首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work made use of nucleic acid probes corresponding to different subtypes of the class II regions of the human and murine major histocompatibility complex (MHC) to isolate seven different alpha and 24 different beta genes of the ovine MHC from two cosmid libraries. In an attempt to identify pairs of alpha and beta genes capable of cell surface expression, all permutations of alpha and beta genes were in turn transfected into mouse L-cells. Two pairs of alpha and beta genes co-expressed and stable ovine MHC class II L-cell lines were developed. The expressed alpha genes had previously been defined as DR-alpha homologues (DRA) by differential Southern hybridization to human subtype specific class II probes. The expressed ovine beta genes were also assigned as ovine DR-beta homologues (DRB) on the basis of their sequence having a higher degree of similarity with human DRB than any other subtype. A total of eight out of 23 anti-sheep class II specific monoclonal antibodies were typed OLA-DR specific by FACScan analysis using the L-cell lines.  相似文献   

2.
Six mouse monoclonal antibodies were developed by immunization with a Japanese monkey cell line. These monoclonal antibodies, designated the UH series, reacted with large populations of peripheral B cells and monocytes, but not with T cells. The distribution of reactivities and the molecular weight of the membrane antigens recognized were similar to those of the HLA-DR monoclonal antibody; one inhibited the binding of HLA-DR. Human interferon-gamma induced increased expressions of all the UH antigen epitopes.  相似文献   

3.
Class II major histocompatibility complex genes of the sheep   总被引:2,自引:0,他引:2  
The class II genes of the sheep major histocompatibility complex (MHC) have been cloned from two unrelated heterozygous sheep into cosmid vectors. By restriction mapping and hybridization with a number of class II probes of human and mouse origin, the cloned genetic material has been assigned to seven distinct alpha genes, 10 distinct beta genes and 14 beta-related sequences. It was difficult to identify homologues of specific HLA class II genes because of a tendency for the ovine genes to cross-hybridize between HLA probes representing different loci. Such cross-hybridization was especially marked among the beta genes. While DQ and DR homologues have been tentatively identified by several criteria, no genes corresponding to DP have been identified. Cosmids containing class II alpha and beta genes have been transfected into mouse LTK- cells, and surface expression of a sheep class II molecule has been obtained.  相似文献   

4.
Summary. Utilizing a 'sandwich' ELISA assay we have been able to demonstrate that mAb W6/32, B1G6 and IL-A19 are reactive with three different monomorphic determinants on bovine class I major histocompatibility complex (MHC) molecules. Sequential immunoprecipitations performed with the mAb revealed that class I molecules on PBM comprise a single population with respect to reactivity with the mAb in that the β2m-associated proteins bear all three epitopes. By contrast, TCGF-driven lymphoblasts and cells transformed by Theileria parva (Tp) additionally express molecules of Mr 45000 bound to β2m which are recognized by mAb B1G6 and IL-A19 but not by W6/32. These two subclasses of molecules were further distinguished on the basis that, when tunicamycin was added to cultures in the preparation of cells for analysis, mAb W6/32 precipitated class I heavy chains of Mr 39000 while the extra molecules detected only by mAb B1G6 and IL-A19 were of Mr 37000 and 39000. On thymocytes, the mAb W6/32-non-reactive class I molecules are present in low amounts and are expressed by cells in the medulla area, unlike BoT1 (analogous to human CD1) molecules which are expressed by the cortical cells. Our studies also revealed that the supposed β2m-specific mAb B1G6 does not recognize the β2m-associated molecules (BoT1) precipitated by mAb TH97A and thus the specificity of mAb B1G6 in cattle is for an epitope on bovine β2m which is strongly influenced by the nature of the heavy chain with which the β2m is associated.  相似文献   

