首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The indices of infestation by the mites Echinolaelaps echidninus and Laelaps nuttalli, the louse Popyplax spinulosa and the flea Xenopsylla cheopis, obtained monthly, from June 1980 to September 1982, on Rattus norvegicus norvegicus in the city of Belo Horizonte, Minas Gerais state, Brazil were related to seasonal period, sex of the host and area of capture. Mites and insects showed different behaviour in relation to these factors. Only the fleas and lice exhibit significant association between the rodents' infestation and the seasonal period, or between the infestation and the rodents' sex or else a variation of the distribution by the three main areas of capture. The fleas showed the highest indices of infestation in the warm-rainy season (October to March) while the infestation by the lice was more prevalent in the dry-cool season. The climatic factors most related with the hosts' infestation were, in decreasing order, rainfall, temperature and relative humidity. Fleas and lice preferentially infested male rodents, being infestation by X. cheopis highly significant.  相似文献   

2.
Flea, lice, mite, and tick species associated with 510 Rhabdomys pumilio were collected at 9 localities in the Western Cape Province, South Africa. The aims of the study were first to quantify the species richness, prevalence, and relative mean intensity of infestation of epifaunistic arthropod species associated with R. pumilio, and second to determine temporal variations in the mean abundance of the parasitic arthropods. Each mouse was examined under a stereoscopic microscope and its parasites were removed, identified, and quantified. The epifaunal population was made up of more than 25,000 individuals and included 8 flea, 1 sucking louse, 11 mite, and 13 ixodid tick species. Female-biased sex ratios were noted for 9 (30%) of the ectoparasite species. Three undescribed mite and 1 undescribed tick species were recovered, and new locality records for 2 flea, the louse, and 2 mite species were documented. A phoretic host association between a nonparasitic mite species, Psylloglyphus uilenbergi kivuensis, and 3 flea species, Chiastopsylla rossi, Hypsophthalmus temporis, and Listropsylla agrippinae, was recorded. The mean abundance of the parasitic mite and insect species were higher during the cold wet season, whereas ticks were more numerous during the warm dry months. The large number of ectoparasite species on R. pumilio, a locally abundant and regionally widespread species, is of medical and veterinary importance particularly in relation to the transmission of pathogens such as Anaplasma marginale, Babesia caballi, and Babesia canis to domestic animals; Rickettsia conori; Yersinia pestis; and the viral disease Crimean-Congo hemorrhagic fever to humans.  相似文献   

3.
1. We studied the effect of flea infestation on the pattern of tick (Ixodes ricinus and Ixodes trianguliceps) infestation on small mammals. 2. We asked (1) whether the probability of an individual host being infested by ticks was affected by its infestation of fleas (number of individuals and species) and (2) whether the abundance and prevalence of ticks in a host population was affected by the abundance, prevalence, level of aggregation, and species richness of fleas. 3. The probability of a host individual being infested by ticks was affected negatively by flea infestation. At the level of host populations, flea abundance and prevalence had a predominantly positive effect on tick infestation, whereas flea species richness had a negative effect on tick infestation. 4. The effect of flea infestation on tick infestation was generally greater in I. ricinus than in I. trianguliceps, but varied among host species. 5. It can be concluded that the effect of fleas on tick infestation of small mammals may be either negative or positive depending on the level of consideration and parameters involved. The results did not provide support for direct interactions between the two ectoparasite taxa, but suggested population and community dynamics and the defence system of the hosts as possible factors.  相似文献   

