首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.  相似文献   

2.
3.
Bovine viral diarrhea virus (BVDV) infection in cattle is responsible for mucosal disease; an invariably fatal syndrome characterized by the recovery of two BVDV strains: cytopathic (cp) or noncytopathic (ncp). To understand the cellular responses to cp BVDV infection, we carried out differential display-polymerase chain reaction (DD-PCR) analysis of gene expression in infected cells. Altered expression of 14 genes involved in several functions was observed in cells infected with cp BVDV: (1) immune regulation, such as CD46, FKBP-12, and osteopontin (OPN); (2) apoptosis-related cysteine proteases like calpain; (3) signaling plasma membrane proteins such as integrin beta1, and prion protein; and (4) unknown function genes. Northern blot analysis of the expression of these genes in ncp BVDV infected cells revealed that while the expression of some genes was affected as in cp BVDV infected cells, others show a clearly contrary change. We postulate that a cause-effect relationship may exist between the differential gene expression alterations that characterize cp and ncp BVDV infections and the unique diseases associated with each BVDV biotype.  相似文献   

4.
The NS2-3 of BVDV is cleaved in cultured cells infected with cp BVDV but not in those infected with ncp BVDV when tested more than 10 hours post infection. However, it is not known whether cleavage of NS2-3 occurs in vivo. In the present study, cleavage of NS2-3 in cattle persistently infected with BVDV was investigated. All BVDV isolated from PI animals were of the ncp biotype, and NS2-3 proteins were detected in bovine fetal muscular cells infected with these viruses. On the other hand, in the leukocytes of those PI animals, NS3 proteins, products of the cleavage of NS2-3 proteins, were detected. In addition, the NS3 proteins were also detected in leukocytes artificially infected with ncp BVDV. These results reveal that the NS2-3 protein of BVDV is cleaved in leukocytes. Furthermore, NS3 proteins were detected in many tissues of PI cattle, such as lymphoid tissue, brain, thyroid, lung, and kidney. These results suggest that the NS2-3 protein of ncp BVDV cleaves in vivo.  相似文献   

5.
6.
Qu L  McMullan LK  Rice CM 《Journal of virology》2001,75(22):10651-10662
Isolates of bovine viral diarrhea virus (BVDV), the prototype pestivirus, are divided into cytopathic (cp) and noncytopathic (ncp) biotypes according to their effect on cultured cells. The cp viruses also differ from ncp viruses by the production of viral nonstructural protein NS3. However, the mechanism by which cp viruses induce cytopathic effect in cell culture remains unknown. Here we used a genetic approach to isolate ncp variants that arose from a cp virus at low frequency. A bicistronic BVDV (cp strain NADL) was created that expressed puromycin acetyltransferase as a dominant selectable marker. This bicistronic virus exhibited slightly slower growth kinetics and smaller plaques than NADL but remained cp. A number of independent ncp variants were isolated by puromycin selection. Remarkably, these ncp variants produced NS3 and viral RNA at levels comparable to those of the cp parent. Sequence analyses uncovered no change in NS3, but for all ncp variants a Y2441C substitution at residue 15 of NS4B was found. Introduction of the Y2441C substitution into the NADL or bicistronic cp viruses reconstituted the ncp phenotype. Y2441 is highly conserved among pestiviruses and is located in a region of NS4B predicted to be on the cytosolic side of the endoplasmic reticulum membrane. Other engineered substitutions for Y2441 also affected viral cytopathogenicity and viability, with Y2441V being cp, Y2441A being ncp, and Y2441D rendering the virus unable to replicate. The ncp substitutions for Y2441 resulted in slightly increased levels of NS2-3 relative to NS3. We also showed that NS3, NS4B, and NS5A could be chemically cross-linked in NADL-infected cells, indicating that they are associated as components of a multiprotein complex. Although the mechanism remains to be elucidated, these results demonstrate that mutations in NS4B can attenuate BVDV cytopathogenicity despite NS3 production.  相似文献   

