首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.  相似文献   

2.
Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress.  相似文献   

3.
Bacteria of the genus Azospirillum are nitrogen-fixing organisms that live in close association with plants in the rhizosphere. The Azospirillum-plant association leads to the enhanced development and yield of different host plants under appropriate growth conditions. This increase in yield is attributed mainly to an improvement in root development, an increase in the rate of water and mineral uptake by roots, and to a lesser extent, biological N(2) fixation. Worldwide data accumulated in the field over the past 20 years indicates that Azospirillum is capable of promoting the yield of agriculturally important crops in different soils and climatic regions. A.brasilense shows both chemotaxis and chemokinesis in response to temporal gradients of different chemoeffectors, thereby increasing the chance of root-bacterial interactions. Phytohormones synthesized by Azospirillum influence the host root respiration rate, metabolism and root proliferation and hence better the mineral and water uptake in inoculated plants. Positive effects of combined inoculation with Rhizobium have been reported for different legumes and were related to the favorable influence of Azospirillum on the nodule number, plant development, dry weight, and N(2) fixation. Additionally, A. brasilense produces the reserve material polyhydroxybutyrate comprising up to 70% of the cell dry weight This substance has received much attention recently as it can be extracted and formed into a biodegradable thermoplastic.  相似文献   

4.
Drought is one of the major abiotic stresses affecting yield of dryland crops. Rhizobacterial populations of stressed soils are adapted and tolerant to stress and can be screened for isolation of efficient stress adaptive/tolerant, plant growth promoting rhizobacterial (PGPR) strains that can be used as inoculants for crops grown in stressed ecosystems. The effect of inoculation of five drought tolerant plant growth promoting Pseudomonas spp. strains namely P. entomophila strain BV-P13, P. stutzeri strain GRFHAP-P14, P. putida strain GAP-P45, P. syringae strain GRFHYTP52, and P. monteilli strain WAPP53 on growth, osmoregulation and antioxidant status of maize seedlings under drought stress conditions was investigated. Drought stress induced by withholding irrigation had drastic effects on growth of maize seedlings. However seed bacterization of maize with Pseudomonas spp. strains improved plant biomass, relative water content, leaf water potential, root adhering soil/root tissue ratio, aggregate stability and mean weight diameter and decreased leaf water loss. The inoculated plants showed higher levels of proline, sugars, free amino acids under drought stress. However protein and starch content was reduced under drought stress conditions. Inoculation decreased electrolyte leakage compared to uninoculated seedlings under drought stress. As compared to uninoculated seedlings, inoculated seedlings showed significantly lower activities of antioxidant enzymes, ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX) under drought stress, indicating that inoculated seedlings felt less stress as compared to uninoculated seedlings. The strain GAP-P45 was found to be the best in terms of influencing growth and biochemical and physiological status of the seedlings under drought stress. The study reports the potential of rhizobacteria in alleviating drought stress effects in maize.  相似文献   

5.
Tomato seeds were inoculated with the plant growth–promoting rhizobacteria Azospirillum brasilense FT326, and changes in parameters associated with plant growth were evaluated 15 days after inoculation. Azospirilla were localized on roots and within xylematic tissue. An increase in shoot and root fresh weight, main root hair length, and root surface indicated that inoculation with A. brasilense FT 326 resulted in plant growth improvement. The levels of indole-3-acetic acid (IAA) and ethylene, two of the phytohormones related to plant growth, were higher in inoculated plants. Exogenously supplied ethylene mimicked the effect of inoculation, and the addition of an inhibitor of its synthesis or of its physiological activity completely blocked A. brasilense growth promotion. Based on our results, we propose that the process of growth promotion triggered by A. brasilense inoculation involves a signaling pathway that has ethylene as a central, positive regulator.  相似文献   