4.
Parasitic infections were studied for the first time in an urban population of brown rats (Rattus norvegicus) from Doha. Only one species of helminth was found, the cestode Hymenolepis diminuta, and one ectoparasite, the flea Xenopsylla astia, from a sample size of 136 rats (52 males and 84 females). The prevalence of H. diminuta was 17.6%, increasing with host age but not in relation to host sex nor season of capture. Host age was a key factor in influencing abundance of infection, although there was a significant three-way interaction with season and host sex arising through heavy infections in juvenile male rats in the summer. The prevalence of X. astia was 45.6%, although both prevalence and abundance of infestations were season and host age dependent. In the winter prevalence and abundance were similar in both host age and sex groups, but in the summer both parameters of infestation were markedly higher among juveniles compared with adults. We found evidence for some association between these two species: H. diminuta was more prevalent among rats with fleas than among those without, although this association was season-, and independently sex- and age-dependent. There were no quantitative interactions and reasons for this are discussed in relation to the foraging and breeding behaviour of the brown rat in Qatar.  相似文献   

5.
The Yunnan red‐backed vole Eothenomys miletus (Rodentia: Cricetidae) is an endemic rodent species and reservoir host of zoonoses in southwest China. Based on a large host sample (2463 voles collected from 39 localities between 2001 and 2013), a general analysis of four categories of ectoparasite (fleas, sucking lice, chigger mites and gamasid mites) on E. miletus across its entire range of distribution was made. This analysis identified a total of 71 895 ectoparasites belonging to 320 species (30 species of flea, 9 of sucking louse, 106 of gamasid mite and 175 of chigger mite) with a high prevalence (87%), mean abundance (29.19) and mean intensity (33.69). Of the 18 vector species of zoonoses found on E. miletus, the flea Ctenophthalmus quadratus (Siphonaptera: Hystrichopsyllidae) and chigger mite Leptotrombidium scutellare (Trombidiformes: Trombiculidae) were the dominant species; these are the main vectors of zoonoses in China. All of the dominant parasite species showed an aggregated distribution pattern. Male voles harboured more species of parasite than females. Chigger mites represented the most abundant species group on voles and their prevalence was positively correlated with mean abundance (r = 0.73; P < 0.05). As a single rodent species, E. miletus has a high potential to harbour abundant ectoparasites with high species diversity and high rates of infestation. The sex of the vole affects ectoparasite infestation.  相似文献   

6.
The present study was carried out in 3 villages, namely Kafr Ayoub Soliman, Kafr Ibrahim El-Aidi, and El-Sa'adat, Sharqiya Governorate, Egypt. A total of 519 rats was collected from the 3 study sites: 46.6% Rattus rattus, and 53.4% Rattus norvegicus. A total of 20,643 ectoparasites was recovered from R. rattus: 33.3% mites, 33.8% fleas, and 32.9% lice. From R. norvegicus a total of 40,997 ectoparasites was recovered: 28.9% mites, 31% fleas, and 40.1% lice. Three common mite species were recovered from both rat hosts, i.e., Ornithonyssus bacoti, Radfordia ensifera, and Laelaps nuttalli. Three common flea species were also recovered from both rat hosts, i.e., Echidnophaga gallinacea, Leptopsylla segnis, and Xenopsylla cheopis. Polyplax spinulosa was the only dominant louse species that infested both rat hosts. Rats did not show a definite breeding season, and the seasonal rat indices were generally low in different study sites. There were no significant differences between the prevalence of each of mites, fleas, and lice in both rat species. The total general indices of mites and fleas, on the other hand, was significantly higher in R. norvegicus. The general index of X. cheopis was high and ranged between 5.9 in R. rattus and 14.5 in R. norvegicus. Season-related changes were observed in the general index of each of L. segnis infesting both rat species and R. ensifera and O. bacoti infesting R. norvegicus. The prevalence and general indices of some ectoparasites showed differences related to the locality of their rat hosts. Seasonal changes in the general indices of some ectoparasites paralleled seasonal changes in the relative abundance of their rat hosts.  相似文献   