7.
N Tautz  G Meyers  R Stark  E J Dubovi    H J Thiel 《Journal of virology》1996,70(11):7851-7858
Cytopathogenic (cp) bovine viral diarrhea virus (BVDV) strains are generated in cattle persistently infected with noncytopathogenic (noncp) BVDV.cp BVDV strains are considered crucial for the development of fatal mucosal disease. Comparative analysis of cp and noncp BVDV strains isolated from one animal suffering from mucosal disease revealed that the genomes of the cp BVDV strain (CP7) and the corresponding noncp BVDV strain (NCP7) are highly homologous. However, only the genome of CP7 contains an insertion of 27 nucleotides in the NS2 coding region. The inserted sequence represents a duplication of bases 4064 to 4090 of the viral genome, located between the formerly neighboring nucleotides 4353 and 4354. Parts of the viral polyproteins of CP7 and NCP7 were expressed in the T7 vaccinia virus system. These studies revealed that the insertion identified in the CP7 genome is necessary and sufficient for the induction of NS2-3 cleavage. Since the expression of NS3 is strictly correlated to cp BVDV, the insertion identified in the genome of BVDV CP7 represents most likely the relevant mutation leading to the evolvement of CP7 from NCP7.  相似文献   

8.
Using a proteomics approach, we evaluated the effect of cytopathic (cp), and non-cytopathic (ncp) bovine viral diarrhea viruses (BVDV) on the expression of protein kinases and related proteins in bovine monocytes. Proteins were isolated from membrane and cytosolic fractions with the differential detergent fractionation (DDF) method and identified with 2D-LC ESI MS(2). Of approximately 10,000 proteins identified, 378 proteins had homology with known protein kinases or related proteins. Eighteen proteins involved in cell differentiation and activation, migration, anti-viral mechanisms (interferon/apoptosis), biosynthesis, sugar metabolism and oncogenic transformation were significantly altered in BVDV-infected monocytes compared to the uninfected controls. Six proteins, mostly related to cell migration, anti-viral mechanisms, sugar metabolism and possibly tumor resistance were differentially expressed between the ncp and cp BVDV-infected monocytes. Particularly, the expression of the receptor of activated C kinase (RACK), of pyridoxal kinase (PK), diacyglycerol kinase (DGK) and Brutons tyrosine kinase (BTK) was decreased in monocytes infected with cp BVDV compared to ncp BVDV, possibly contributing to the cytopathic effect of the virus. This and other findings are discussed in view of the possible role the identified proteins play in the development of viral infection and oncogenic transformation of cells.  相似文献   

9.
For the important livestock pathogens classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV), cytopathogenic (cp) and non-cp viruses are distinguished according to the induction of apoptosis in infected tissue culture cells. However, it is currently unknown whether cp CSFV differs from non-cp CSFV with regard to virulence in the acutely infected host. In this study, we generated helper virus-independent CSFV Alfort-Jiv, which encompasses sequences encoding domain Jiv-90 of cellular J-domain protein interacting with viral protein (Jiv). Expanding the knowledge of BVDV, our results suggest that Jiv acts as a regulating cofactor for the nonstructural (NS) protein NS2 autoprotease of CSFV and initiates NS2-3 cleavage in trans. For Alfort-Jiv, the resulting expression of large amounts of NS3 correlated with increased viral RNA synthesis and viral cytopathogenicity. Moreover, both cp Alfort-Jiv and the parental non-cp CSFV strain Alfort-p447 efficiently replicate in cell culture. Animal experiments demonstrated that in contrast to parental non-cp Alfort-p447, infection with cp Alfort-Jiv did not cause disease in pigs but induced high levels of neutralizing antibodies, thus elucidating that cp CSFV is highly attenuated in its natural host. In contrast to virulent Alfort-p447, the attenuated CSFV strain Alfort-Jiv induces the expression of cellular Mx protein in porcine PK-15 cells. Accordingly, the remarkable difference between cp and non-cp CSFV with regard to the ability to cause classical swine fever in pigs correlates with different effects of cp and non-cp CSFV on cellular antiviral defense mechanisms.  相似文献   