6.
  • Despite the great diversity of plant growth‐promoting bacteria (PGPB ) with potential to partially replace the use of N fertilisers in agriculture, few PGPB have been explored for the production of commercial inoculants, reinforcing the importance of identifying positive plant–bacteria interactions. Aiming to better understand the influence of PGPB inoculation in plant development, two PGPB species with distant phylogenetic relationship were inoculated in maize.
  • Maize seeds were inoculated with Bacillus sp. or Azospirillum brasilense . After germination, the plants were subjected to two N treatments: full (N+) and limiting (N?) N supply. Then, anatomical, biometric and physiological analyses were performed.
  • Both PGPB species modified the anatomical pattern of roots, as verified by the higher metaxylem vessel element (MVE ) number. Bacillus sp. also increased the MVE area in maize roots. Under N+ conditions, both PGPB decreased leaf protein content and led to development of shorter roots; however, Bacillus sp. increased root and shoot dry weight, whereas A. brasilense increased photosynthesis rate and leaf nitrate content. In plants subjected to N limitation (N?), photosynthesis rate and photosystem II efficiency increased in maize inoculated with Bacillus sp., whilst A. brasilense contained higher ammonium, amino acids and total soluble sugars in leaves, compared to the control.
  • Plant developmental and metabolical patterns were switched by the inoculation, regardless of the inoculant bacterium used, producing similar as well as distinct modifications to the parameters studied. These results indicate that even non‐diazotrophic inoculant strains can improve the plant N status as result of the morpho‐anatomical and physiological modifications produced by the PGPB .
  相似文献   

7.
This study evaluated the influence of Azospirillum lipoferum on the growth of Myracroduon urundeuva (Anacardiaceae) plants under drought stress, by means of biometric, physical–chemical and biochemical parameters. The association of A. lipoferum with the roots of the plants provided increases of 30% root length, 50% root dry weight, 34% shoot dry weight and 10% soluble protein content. The inoculated plants still maintained 5% higher leaf water potential than those not inoculated and lower membrane damage. Furthermore, the inoculated plants shown less leaf fall and dark green leaves, confirmed by maintenance of the highest levels of chlorophyl a, b and total. On the other hand, superoxide dismutase activity was significantly lower in the inoculated plants, possibly due to the induction of a non-enzymatic protective feature. In this way, the inoculation of PGPR in M. urundeuva can be an alternative for the production of plants that are more tolerant to drought stress.  相似文献   

8.
Sorghum plants were inoculated with a pigmented strain of Azospirillum brasilense (Cd) or were not inoculated and received an N-amended nutrient solution (1.0 mmol/l NH4NO3). A third set of plants were non-inoculated and not fertilized with N (control). Plants were grown in a steam-sterilized, low-fertility soil and harvested after growing for 2, 4, 6, 8 and 10 weeks. Dry weights for Azospirillum -inoculated plants were significantly greater than the N-fertilized sorghum at weeks 2 and 4, but A. brasilense -colonized plants weighed significantly less than the N-fertilized sorghum at weeks 8 and 10. Shoot and root N concentrations increased for N-amended plants but remained fairly steady for sorghum inoculated with strain Cd indicating enhanced N-use efficiency in plants colonized with the endophyte. In general, the concentration of Fe, Mn, Zn and Cu in Azospirillum -colonized plants was relatively less than that in N-amended sorghum early in ontogeny when the growth rate of the inoculated plants was greatest. The number of inoculated Cd cells per plant was correlated with percentage increase in dry weight ( r = 0.92*) or total N content ( r = 0.93*) relative to the N-fertilized plants. Growth enhancement relative to N-fertilized sorghum was not observed when the number of Azospirillum cells per gram of root dropped below 1.0 x 105 (or 3.0 x 106 cells/plant). Therefore, the persistence of Azospirillum in the endorhizosphere of sorghum had a direct impact on host growth, physiology and nutrition.  相似文献   

