首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used electron paramagnetic resonance and fluorescence spectroscopy to study the interaction between the kinesin-1 head and its regulatory tail domain. The interaction between the tails and the enzymatically active heads has been shown to inhibit intrinsic and microtubule-stimulated ADP release. Here, we demonstrate that the probe mobility of two different spin-labeled nucleotide analogs in the kinesin-1 nucleotide pocket is restricted upon binding of the tail domain to kinesin-1 heads. This conformational restriction is distinct from the microtubule-induced changes in the nucleotide pocket. Unlike myosin V, this tail-induced restriction occurs independent of nucleotide state. We find that the head-tail interaction that causes the restriction only weakly stabilizes Mg2+ in the nucleotide pocket. The conformational restriction also occurs when a tail construct containing a K922A point mutation is used. This mutation eliminates the tail's ability to inhibit ADP release, indicating that the tail does not inhibit nucleotide ejection from the pocket by simple steric hindrance. Together, our data suggest that the observed head-tail interaction serves as a scaffold to position K922 to exert its inhibitory effect, possibly by interacting with the nucleotide α/β-phosphates in a manner analogous to the arginine finger regulators of some G proteins.  相似文献   

2.
The microtubule-dependent kinesin-like protein Eg5 from Homo sapiens is involved in the assembly of the mitotic spindle. It shows a three-domain structure with an N-terminal motor domain, a central coiled coil, and a C-terminal tail domain. In vivo HsEg5 is reversibly inhibited by monastrol, a small cell-permeable molecule that causes cells to be arrested in mitosis. Both monomeric and dimeric Eg5 constructs have been examined in order to define the minimal monastrol binding domain on HsEg5. NMR relaxation experiments show that monastrol interacts with all of the Eg5 constructs used in this study. Enzymatic techniques indicate that monastrol partially inhibits Eg5 ATPase activity by binding directly to the motor domain. The binding is noncompetitive with respect to microtubules, indicating that monastrol does not interfere with the formation of the motor-MT complex. The binding is not competitive with respect to ATP. Both enzymology and in vivo assays show that the S enantiomer of monastrol is more active than the R enantiomer and racemic monastrol. Stopped-flow fluorometry indicates that monastrol inhibits ADP release by forming an Eg5-ADP-monastrol ternary complex. Monastrol reversibly inhibits the motility of human Eg5. Monastrol has no inhibitory effect on the following members of the kinesin superfamily: MC5 (Drosophila melanogaster Ncd), HK379 (H. sapiens conventional kinesin), DKH392 (D. melanogaster conventional kinesin), BimC1-428 (Aspergillus nidulans BimC), Klp15 (Caenorhabditis elegans C-terminal motor), or Nkin460GST (Neurospora crassa conventional kinesin).  相似文献   

3.
Full-length Drosophila kinesin heavy chain from position 1 to 975 was expressed in Escherichia coil (DKH975) and is a dimer. The sedimentation coefficient of DKH975 shifts from 5.4 S at 1 M NaCl to approximately 6.9 S at <0.2 M NaCl. This transition of DKH975 between extended and compact conformations is essentially identical to that for the heavy chain dimer of bovine kinesin (Hackney, D. D., Levitt, J. D., and Suhan, J. (1992) J. Biol. Chem. 267, 8696-8701). Thus the capacity for undergoing the 7 S/5 S transition is an intrinsic property of the heavy chains and requires neither light chains nor eukaryotic post-translational modification. DKH960 undergoes a similar transition, indicating that the extreme COOH-terminal region is not required. More extensive deletions from the COOH-terminal (DKH945 and DKH937) result in a shift in the midpoint for the transition to lower salt concentrations. DKH927 and shorter constructs remaining extended even in the absence of added salt. Thus the COOH-terminal approximately 50 amino acids are required for the formation of the compact conformation. Separately expressed COOH-terminal tail segments and NH2-terminal head/neck segments interact in a salt-dependent manner that is consistent with the compact conformer being produced by the interaction of domains from these regions of the heavy chain dimer. The microtubule-stimulated ATPase rate of DKH975 in the compact conformer is strongly inhibited compared with the rate of extended DKH894 (4 s-1 and 35 s-1, respectively, for kcat at saturating microtubules).  相似文献   

4.
Hackney DD 《Biochemistry》2002,41(13):4437-4446
Kinesin binds to microtubules with half-site ADP release to form a tethered intermediate with one attached head without nucleotide and one tethered head that retains its bound ADP. For DKH405 containing amino acid residues 1-405 of Drosophila kinesin, release of the remaining ADP from the tethered head is slow (0.05 s(-1)), but release is accelerated by added ADP or ATP. The maximum rate of ADP-stimulated dissociation of tethered DKH405 from the microtubule is approximately 12 s(-1) as determined by turbidity. Parallel measurements of ADP-stimulated release of 2'(3')-O-(N-methylanthraniloyl)-ADP (mantADP) from the tethered intermediate by fluorescence indicate that the reaction is biphasic with a fast phase that occurs at a rate that is similar to dissociation. The rate of the slow phase is dependent on the concentrations of salt and microtubules and is equal in each case to the rate for bimolecular stimulation of ADP release by microtubules as measured independently. These results are consistent with a scheme in which the fast phase, with approximately one-third of the total amplitude change, is due to ADP-stimulated release of mantADP from the tethered intermediate at approximately 6 s(-1). This direct release of mantADP continues until terminated by dissociation of DKH405 from the microtubule at approximately 12 s(-1). The majority of the amplitude change thus occurs through bimolecular recombination of DKH405.mantADP with microtubules following initial dissociation. Analysis of a simple scheme indicates that hydrolysis of ATP at the attached head before the tethered head can release its ADP and become tightly bound may be the principal limitation to processivity.  相似文献   