10.
For Bovine viral diarrhea virus (BVDV), the type species of the genus Pestivirus in the family Flaviviridae, cytopathogenic (cp) and noncytopathogenic (ncp) viruses are distinguished according to their effect on cultured cells. It has been established that cytopathogenicity of BVDV correlates with efficient production of viral nonstructural protein NS3 and with enhanced viral RNA synthesis. Here, we describe generation and characterization of a temperature-sensitive (ts) mutant of cp BVDV strain CP7, termed TS2.7. Infection of bovine cells with TS2.7 and the parent CP7 at 33°C resulted in efficient viral replication and a cytopathic effect. In contrast, the ability of TS2.7 to cause cytopathogenicity at 39.5°C was drastically reduced despite production of high titers of infectious virus. Further experiments, including nucleotide sequencing of the TS2.7 genome and reverse genetics, showed that a Y1338H substitution at residue 193 of NS2 resulted in the temperature-dependent attenuation of cytopathogenicity despite high levels of infectious virus production. Interestingly, TS2.7 and the reconstructed mutant CP7-Y1338H produced NS3 in addition to NS2-3 throughout infection. Compared to the parent CP7, NS2-3 processing was slightly decreased at both temperatures. Quantification of viral RNAs that were accumulated at 10 h postinfection demonstrated that attenuation of the cytopathogenicity of the ts mutants at 39.5°C correlated with reduced amounts of viral RNA, while the efficiency of viral RNA synthesis at 33°C was not affected. Taken together, the results of this study show that a mutation in BVDV NS2 attenuates viral RNA replication and suppresses viral cytopathogenicity at high temperature without altering NS3 expression and infectious virus production in a temperature-dependent manner.The pestiviruses Bovine viral diarrhea virus-1 (BVDV-1), BVDV-2, Classical swine fever virus (CSFV), and Border disease virus (BDV) are causative agents of economically important livestock diseases. Together with the genera Flavivirus, including several important human pathogens like Dengue fever virus, West Nile virus, Yellow fever virus, and Tick-borne encephalitis virus, and Hepacivirus (human Hepatitis C virus [HCV]), the genus Pestivirus constitutes the family Flaviviridae (8, 20). All members of this family are enveloped viruses with a single-stranded positive-sense RNA genome encompassing one large open reading frame (ORF) flanked by 5′ and 3′ nontranslated regions (NTR) (see references 8 and 28 for reviews). The ORF encodes a polyprotein which is co- and posttranslationally processed into the mature viral proteins by viral and cellular proteases. For BVDV, the RNA genome is about 12.3 kb in length and encodes a polyprotein of about 3,900 amino acids. The first third of the ORF encodes a nonstructural (NS) autoprotease and four structural proteins, while the remaining part of the genome encodes NS proteins which share many common characteristics and functions with the corresponding NS proteins encoded by the HCV genome (8, 28). NS2 of BVDV represents a cysteine autoprotease which is distantly related to the HCV NS2-3 protease (26). NS3, NS4A, NS4B, NS5A, and NS5B are essential components of the pestivirus replicase (7, 10, 49). NS3 possesses multiple enzymatic activities, namely serine protease (48, 52, 53), NTPase (46), and helicase activity (51). NS4A acts as an essential cofactor for the NS3 proteinase. NS5B represents the RNA-dependent RNA polymerase (RdRp) (22, 56). The functions of NS4B and NS5A remain to be determined. NS5A has been shown to be a phosphorylated protein that is associated with cellular serine/threonine kinases (44).According to their effects in tissue culture, two biotypes of pestiviruses are distinguished: cytopathogenic (cp) and noncytopathogenic (ncp) viruses (17, 27). The occurrence of cp BVDV in cattle persistently infected with ncp BVDV is directly linked to the induction of lethal mucosal disease in cattle (12, 13). Previous studies have shown that cp BVDV strains evolved from ncp BVDV strains by different kinds of mutations. These include RNA recombination with various cellular mRNAs, resulting in insertions of cellular protein-coding sequences into the viral genome, as well as insertions, duplications, and deletions of viral sequences, and point mutations (1, 2, 9, 24, 33, 36, 37, 42). A common consequence of all these genetic changes in cp BVDV genomes is the efficient production of NS3 at early and late phases of infection. In contrast, NS3 cannot be detected in cells at late time points after infection with ncp BVDV. An additional major difference is that the cp viruses produce amounts of viral RNA significantly larger than those of their ncp counterparts (7, 32, 50). While there is clear evidence that cell death induced by cp BVDV is mediated by apoptosis, the molecular mechanisms involved in pestiviral cytopathogenicity are poorly understood. In particular, the role of NS3 in triggering apoptosis remains unclear. It has been hypothesized that the NS3 serine proteinase might be involved in activation of the apoptotic proteolytic cascade (21, 55). Furthermore, it has been suggested that the NS3-mediated, enhanced viral RNA synthesis of cp BVDV and subsequently larger amounts of viral double-stranded RNAs may play a crucial role in triggering apoptosis (31, 54).In this study, we describe generation and characterization of a temperature-sensitive (ts) cp BVDV mutant whose ability to cause viral cytopathogenicity at high temperature is strongly attenuated. Our results demonstrate that a single amino acid substitution in NS2 attenuates BVDV cytopathogenicity at high temperature without affecting production of infectious viruses and expression of NS3 in a temperature-dependent manner.  相似文献   