7.
We studied age-dependent patterns of flea infestation in 7 species of rodents from Slovakia (Apodemus agrarius, A. flavicollis, A. sylvaticus, A. uralensis, Clethrionomys glareolus, Microtus arvalis, and M. subterraneus). We estimated the age of the host from its body mass and expected the host age-dependent pattern of flea abundance, the level of aggregation, and prevalence to be in agreement with theoretical predictions. We expected that the mean abundance and the level of aggregation of fleas would be lowest in hosts of smallest and largest size classes and highest in hosts of medium size classes, whereas pattern of variation of prevalence with host age would be either convex or asymptotic. In general, mean abundance and species richness of fleas increased with an increase in host age, although the pressure of flea parasitism in terms of number of fleas per unit host body surface decreased with host age. We found 2 clear patterns of the change in flea aggregation and prevalence with host age. The first pattern demonstrated a peak of flea aggregation and a trough of flea prevalence in animals of middle age classes (Apodemus species and C. glareolus). The second pattern was an increase of both flea aggregation and flea prevalence with host age (both Microtus species). Consequently, we did not find unequivocal evidence for the main role of either parasite-induced host mortality or acquired resistance in host age-dependent pattern of flea parasitism. Our results suggest that this pattern can be generated by various processes and is strongly affected by natural history parameters of a host species such as dispersal pattern, spatial distribution, and structure of shelters.  相似文献   

8.
We investigated seasonality of gender differences in the patterns of flea infestation in nine rodent species to test if sex-biased parasitism in terms of mean abundance, species richness, prevalence and the level of aggregation (a) varies among hosts and between seasons, and (b) is linked to sexual size dimorphism. Sexual size differences were significant in both summer and winter in Acomys cahirinus, Gerbillus pyramidum and Meriones crassus, and in winter only in Acomys russatus, Gerbillus dasyurus, Gerbillus nanus and Sekeetamys calurus. Sexual size dimorphism was male biased except for A. russatus in which it was female biased. Manifestation of sexual differences in flea infestation was different among hosts between seasons. A significant effect of sex on mean flea abundance was found in six hosts, on mean flea species richness in five hosts and on prevalence in two hosts. Male-biased parasitism was found in summer in one host only and in winter in five hosts. Female-biased parasitism occurred in winter in A. russatus. Gender differences in the slopes of the regressions of log-transformed variances against log-transformed mean abundances occurred in three hosts. No relationship was found between sexual size dimorphism and any parasitological parameter in any season using both conventional regressions and the method of independent contrasts. Our results suggest that sex-biased parasitism is a complicated phenomenon that involves several different mechanisms.  相似文献   

9.
We used data on the abundance and distribution of fleas parasitic on small mammals in Slovakia and aimed: (i) to confirm a positive relationship between abundance and distribution fleas within and across host species; and (ii) to test if prevalence of fleas can be reliably predicted from a simple epidemiological model that takes into account flea mean abundance and its variance. Prevalence of a flea species increased with an increase in its mean abundance both within and across host species. We calculated prevalences both for each flea-host association and for each flea species across all hosts. Observed prevalences did not differ significantly from those predicted by the epidemiological model using parameters of Taylor's power relationship between mean abundance of fleas and its variance. Regressions of predicted prevalences against observed prevalences produced slope values that did not differ significantly from unity and were independent of scale (within or across host species). Our results demonstrated that up to 96% of variance in flea prevalence can be explained solely by their mean abundance. We concluded that, in general, there is no need to invoke other, more complex factors for the explanation of the variation in flea prevalence.  相似文献   

10.
The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae). This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp.) and cestodes (Mathevotaenia sp.) being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted.  相似文献   

11.
The relative effects of host species identity, locality and season on ectoparasite assemblages (relative abundances and species richness) harboured by four cricetid rodent hosts (Akodon azarae, Oligoryzomys flavescens, Oxymycterus rufus and Scapteromys aquaticus) were assessed across six closely located sites in Buenos Aires province, Argentina. Relative abundances of ectoparasites (14 species including gamasid mites, an ixodid tick, a trombiculid mite, lice and fleas), as well as total ectoparasite abundance and species richness, were determined mainly by host species and to a lesser extent by locality (despite the small spatial scale of the study), whereas seasonal effect was weak, albeit significant. The abundances of some ectoparasites were determined solely by host, whereas those of other ectoparasites (sometimes belonging to the same higher taxon) were also affected by locality and/or season. In gamasids, there was a significant effect of locality for some species, but not for others. In fleas and lice, the effect of locality was similar in different species, suggesting that this effect is related to the characteristic life history strategy.  相似文献   