9.
AIMS: To evaluate the effect of plant variety and Azospirillum brasilense inoculation on the microbial communities colonizing roots and leaves of tomato (Lycopersicon esculentum Mill.) plants. METHODS AND RESULTS: Seeds of cherry and fresh-market tomato were inoculated with A. brasilense BNM65. Sixty days after planting, plants were harvested and the microbial communities of the rhizoplane and phyllosphere were analysed by community-level physiological profiles (CLPP) using BIOLOG EcoPlates and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Differences on the rhizoplane and phyllosphere bacterial communities between the two tomato types were detected by principal component analysis of the CLPP; DGGE fingerprints also showed differences at the phyllosphere level. Fresh-market tomato had a more complex phyllosphere bacterial community than cherry tomato, as determined by DGGE profiles. Physiological and genetic changes on phyllosphere and rhizoplane bacterial communities by Azospirillum seed inoculation were evident only on cherry tomato. CONCLUSIONS: Tomato genotype affects the response of native bacterial communities associated with the roots and leaves to A. brasilense seed inoculation. SIGNIFICANCE AND IMPACT OF THE STUDY: The successful implementation of Azospirillum inoculation requires not only the consideration of the interactions between A. brasilense strains and plant genotypes, but also the plant-associated microflora.  相似文献   

10.
Inoculation with Azospirillum brasilense Sp245 exerts beneficial effects on micropropagated plants of Prunus cerasifera L. clone Mr.S 2/5, as seen in the results of a comparative analysis of inoculated and non-inoculated explants, during both the rooting and acclimatation phases. The presence of Azospirillum brasilense Sp245 increased root system, root hair biomass production and apical activity. Although the presence of the bacteria had a positive effect on rooting, the addition of indolebutyric acid (IBA) to Murashige and Skoog (MS) medium was seen as indispensable in order to promote the rooting of explants. Aside from the promotion of plant growth, A. brasilense Sp245 protects plants against pathogen attacks, such as Rhizoctonia spp., with a plant survival rate of nearly 100% vs. 0% as seen in the negative control. The biocontrol effect of A. brasilense Sp245 on the fungal rhizospheric community has been confirmed by denaturing gradient gel electrophoresis (DGGE) profiles of the rhizospheric microbial community. This study indicates that A. brasilense Sp245 could be employed as a tool in plant biotechnology.  相似文献   

11.
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (10(7) versus 10(5) CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (10(7) versus 10(6) CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (10(5) to 10(6) CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>10(8) CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.  相似文献   

12.
针对西北干旱半干旱地区土壤贫瘠与水分缺乏的问题,利用微生物与作物形成互惠互利的共生关系,本研究设置两个水分梯度:干旱胁迫(供试土壤最大持水量的35%)和正常水分(供试土壤最大持水量的75%),两个覆膜方式:无覆膜(NM)和覆膜(FM),4个接种微生物水平:单接AM真菌(AM)、单接解磷细菌(PSB)、联合接种AM真菌与解磷细菌(AM+PSB)以及对照(CK),研究不同水分和覆膜条件下4个接种微生物对玉米生长特性、地上养分吸收与水分利用效率的影响.结果表明: 与正常水分处理相比,干旱胁迫能够显著提高接种AM真菌处理的侵染率,但正常水分处理下土壤根外菌丝密度、总球囊霉素(T-GRSP)与易提取球囊霉素(EE-GRSP)含量明显提高.干旱胁迫下,单接AM真菌处理的促生作用和菌根效应表现最好,能够提高玉米生物量、水分利用效率和土壤有机碳含量,促进土壤N、P、K的吸收与运输,从而增加玉米地上部分N、P、K吸收量;而正常水分下,联合接种AM+PSB处理表现要好于单接AM和PSB处理,且其与覆膜的互作效果最好.相关分析结果表明,玉米生物量、叶片SPAD值和地上部分N、P、K吸收量均与土壤根外菌丝密度呈显著正相关,玉米水分利用效率与其呈显著负相关.  相似文献   