5.
This study used monoclonal antibodies to sheep MHC class II molecules as well as an L cell transfectant (T8.1) which expresses DRA and DRB genes to show that two distinct DRβ chains are expressed in the sheep. Two anti-β chain specific monoclonal antibodies VPM37 and VPM43 react with DR antigen but not DQ antigen by ELISA. These two antibodies do not react with the DRβ chain expressed in the T8.1 cell line. Two-dimensional immunoblotting shows that these antibodies recognize a subgroup of the spots recognized by the DR-specific monoclonal antibody VPM57 which does react with the T8.1 β chain. Amino-terminal sequence analysis of the α chain associated with VPM37β chain shows that this α chain is homologous to the human DRα chain strongly indicating that the β chain is DR-like. VPM37 and VPM43 are shown to be directed against different epitopes on sheep MHC class II molecules so it is highly unlikely that the data can be explained by the presence of posttranslational modifications or the existence of a very common allele. These data provide clear evidence for the expression of two distinct DRP chains in the sheep.  相似文献   

6.
Summary. High molecular weight DNA was extracted from sperm from chickens of 14 inbred lines. The DNA was digested with each of four restriction enzymes ( Pvu II, Hind III, Bg /II, and Bam HI), electrophoresed for 18 or 45h, blotted onto nitrocellulose, and hybridized to a chicken major histocompatibility complex (MHC, B complex) class II β-chain probe (β2-exon specific). Restriction fragment length polymorphisms (RFLPs) were found with each of the restriction enzymes used. Birds with the same B haplotype always showed the same RFLP pattern; however, some birds of different B halotypes also shared the same RFLP pattern. To test for the Mendelian inheritance of the RFLP patterns, the F2 progeny of an informative cross were analysed. The RFLP patterns corresponded with the serologically determined B haplotypes of the F2 birds, thereby showing the Mendelian inheritance of the polymorphic bands.  相似文献   

7.
Neumann J  Koch N 《FEBS letters》2005,579(27):6055-6059
The highly polymorphic major histocompatibility complex class II (MHCII) polypeptides assemble in the ER with the assistance of invariant chain (Ii) chaperone. Ii binds to the peptide-binding pocket of MHCII heterodimers. We explored the mechanism how MHCII subunits attach to Ii. Expression with single alpha or beta subunits from three human HLA and two mouse H2 class II isotypes revealed that Ii co-isolates predominantly with the alpha polypeptide. Co-isolation with alpha chain requires the groove binding Ii-segment and depends on M91 of Ii. Immunoprecipitation of Ii from pulse chase labeled cells showed sequential assembly of alpha and beta chains.  相似文献   

8.
Major histocompatibility complex (MHC) class II genes, which play a major role in the immune system response, are some of the most polymorphic genes in vertebrates. We developed polymerase chain reaction primers for part of the second exon of an expressed MHC class II gene in the common frog, Rana temporaria. We genotyped this locus in five frog populations in southeast England and detected eight alleles in 215 individuals. Five or six alleles were detected in each population with a maximum of two alleles per individual, indicating that only a single locus was amplified. We also inferred the possible existence of a null allele. There were 23 variable nucleotide sites (out of 136) and 13 variable amino acid sites (out of 44), many of which corresponded to amino acids involved in antigen recognition. We detected a significant excess of nonsynonymous substitutions at antigen binding sites, indicating that this gene is under positive selection. The level of variation we found was similar to that in other amphibian MHC class II loci, such as those in Bombina bombina, Xenopus laevis and Ambystoma tigrinum.  相似文献   

9.
T-cell recognition of bovine MHC (BoLA) class II antigens was investigated in relation to BoLA class II polymorphisms defined by one-dimensional isoelectric focusing (1D-IEF). One-way mixed lymphocyte reactions (MLRs), and allospecific cell lines and clones were used. In general, T-cell responses correlated with the 1D-IEF defined haplotypes (EDF types). However, with MLRs some responses appeared to be associated with BoLA class I differences. All combinations of responder-stimulator pairs produced alloreactive T-cell responses both in MLR and in generation of allolines/clones. Thus allospecific lines and clones were generated to all EDF types tested. Splits in the IEF typing were observed with EDF6 and EDF3, indicating that distinct BoLA class II haplotypes are not necessarily distinguished by 1D-IEF alone. Furthermore, the patterns of reactivity with EDF3 expressing cells were complex with the T-cell specificities splitting EDF3 into several distinct types. Also, in some cases it was clear that more than one T-cell specificity per EDF type was detectable. Thus, allospecific lines and clones provide complementary and additional information to the 1D-IEF typing for polymorphism of the BoLA class II complex. This extra information is particularly important in terms of the functional significance of the BoLA complex for antigen presentation and immune response gene effects.  相似文献   