12.
Krasnov BR  Stanko M  Morand S 《Oecologia》2007,154(1):185-194
Abundance of a species in a location results from the interplay between the intrinsic properties of that species and the extrinsic properties, both biotic and abiotic, of the local habitat. Intrinsic factors promote among-population stability in abundance, whereas extrinsic factors generate variation among populations of a species. We studied (a) repeatability and (b) the effect of abundance and species richness of small mammals on the level of their infestation by larvae and nymphs of Ixodes ricinus (ecological generalist) and Ixodes trianguliceps (ecological specialist). We asked if tick infestation parameters are characteristic (=repeatable) for a particular host species or a particular stage of a particular tick species. We also asked how abundance and diversity of hosts affect the level of tick infestation on a particular host species. We predicted that the dilution effect (decrease in tick infestation levels with an increase of host abundance and/or species richness) will be better expressed in an ecological generalist, I. ricinus, than in an ecological specialist, I. trianguliceps. We found that (a) tick abundance, prevalence and aggregation were generally repeatable within tick species/stage; (b) tick abundance and prevalence, but not the aggregation level, were repeatable within host species; (c) the proportion of variance among samples explained by the differences between tick species and stages (as opposed to within-tick species and stage) was higher than that explained by the differences between host species (as opposed to within host species); and (d) the relationship between tick infestation parameters and host abundance and diversity revealed the dilution effect for I. ricinus but not for I. trianguliceps.  相似文献   

13.
This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross‐sectional spatial survey carried out from late May 2013 to mid‐July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation.  相似文献   

14.
Rodents play a significant role as reservoirs of zoonotic diseases. Nevertheless, in general their ectoparasite assemblage and host-ectoparasite associations are poorly known. This study intended to provide new insights into the relationships between ectoparasites and rodents in northeastern Iran. Rodents were captured using live traps during the years 2016–2020, and their ectoparasites were collected. Parasitological indices such as infestation rate, prevalence and mean intensity of infestation were analyzed. A total of 284 rodents, belonging to 17 species, were trapped and found to be infested by 178 ectoparasites from five orders Siphonaptera, Phthiraptera, Ixodida, Mesostigmata and Trombidiformes. The overall infestation rate was 50.3%. The flea Nosopsyllus fasciatus and the louse Polyplax asiatica dominated among all fleas and lice, respectively. Haemaphysalis punctata and Haemolaelaps sp. were recorded as the most abundant tick and mite, respectively. Nosopsyllus fasciatus exhibited low and Polyplax asiatica moderate host specificity. Approximately 64.2% of ectoparasites shared more than one host, and others were singletons. Seasonal fluctuations were found in the occurrence of ectoparasite; fleas and lice were more abundant in spring and winter, respectively. Ticks demonstrated high abundance in spring and summer and mites were more common in autumn. The overall prevalence of ectoparasite on male rodents was greater than that on females (56.4% vs. 44.4%), while similar mean intensities were detected for both sexes. This study extends the knowledge on the distribution, seasonality and host choice of four main groups of ectoparasites in association with rodents. Further studies are needed to provide deep insight into how relationships and interactions between ectoparasite and rodents are formed, and how they can be applied in epidemiology.  相似文献   