13.
Enhancing drought tolerance of crops has been a great challenge in crop improvement. Here, we report the maize phosphoenolpyruvate carboxylase (PEPC) gene was able to confer drought tolerance and increase grain yield in transgenic wheat (Triticum aestivum L.) plants. The improved of drought tolerance was associated with higher levels of proline, soluble sugar, soluble protein, and higher water use efficiency. The transgenic wheat plants had also a more extensive root system as well as increased photosynthetic capacity during stress treatments. The increased grain yield of the transgenic wheat was contributed by improved biomass, larger spike and grain numbers, and heavier 1000-grain weight under drought-stress conditions. Under non-stressed conditions, there were no significant increases in these of the measured traits except for photosynthetic rate when compared with parental wheat. Proteomic research showed that the expression levels of some proteins, including chlorophyll A-B binding protein and pyruvate, phosphate dikinase, which are related to photosynthesis, PAP fibrillin, which is involved in cytoskeleton synthesis, S-adenosylmethionine synthetase, which catalyzes methionine synthesis, were induced in the transgenic wheat under drought stress. Additionally, the expression of glutamine synthetase, which is involved in ammonia assimilation, was induced by drought stress in the wheat. Our study shows that PEPC can improve both stress tolerance and grain yield in wheat, demonstrating the efficacy of PEPC in crop improvement.  相似文献   

14.
Trehalose Is a nonreduclng dlsaccharlde of glucose that functions as a protectant In the stabilization of blologlcal structures and enhances stress tolerance to abiotic stresses in organisms. We report here the expression of a Grlfola frondosa trehalose synthase (TSase) gene for Improving drought tolerance In sugarcane (Saccharum offlclnarum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and transferred Into sugarcane by Agrobacterium tumefaciens EHA105. The transgenlc plants accumulated high levels of trehalose, up to 8.805-12.863 mg/g fresh weight, whereas It was present at undetectable level in nontransgenlc plants. It has been reported that transgenlc plants transformed with Escherlchla coil TPS (trehalose-6-phosphatesynthase) and/or TPP (trehalose-6-phosphate phosphatase) are severely stunted and have root morphologlc alterations. Interestingly, our transgenlc sugarcane plants had no obvious morphological changes and no growth Inhibition in the field. Trehalose accumulation in 35S-35S:TSase plants resulted In In- creased drought tolerance, as shown by the drought and the drought physiological Indexes, such as the rate of bound water/free water, plasma membrane permeability, malondlaldehyde content, chlorophyll a and b contents, and activity of SOD and POD of the excised leaves. These results suggest that transgenlc plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought.  相似文献   

15.
The interactive effects of phosphate solubilizing bacteria, N2 fixing bacteria and arbuscular mycorrhizal fungi (AMF) were studied in a low phosphate alkaline soil amended with tricalcium insoluble source of inorganic phosphate on the growth of an aromatic grass palmarosa (Cymbopogon martinii). The microbial inocula consisted of the AM fungus Glomus aggregatum, phosphate solubilizing rhizobacteria Bacillus polymyxa and N2 fixing bacteria Azospirillum brasilense. These rhizobacteria behaved as "mycorrhiza helper" and enhanced root colonization by G. aggregatum in presence of tricalcium phosphate at the rate of 200 mg kg(-1) soil (P1 level). Dual inoculation of G. aggregatum and B. polymyxa yielded 21.5 g plant dry weight (biomass), while it was 21.7 g in B. polymyxa and A. brasilense inoculated plants as compared to 14.9 g of control at the same level. Phosphate content was maximum (0.167%) in the combined treatment of G. aggregatum, B. polymyxa and A. brasilense at P1 level, however acid phosphatase activity was recorded to be 4.75 pmol mg(-1) min(-1) in G. aggregatum, B. polymyxa and A. brasilense treatment at P0 level. This study indicates that all microbes inoculated together help in the uptake of tricalcium phosphate which is otherwise not used by the plants and their addition at 200 mg kg(-1) of soil gave higher productivity to palmarosa plants.  相似文献   