11.
Due to the affinity of BVDV for the fetus and for cells of lymphatic organs of infected cattle, reproductive failure or immunosuppression, respectively, are likely consequences of BVDV infections of susceptible cattle. Infection of susceptible pregnant cattle with noncytopathic (ncp) BVDV results in transplacental infection with induction of maternal and fetal innate and adaptive immune responses. Differences in maternal innate and adaptive immune responses are evident in late gestation between cows carrying fetuses persistently-infected (PI) with BVDV and cows with fetuses transiently-infected with BVDV. Fetal innate and adaptive immune responses to ncp BVDV infection are defined by fetal age and developmental stage of the fetal immune system. Since a functional fetal adaptive immune response does not occur in the early fetus, immunotolerance to ncp BVDV is established, virus replicates unrestricted in fetal tissues and calves are born immunotolerant and PI with the virus. In the last trimester of gestation, the fetal immune system is adequately developed to respond in an efficacious manner, most commonly resulting in the birth of a clinically normal calf with pre-colostral antibodies. Immunosuppression due to postnatal acute ncp BVDV infections of susceptible calves may contribute to the occurrence and severity of multi-factorial respiratory tract and enteric diseases.  相似文献   

12.
Pestiviruses belong to the family Flaviviridae, and their genome is a single-stranded RNA of positive polarity encoding one large polyprotein which is further processed into mature proteins. Noncytopathogenic (noncp) strains of the pestivirus bovine viral diarrhea virus (BVDV) can establish persistent infection. In persistently infected animals, noncp BVDVs occasionally acquire mutations in viral nonstructural protein 2 (NS2) that give rise to cytopathogenic (cp) BVDV variants, and, eventually, lead to the onset of lethal disease. A molecular marker of cp BVDV infection is a high-level expression of the replicative NS3 protease/helicase that together with NS2 is derived from NS2-3. Here, we present evidence for NS2-3 autoprocessing by a newly identified cysteine protease in NS2 that is distantly related to the NS2-3 autoprotease of hepatitis C and GB viruses. The vital role of this autoprotease in BVDV infection was established, implying an essential function for NS3 in pestiviral RNA replication which cannot be supplied by its NS2-3 precursor. Accordingly, and contrary to a current paradigm, we detected almost complete cleavage of NS2-3 in noncp BVDV at early hours of infection. At 6 to 9 h postinfection, NS2-3 autoprocessing diminished to barely detectable levels for noncp BVDV but decreased only moderately for cp BVDV. Viral RNA synthesis rates strictly correlated with different NS3 levels in noncp and cp BVDV-infected cells, implicating the NS2 autoprotease in RNA replication control. The biotype-specific modulation of NS2-3 autoprocessing indicates a crucial role of the NS2 autoprotease in the pathogenicity of BVDV.  相似文献   