15.
Temporal variation in body condition and immunological variables of animals that harbor parasites may explain patterns of variation in infestation, as well as parasite impact on the host. We emulated such variability in Sundevall's jirds by manipulating food availability and flea infestation in juveniles and adults and examining how these changes affect survival of fleas on their hosts. Body condition of food-restricted jirds deteriorated, but there was no change in their immunological variables. Adult jirds were in better body condition and had higher immunocompetence than juveniles, however there were no significant effects of flea infestation on any of the variables examined. The main effects of flea infestation were a decrease in the response to phytohaemagglutinin injection, and an increase in the negative effects of food restriction on body mass. Flea survival was higher on juveniles, but fleas did not respond to temporal variability in body condition and immunocompetence of the jirds. We concluded that changes in body condition and immune responses due to growth or variability in food abundance are more important than changes caused by the fleas themselves. Flea infestation is more detrimental to jirds when they are not able to compensate for mass loss through increased food consumption.  相似文献   

16.
The diversity and geographical distribution of fleas parasitizing small mammals have been poorly investigated on Indian Ocean islands with the exception of Madagascar where endemic plague has stimulated extensive research on these arthropod vectors. In the context of an emerging flea-borne murine typhus outbreak that occurred recently in Reunion Island, we explored fleas'' diversity, distribution and host specificity on Reunion Island. Small mammal hosts belonging to five introduced species were trapped from November 2012 to November 2013 along two altitudinal transects, one on the windward eastern and one on the leeward western sides of the island. A total of 960 animals were trapped, and 286 fleas were morphologically and molecularly identified. Four species were reported: (i) two cosmopolitan Xenopsylla species which appeared by far as the prominent species, X. cheopis and X. brasiliensis; (ii) fewer fleas belonging to Echidnophaga gallinacea and Leptopsylla segnis. Rattus rattus was found to be the most abundant host species in our sample, and also the most parasitized host, predominantly by X. cheopis. A marked decrease in flea abundance was observed during the cool-dry season, which indicates seasonal fluctuation in infestation. Importantly, our data reveal that flea abundance was strongly biased on the island, with 81% of all collected fleas coming from the western dry side and no Xenopsylla flea collected on almost four hundred rodents trapped along the windward humid eastern side. The possible consequences of this sharp spatio-temporal pattern are discussed in terms of flea-borne disease risks in Reunion Island, particularly with regard to plague and the currently emerging murine typhus outbreak.  相似文献   

17.
Aim Bark beetle outbreaks have recently affected extensive areas of western North American forests, and factors explaining landscape patterns of tree mortality are poorly understood. The objective of this study was to determine the relative importance of stand structure, topography, soil characteristics, landscape context (the characteristics of the landscape surrounding the focal stand) and beetle pressure (the abundance of local beetle population eruptions around the focal stand a few years before the outbreak) to explain landscape patterns of tree mortality during outbreaks of three species: the mountain pine beetle, which attacks lodgepole pine and whitebark pine; the spruce beetle, which feeds on Engelmann spruce; and the Douglas‐fir beetle, which attacks Douglas‐fir. A second objective was to identify common variables that explain tree mortality among beetle–tree host pairings during outbreaks. Location Greater Yellowstone ecosystem, Wyoming, USA. Methods We used field surveys to quantify stand structure, soil characteristics and topography at the plot level in susceptible stands of each forest type showing different severities of infestation (0–98% mortality; n= 129 plots). We then used forest cover and beetle infestation maps derived from remote sensing to develop landscape context and beetle pressure metrics at different spatial scales. Plot‐level and landscape‐level variables were used to explain outbreak severity. Results Engelmann spruce and Douglas‐fir mortality were best predicted using landscape‐level variables alone. Lodgepole pine mortality was best predicted by both landscape‐level and plot‐level variables. Whitebark pine mortality was best – although poorly – predicted by plot‐level variables. Models including landscape context and beetle pressure were much better at predicting outbreak severity than models that only included plot‐level measures, except for whitebark pine. Main conclusions Landscape‐level variables, particularly beetle pressure, were the most consistent predictors of subsequent outbreak severity within susceptible stands of all four host species. These results may help forest managers identify vulnerable locations during ongoing outbreaks.  相似文献   