16.
Drought is a major environmental stress that limits cotton (Gossypium hirsutum L.) production worldwide. TaMnSOD plays a crucial role as a peroxidation scavenger. In this study, TaMnSOD cDNA of Tamarix albiflonum was overexpressed in the cotton cultivar fy11 by Agrobacterium tumefaciens-mediated transformation. The transformed plants were assessed by gDNA PCR, RT-PCR and DNA gel blot analysis. The physiological and biochemical characters of two independent transgenic lines and control plants were tested and compared, and the morphological traits (biomass, root and lateral root length, leaf number) were also detected after recovery from water-withholding stress. When water was withheld from pot-grown 6-week-old seedlings for 18 days (watering to 8 % of field capacity), transgenic cotton plants accumulated more proline and soluble sugar than wild-type plants (WT). The activity of antioxidant enzymes such as superoxide dismutase and peroxidase was enhanced in transgenic plants under drought stress. Cell membrane integrity was also considerably improved under water stress, as indicated by reduced malondialdehyde content relative to control plants. Furthermore, net photosynthesis, stomatal conductance and transpiration rate were increased in transgenic plants compared with wild type. Transgenic cotton showed increases in biomass as well as root and leaf systems compared with WT after 2 weeks recovery from stress. These results suggest that TaMnSOD transgenic cotton plants acquired improved drought tolerance through enhanced development of the root and leaf system and the regulation of superoxide scavenging.  相似文献   

17.
Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth‐promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress‐related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col‐0 and aba2‐1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro‐grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild‐type Col‐0 and on the mutant aba2‐1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col‐0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.  相似文献   

18.
巴西固氮螺菌(Azospirillum brasilence)是重要的植物促生内生菌之一。用gfp基因标记固氮螺菌后接种无菌的水稻和烟草幼苗的根部,限菌培养一定时间后,用共聚焦激光显微镜观察,结果表明:除了根内部有发荧光的螺菌定殖外,螺菌还分布在茎、叶的表皮细胞,皮层细胞和维管系统组织的细胞和细胞间隙。从根、茎、叶器官分离固氮螺菌,都存在有较高的螺菌群体密度。这一结果证明螺菌在植物内存在着从根部向茎、叶顶端的迁移现象。这一发现为研究巴西固氮螺菌在宿主植物体内的迁移运动的机制、与植物细胞间的分子相互作用及其对植物的促生作用奠定了生态学和细胞形态学的基础,也为实际应用提供了进一步的科学依据,具有重要的科学和实践意义。  相似文献   

19.
据黑龙江省1990年7个中试点试验证明,小麦根际联合固氮菌田间接种效果在5.2—20.6%,平均为9.8%;每田可增产小麦19.1公斤。小麦根际联合固氮菌能促进小麦本长发育,在生育期间可使株高、鲜重增加,叶色变缘。秋收考种证明,对产量构成因子的平方米穗数、穗粒数和千粒重均有增加。  相似文献   

20.
The ascomycetous dark septate endophytic (DSE) fungi characterized by their melanized hyphae can confer abiotic stress tolerance in their associated plants in addition to improving plant growth and health. In this study inoculation of the DSE fungus Nectria haematococca Berk. & Broome significantly improved all the plant growth parameters like the plant height, stem girth, leaf characteristics and plant biomass of drought-stressed tomato. Root characters like the total root length, primary root diameter, 2nd order root number and diameter, root hair number and length were also significantly influenced by the fungal inoculation. Nevertheless, N. haematococca inoculation did not affect root colonization by native arbuscular mycorrhizal (AM) fungi and no significant correlation existed between the AM and DSE fungal variables examined. The proline accumulation in shoots of N. haematococca inoculated plants was significantly higher than uninoculated plants. The present study clearly indicates for the first time the ability of the DSE fungus, N. haematococca in inducing the drought stress tolerance and promoting the growth of the host plant under water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号