10.
Ten alloantisera defining five major histocompatibility complex (MHC) class II specificities of the bovine lymphocyte antigen (BoLA) complex were produced and characterized. Eight antisera defining four of the specificities were generated by immunizing cattle with class I compatible-class II incompatible lymphocytes. The alloantiserum defining the fifth class II specificity was produced by skin implant immunization. A pregnancy serum specific for one of the class II specificities was also identified. The class II antigens recognized by these antisera were designated 'Dx' antigens to indicate that they are BoLA-D region antigens encoded by one or more undetermined class II loci. The molecules identified by the alloantisera are heterodimers composed of a 34-kd alpha and a 26- to 28-kd beta chain, and are expressed on B-lymphocytes but not on resting T-lymphocytes. In family studies the BoLA-Dx antigens segregated in linkage with the BoLA-A locus alleles. Most of the BoLA-A alleles present in the Cornell Holstein herd at a high frequency were found to exist in gametic association with two or more serologically defined class II haplotypes. On the basis of a population study it was determined that three pairs of class I and class II alleles (w10-Dx4, w31-Dx5, and c3-Dx2) were present in the Cornell herd at significantly increased frequencies.  相似文献   

11.
Class I genes of the bovine major histocompatibility complex (MHC) were investigated by Southern blot hybridization and by serological analysis. A large number of class I restriction fragments and an extensive polymorphism were revealed when genomic DNA samples, digested with the restriction enzyme PvuII, were hybridized with a human cDNA probe. The result indicated the presence of multiple class I genes in cattle. The extensive restriction fragment length polymorphism (RFLP) was interpreted genetically by analysing five paternal half-sib families comprising, besides the bulls, 50 offspring and their dams. No less than 21 RFLP types were distinguished in this limited sample. The class I polymorphism was also analysed using a serological test with sera corresponding to four workshop specificities (w2, w6, w10 and w16) and three locally defined specificities (SRB1, SRB2 and SRB3). There was an excellent agreement between the two typing methods since no RFLP type was associated with more than one specificity and five of the seven specificities were associated with a single RFLP type. Evidence for close genetic linkage between class I and DQ class II genes was obtained since no recombinant was found among 45 informative offspring. Linkage disequilibrium among class I, DQ class II and C4 genes was also observed. The blood group specificity M' was completely associated with the w16 class I specificity and with the haplotype I1DQ1BC4(2) in this material.  相似文献   

12.
American bison (Bison bison) and domestic cattle (Bos taurus and Bos indicus) evolved from a common ancestor 1–1.4 million years ago. Nevertheless, they show dramatic differences in their susceptibility to infectious diseases, including malignant catarrhal fever (MCF). Although bison are highly susceptible to ovine herpesvirus-2 (OvHV-2) associated MCF, about 20% of healthy domesticated and wild bison are positive for OvHV-2 antibody. We are interested in testing the hypothesis that, within the bison population, the polymorphism of major histocompatibility complex (MHC) class II genes influences resistance to MCF. However, since little was known about the MHC class II genes of bison, it was necessary to first characterize class II haplotypes present in Bi. bison (Bibi). Thus, the MHC class II haplotypes carried by 14 bison were characterized by the PCR-based cloning and sequencing of their DRB3, DQA, and DQB alleles. Twelve MHC class II haplotypes were identified in the 14 bison. These haplotypes comprised six previously reported and six new Bibi-DRB3 alleles, along with 11 Bibi-DQA and 10 Bibi-DQB alleles. For each bison class II allele, it was possible to identify closely related cattle sequences. The closest bison and bovine DQA, DQB, and DRB3 alleles, on average, differed by only 1.3, 3.5, and 5.8 amino acids, respectively. Furthermore, bison MHC haplotypes with both nonduplicated and duplicated DQ genes were identified; these haplotypes appear to have originated from the same ancestral haplotypes as orthologous cattle haplotypes. This study was supported by USDA-Agricultural Research Service grant CWU-5348-32000-018-00D. While working on this project, Dr. Bharat Bhushan was supported by a fellowship from the World-Bank-sponsored National Agricultural Technology Project of the Indian Council of Agricultural Research, Indian Ministry of Agriculture, New Delhi, India  相似文献   

