate cyclase, whereas cells from hyperthyroid rats have an increased responsiveness as compared to the controls. This is reflected in cyclic AMP accumulation as well as lipolysis. Administration of pertussis toxin to rats or its in vitro addition to adipocytes increased basal lipolysis and cyclic AMP accumulation as well as the response to norepinephrine or forskolin. The effects of thyroid status was not abolished by toxin treatment. Pertussis toxin-catalyzed ADP ribosylation of Ni was increased in adipocyte membranes from hypothyroid rats as compared to those from euthyroid rats. However, no change in sensitivity to N6-(phenylisopropyl)adenosine was observed. The data suggest that the amount of Ni might not be rate-limiting for the inhibitory action of adenosine. A consistent decrease in maximal lipolysis was observed in freshly isolated adipocytes from hypothyroid animals as compared to those from the controls. Such defective maximal lipolysis was not corrected by adenosine deaminase or in vivo administration of pertussis toxin. The relationship between cyclic AMP levels and lipolysis suggests that in fat cells from hypothyroid rats either the cyclic AMP-dependent protein kinase or the lipase activity itself may limit maximal lipolysis. There appears to be multiple effects of thyroid status on lipolysis involving factors other than those affecting adenylate cyclase activation.  相似文献   

17.
Carbachol antagonizes isoproterenol-stimulable cyclic AMP accumulation in mouse atria by direct activation of cardiac muscarinic receptors. Inhibition by carbachol occurs rapidly and is completely reversed when the drug is removed. Neither nitroprusside nor 8-bromo-cyclic GMP mimics the actions of carbachol and low concentrations of carbachol block cyclic AMP accumulation without increasing the intracellular cyclic GMP content. Carbachol does not block cyclic AMP accumulation by activating phosphodiesterase since it is fully effective in the face of marked phosphodiesterase inhibition, nor does it appear to inhibit the catalytic activity of adenylate cyclase since it does not decrease either basal or cholera toxin-stimulated cyclic AMP accumulation. The interaction between carbachol and isoproterenol is not competitive, since cholinergic inhibition cannot be surmounted by increasing concentrations of isoproterenol. The site of muscarinic action therefore appears to involve the mechanisms coupling the hormone-receptor complex to adenylate cyclase. This site is distinct from that of cholera toxin action since there is no antagonism between the effects of cholera toxin and carbachol on cyclic AMP metabolism in the atrium.  相似文献   

18.
The high-affinity guanine nucleotide-sensitive receptor sites for melatonin in the mammalian hypothalamus and pars tuberalis mediate inhibition of adenylate cyclase (AC) activity. Therefore, we have examined whether similar sites in the chick brain and retina also modulate AC activity. Melatonin did not alter basal or forskolin-stimulated AC activity in whole forebrain or retinal homogenates. In contrast, melatonin significantly inhibited forskolin-stimulated AC activity in forebrain synaptosomal membranes and partially purified retinal membranes in a concentration-dependent manner. Maximal inhibition (approximately 25-30%) of stimulated AC activity was observed at 10-100nM melatonin, while the concentrations (EC50's) which caused half-maximal effects were 22 +/- 6 pM and 30 +/- 5 pM in the brain and retina respectively. Pretreatment of forebrain slices with pertussis toxin abolished the inhibitory effect of melatonin on stimulated AC activity. These data provide the first evidence that melatonin suppresses AC activity in the chick CNS via a pertussis toxin-sensitive G-protein.  相似文献   

19.
We hypothesize that reversible depression of cardiac function in cardiac allograft rejection and lymphocytic myocarditis reflects down modulation of the beta-adrenergic receptor system by a soluble product of activated immune cells. Thus, exposure of cultured cardiac myocytes to mixed lymphocyte culture or activated splenocyte supernatants produces 70% inhibition of isoproterenol-stimulated cAMP concentrations (Ki = 5% supernatant) in the absence of gross cellular injury or control media effects. This cAMP suppressive factor is not dialyzable and is ammonium sulfate precipitable. Beta-adrenergic receptor density, binding constant and affinity states are unaffected. These results demonstrate the existence of a cytokine inhibitor of cAMP accumulation that may mediate, in part, depression of cardiac contractility observed when immune cells invade the myocardium.  相似文献   

20.
The present studies were performed in order to examine the possible role of cyclic GMP-stimulated phosphodiesterase (cGMP-PDE) activity in the inhibitory action of the inflammatory peptide bradykinin on cyclic AMP (cAMP) accumulation in D384 cells. Bradykinin decreased the forskolin-stimulated cAMP accumulation in the presence of the phosphodiesterase inhibitor rolipram, and caused a transient 50% rise in cellular cGMP in the presence of the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). Both basal and bradykinin-stimulated cGMP accumulation were about 8 times higher in the presence of IBMX than in the presence of rolipram. Sodium nitroprusside, which caused a 20-70-fold increase in cGMP levels reduced forskolin stimulated cAMP accumulation, whereas hydroxylamine, which maximally caused a 16-fold increase in cGMP, did not. 8-bromo-cGMP or dibutyryl cGMP had no effect on cAMP accumulation induced by forskolin. The inhibitory effect of nitroprusside was totally reversed by blocking the soluble guanylate cyclase activity by methylene blue treatment; however, the inhibitory action of bradykinin on cAMP accumulation was not changed by this treatment. Additionally, inhibition of nitric oxide synthesis, which is known to be regulated by Ca2+ and in turn stimulates cGMP production, by N omega-nitro-L-arginine (L-NAME) treatment did not alter the inhibitory effect of bradykinin on forskolin-induced cAMP accumulation. These results indicate that large increases in cGMP may regulate cAMP via cGMP-PDE whereas the small increase induced by bradykinin is insufficient and that cGMP is not involved in the inhibitory action of bradykinin on cAMP levels in D384 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号