13.
14.
Bovine viral diarrhea virus (BVDV) causes immunosuppression of the adaptive immune response. The level of suppression of the adaptive immune response is strain dependent. The early events of antigen presentation require activation of toll-like receptors that results in the release of pro-inflammatory cytokines. Non-cytopathic (ncp) BVDV infection stimulates cytokines from macrophages in vitro but the effect of BVDV infection in vivo on macrophages or in vitro with monocytes is not clear. Antigen presentation is decreased and co-stimulatory molecules are down regulated. T-lymphocytes numbers are reduced following BVDV infection in a strain dependent manner. There is recruitment of lymphocytes to the bronchial alveolar space following cytopathic (cp) BVDV infection. Depletion of T-lymphocytes occurs in the lymphoid tissue and is strain dependent. BVDV cp T-lymphocyte responses appear to be primarily a T helper 1 response while the response following ncp BVDV induces a T helper 2 response. Cytotoxic T-lymphocytes (CTL), an important BVDV defense mechanism are compromised. The major neutralizing antigens are well characterized but cross-protection between strains is variable. PI animals have normal adaptive immune responses with the exception of the PI strain immunotolerance and mucosal disease may be a function of the level of gamma delta T cells.  相似文献   

15.
The alpha/beta interferon (IFN-alpha/beta) system is the first line of defense against viral infection and a critical link between the innate and adaptive immune responses. IFN-alpha/beta secretion is the hallmark of cellular responses to acute RNA virus infections. As part of their survival strategy, many viruses have evolved mechanisms to counteract the host IFN-alpha/beta response. Bovine viral diarrhea virus (BVDV) (genus Pestivirus) was reported to trigger interferon production in infected cultured cells under certain circumstances or to suppress it under others. Our studies with various cultured fibroblasts and epithelial bovine cells indicated that cytopathic (cp) BVDV induces IFN-alpha/beta very inefficiently. Using a set of engineered cp BVDVs expressing mutant Npro and appropriate controls, we found that the IFN-alpha/beta response to infection was dependent on Npro expression and independent of viral replication efficiency. In order to investigate whether the protease activity of Npro is required for IFN-alpha/beta antagonism, we engineered Npro mutants lacking protease activity by replacement of amino acid E22, H49, or C69. We found that E22 and H49 substitutions abolished the ability of Npro to suppress IFN, whereas C69 had no effect, suggesting that the structural integrity of the N terminus of Npro was more important than its catalytic activity for IFN-alpha/beta suppression. A catalytically active mutant with a change at a conserved Npro region near the N terminus (L8P) in both BVDV biotypes did not antagonize IFN-alpha/beta production, confirming its involvement in this process. Taken together, these results not only provide direct evidence for the role of Npro in blocking IFN-alpha/beta induction, but also implicate the amino-terminal domain of the protein in this function.  相似文献   

16.
Defective interfering particles (DIs) of bovine viral diarrhea virus (BVDV) have been identified and shown to be cytopathogenic (cp) in the presence of noncytopathogenic (noncp) helper virus. Moreover, a subgenomic (sg) RNA corresponding in its genome structure to one of those BVDV DIs (DI9) was replication competent in the absence of helper virus. We report here that an sg BVDV replicon which encodes from the viral proteins only the first three amino acids of the autoprotease N(pro) in addition to nonstructural (NS) proteins NS3 to NS5B replicates autonomously and also induces lysis of its host cells. This demonstrates that the presence of a helper virus is not required for the lysis of the host cell. On the basis of two infectious BVDV cDNA clones, namely, BVDV CP7 (cp) and CP7ins- (noncp), bicistronic replicons expressing proteins NS2-3 to NS5B were established. These replicons express, in addition to the viral proteins, the reporter gene encoding beta-glucuronidase; the release of this enzyme from transfected culture cells was used to monitor cell lysis. Applying these tools, we were able to show that the replicon derived from CP7ins- does not induce cell lysis. Accordingly, neither N(pro) nor any of the structural proteins are necessary to maintain the noncp phenotype. Furthermore, these sg RNAs represent the first pair of cp and noncp replicons which mimic complete BVDV CP7 and CP7ins- with respect to cytopathogenicity. These replicons will facilitate future studies aimed at the determination of the molecular basis for the cytopathogenicity of BVDV.  相似文献   