13.
Molecules encoded by the major histocompatibility complex (MHC) are polymorphic integral membrane proteins adapted to the presentation of peptide fragments of foreign antigens to antigen-specific T-cells. The diversity of infectious agents to which an immune response must be mounted poses a unique problem for receptor–ligand interactions; how can proteins whose polymorphism is necessarily limited bind an array of peptides almost infinite in its complexity? Both MHC class I and class II determinants have achieved this goal by harnessing a limited number of peptide side chains to anchor the epitope in place while exploiting conserved features of peptide structure, independent of their primary sequence. While class I molecules interact predominantly with the N- and C-termini of peptides, class II determinants form an extensive hydrogen bonding network along the length of the peptide backbone. Such a strategy ensures high-affinity binding, while selectively exposing the unique features of each ligand for recognition by the T-cell receptor. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Data are presented demonstrating that high concentrations of complement protein C4 in sheep plasma are associated with a particular class I OLA specificity. By way of contrast, a similar association could not be demonstrated between C3 plasma concentrations and OLA specificities. These data support the hypothesis that gene(s) determining C4 plasma concentrations are linked to the ovine MHC.  相似文献   

15.
We have used a panel of anti-major histocompatibility complex (MHC) class II monoclonal antibodies (mAbs) and have assessed their specificity for the products of the individual bovine MHC (BoLA) class II subregions. The mAbs identified two distinct class II molecules by affinity purification and ELISA. Two-dimensional immunoblotting confirmed these data and NH2-terminal sequencing of the purified class II α chains of one member of each group identified the subregion specificity of the mAbs. The mAbs VPM36, TH22A and TH81A are specific for BoLA DQ, whereas VPM54, TH14B and J11 are specific for BoLA DR. SW73.2 reacts with both MHC subgroups of all cattle tested.  相似文献   

16.
17.
Summary. Lines of White Leghorn chickens were developed by selection for high (HA) or low (LA) antibody response to sheep red blood cells (SRBC) and then backcrossed to provide individuals segregating for haplotypes B 13 and B 21 of the major histocompatibility complex (MHC) within each selected line. Although antibody response to SRBC was consistently higher in background genome HA than LA, there was a significant interaction between background genome and MHC haplotypes. The interaction resulted from higher antibody response in B13/B21 individuals of line HA and in B21/ B 21 individuals of line LA. Thus, response to SRBC was dependent on particular haplotype combinations present at the MHC as well as the background genome in which they were expressed.  相似文献   

18.
Depletion of polymorphism at major histocompatibility complex (MHC) genes has been hypothesized to limit the ability of populations to respond to emerging pathogens, thus putting their survival at risk. As pathogens contribute substantially to the global amphibian decline, assessing patterns of MHC variation is important in devising conservation strategies. Here, we directly compare levels of MHC class II and neutral variation between multiple populations of the great crested newt ( Triturus cristatus ) from refugial (REF: Romania) and postglacial expansion (PGE: Germany, Poland and UK) areas. REF populations harboured high levels of adaptive variation (24 expressed alleles), exhibiting clear signatures of historical positive selection, which points to the overall importance of MHC class II variation in this species. On the other hand, PGE populations were extremely depauperate (two alleles) but nevertheless have survived for c . 10 000 years, since the postglacial expansion. Variation in putative MHC class II pseudogenes, microsatellites and allozymes also showed a significant southern richness–northern purity pattern. The populations in the postglacial expansion area thus provide the clearest example to date of the long-term survival of populations in which MHC variation, historically under positive selection, has been depleted.  相似文献   

19.
20.
Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号