18.
The distribution of parasites among individual hosts is characterised by high variability that is believed to be a result of variations in host traits. To find general patterns of host traits affecting parasite abundance, we studied flea infestation of nine rodent species from three different biomes (temperate zone of central Europe, desert of Middle East and tropics of East Africa). We tested for independent and interactive effects of host sex and body mass on the number of fleas harboured by an individual host while accounting for spatial clustering of host and parasite sampling and temporal variation. We found no consistent patterns of the effect of host sex and body mass on flea abundance either among species within a biome or among biomes. We found evidence for sex-biased flea infestation in just five host species (Apodemus agrarius, Myodes glareolus, Microtus arvalis, Gerbillus andersoni, Mastomys natalensis). In six rodent species, we found an effect of body mass on flea abundance (all species mentioned above and Meriones crassus). This effect was positive in five species and negative in one species (Microtus arvalis). In M. glareolus, G. andersoni, M. natalensis, and M. arvalis, the relationship between body mass and flea abundance was mediated by host sex. This was manifested in steeper change in flea abundance with increasing body mass in male than female individuals (M. glareolus, G. andersoni, M. natalensis), whereas the opposite pattern was found in M. arvalis. Our findings suggest that sex and body mass are common determinants of parasite infestation in mammalian hosts, but neither of them follows universal rules. This implies that the effect of host individual characteristics on mechanisms responsible for flea acquisition may be manifested differently in different host species.  相似文献   

19.
Mammal density and patterns of ectoparasite species richness and abundance   总被引:6,自引:1,他引:5  
Patterns of species richness, prevalence and abundance of ectoparasites have rarely been investigated at both the levels of populations and species of hosts. Here, we investigated the effects in changes in small mammal density on species richness, abundance and prevalence of ectoparasitic fleas. The comparative analyses were conducted for different small mammal species and among several populations during a long-term survey. We tested the hypothesis that an increase in host density should be linked with an increase in parasite species richness both among host species and among populations within host species, as predicted by epidemiological models. We also used host species density data from literature. We found that host density has a major influence on the species richness of ectoparasite communities of small mammals among host populations. We found no relationship between data of host density from the literature and parasite species richness. In contrast with epidemiological hypotheses, we found no relationships between abundance, or prevalence, and host density, either among host species or among host populations. Moreover, a decrease in abundance of fleas in relation with an increase in host density was observed for two mammal species (Apodemus agrarius and A. flavicollis). The decrease or the lack of increase in flea abundance in relation with an increase in host density suggests anti-parasitic behavioural activities such as grooming.  相似文献   

20.
Population density is a fundamental property of a species and yet it varies among populations of the same species. The variation comes from the interplay between intrinsic features of a species that tend to produce repeatable density values across all populations of the same species and extrinsic environmental factors that differ among localities and thus tend to produce spatial variation in density. Is inter-population variation in density too large for density to be considered a true species character? We addressed this question using data on abundance (number of parasites per individual host, i.e. equivalent to density) of fleas ectoparasitic on small mammals. The data included samples of 548 flea populations, representing 145 flea species and obtained from 48 different geographical regions. Abundances of the same flea species on the same host species, but in different regions, were more similar to each other than expected by chance, and varied significantly among flea species, with 46% of the variation among samples accounted by differences between flea species. Thus, estimates of abundance are repeatable within the same flea species. The same repeatability was also observed, but to a lesser extent, across flea genera, tribes and subfamilies. Independently of the identity of the flea species, abundance values recorded on the same host species, or in the same geographical region, also showed significant statistical repeatability, though not nearly as strong as that associated with abundance values from the same flea species. There were also no strong indications that regional differences in abiotic variables were an important determinant of variation in abundance of a given flea species on a given host species. Abundance thus appears to be a true species trait in fleas, although it varies somewhat within bounds set by species-specific life history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号