17.
18.
Pestiviruses represent the first RNA viruses for which recombination with cellular protein-coding sequences has been reported. As a result of such recombinations cytopathogenic (cp) pestiviruses can develop from noncytopathogenic (noncp) viruses. In the case of bovine viral diarrhea virus (BVDV), the generation of cp mutants is linked to the induction of the lethal syndrome mucosal disease (MD) in cattle. The cp BVDV JaCP was isolated from an animal which had come down with MD. The genome of JaCP contains a novel kind of cellular insertion (LC3*) which is flanked by duplicated pestivirus sequences. Neither insertion nor duplication is present in the genome of the accompanying noncp virus JaNCP. As part of the viral polyprotein, the insertion in the JaCP genome is translated into a polypeptide almost identical to a fragment of light chain 3, a subunit of the microtubule-associated proteins 1A and 1B from the rat. Transient-expression studies revealed that the LC3* sequence is able to induce an additional cleavage of the viral polyprotein. The respective cleavage occurs directly downstream of the LC3*-encoded sequence and is not dependent on the NS3 serine protease. Insertion of LC3* into an infectious noncp pestivirus cDNA clone without duplicated viral sequences resulted in recovery of a defective cp virus able to replicate only in the presence of a noncp helper virus. In contrast, introduction of both insertion and duplication led to an autonomously replicating cp virus.  相似文献   

19.
Bovine viral diarrhea virus (BVDV) isolates can either be cytopathogenic (cp) or noncytopathogenic (noncp). While both biotypes express the nonstructural protein NS2-3, generation of NS3 strictly correlates with the cp phenotype. The production of NS3 is usually caused by cp specific genome alterations, which were found to be due to RNA recombination. Molecular analyses of the cp BVDV strain Oregon revealed that it does not possess such genome alterations but nevertheless is able to generate NS3 via processing of NS2-3. The NS3 serine protease is not involved in this cleavage, which, according to protein sequencing, occurs between amino acids 1589 and 1590 of the BVDV Oregon polyprotein. Transient-expression studies indicated that important information for the cleavage of NS2-3 is located within NS2. This was verified by expression of chimeric constructs containing cDNA fragments derived from BVDV Oregon and a noncp BVDV. It could be shown that the C-terminal part of NS2 plays a crucial role in NS2-3 cleavage. These data, together with results obtained by site-specific exchanges in this region, revealed a new mechanism for NS2-3 processing which is based on point mutations within NS2.  相似文献   

20.
The presence of cellular protein coding sequences within viral RNA genomes is a unique and particularly interesting feature of cytopathogenic (cp) pestiviruses. Here we report the identification and characterization of two novel cellular sequences in the genomes of cp bovine viral diarrhea virus (BVDV) strains. In BVDV strain CP X604, we detected a duplication of the genomic region encoding NS3, NS4A, and part of NS4B, together with an insertion of sequences that code for cellular gamma-aminobutyric acid (A) receptor-associated protein [GABA(A)-RAP]. Transient-expression studies showed that the GABA(A)-RAP sequence leads to additional processing of the viral polyprotein and thereby to the expression of nonstructural protein NS3. Transfection of bovine cells with RNA transcribed from an infectious cDNA clone revealed that the GABA(A)-RAP-encoding insertion together with the duplicated viral sequences constitutes the genetic basis for the cytopathogenicity of strain CP X604. Surprisingly, molecular analysis of another cp BVDV strain (CP 721) resulted in the identification of a cellular Golgi-associated ATPase enhancer of 16 kDa (GATE-16)-encoding insertion together with duplicated viral sequences. To our knowledge, the genomes of CP X604 and CP 721 are the first viral RNAs found with cellular sequences encoding GABA(A)-RAP and GATE-16, respectively. Interestingly, the two cellular proteins belong to a family of eukaryotic proteins involved in various intracellular trafficking processes. Processing after the C-terminal glycine residue of GABA(A)-RAP and GATE-16 by cellular proteases is essential for covalent attachment to target molecules. Accordingly, it can be assumed that these cellular proteases also recognize the cleavage sites in the context of the respective viral polyproteins and thereby lead to the generation of NS3, the marker protein of cp BVDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号