5.
Class I myosins are single-headed motor proteins implicated in various motile processes including organelle translocation, ion channel gating, and cytoskeleton reorganization. Dictyostelium discoideum myosin-ID belongs to subclass 1alpha, whose members are thought to be tuned for rapid sliding. The direct analysis of myosin-ID motor activity is made possible by the production of single polypeptide constructs carrying an artificial lever arm. Using these constructs, we show that the motor activity of myosin-ID is activated 80-fold by phosphorylation at the TEDS site. TEDS site phosphorylation acts by stabilizing the actomyosin complex and increasing the coupling between actin binding and the release of hydrolysis products. A surprising effect of Mg(2+) ions on in vitro motility was discovered. Changes in the level of free Mg(2+) ions within the physiological range are shown to modulate motor activity by inhibiting ADP release. Our results indicate that higher concentrations of free Mg(2+) ions stabilize the tension-bearing actin myosin ADP state and shift the system from the production of rapid movement toward the generation of tension.  相似文献   

6.
Friel CT  Howard J 《The EMBO journal》2011,30(19):3928-3939
Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-limiting step for ATP turnover by MCAK; unpolymerized tubulin and microtubules accelerate this step. Further, microtubule ends fully activate the ATPase by accelerating the exchange of ADP for ATP. This tuning of the cycle adapts MCAK for its depolymerization activity: lattice-stimulated ATP cleavage drives MCAK into a weakly bound nucleotide state that reaches microtubule ends by diffusion, and end-specific acceleration of nucleotide exchange drives MCAK into a strongly bound state that promotes depolymerization. This altered cycle accounts well for the different mechanical behaviour of this kinesin, which depolymerizes microtubules from their ends, compared to translocating kinesins that walk along microtubules. Thus, the kinesin motor domain is a nucleotide-dependent engine that can be differentially tuned for transport or depolymerization functions.  相似文献   

7.
The cytoplasmic distribution of cellular structures is known to depend on the balance between plus- and minus-end-directed motor complexes. Among the plus-end-directed kinesins, kinesin-1 and -2 have been implicated in the outward movement of many organelles. To test for a role of kinesin-1 previous studies mostly relied on the overexpression of dominant-negative kinesin-1 constructs. The latter are often cytotoxic, modify the microtubule network and indirect effects related to altered microtubule dynamics should be excluded. In the present study we present a novel kinesin-1 construct, encompassing the first 330 amino acids of kinesin heavy chain fused to GFP (kin330-GFP) that does not alter microtubules upon its overexpression. Kin330-GFP functionally inhibits kinesin-1 because it induces the peri-nuclear accumulation of mitochondria and intermediate filaments. Using this construct and previously established siRNA-mediated knock-down of kinesin-2 function, we assess the role of both motors in the subcellular distribution of distinct steps of the vaccinia virus (VV) life cycle. We show that kinesin-1, but not kinesin-2, contributes to the specific cytoplasmic distribution of three of the four steps of VV morphogenesis tested. These results are discussed with respect to the possible regulation of kinesin-1 during VV infection.  相似文献   

8.
Kinesin motor proteins use an ATP hydrolysis cycle to perform various functions in eukaryotic cells. Many questions remain about how the kinesin mechanochemical ATPase cycle is fine-tuned for specific work outputs. In this study, we use isothermal titration calorimetry and stopped-flow fluorometry to determine and analyze the thermodynamics of the human kinesin-5 (Eg5/KSP) ATPase cycle. In the absence of microtubules, the binding interactions of kinesin-5 with both ADP product and ATP substrate involve significant enthalpic gains coupled to smaller entropic penalties. However, when the wild-type enzyme is titrated with a non-hydrolyzable ATP analog or the enzyme is mutated such that it is able to bind but not hydrolyze ATP, substrate binding is 10-fold weaker than ADP binding because of a greater entropic penalty due to the structural rearrangements of switch 1, switch 2, and loop L5 on ATP binding. We propose that these rearrangements are reversed upon ATP hydrolysis and phosphate release. In addition, experiments on a truncated kinesin-5 construct reveal that upon nucleotide binding, both the N-terminal cover strand and the neck linker interact to modulate kinesin-5 nucleotide affinity. Moreover, interactions with microtubules significantly weaken the affinity of kinesin-5 for ADP without altering the affinity of the enzyme for ATP in the absence of ATP hydrolysis. Together, these results define the energy landscape of a kinesin ATPase cycle in the absence and presence of microtubules and shed light on the role of molecular motor mechanochemistry in cellular microtubule dynamics.  相似文献   

9.
The kinesin-13 motor protein family members drive the removal of tubulin from microtubules (MTs) to promote MT turnover. A point mutation of the kinesin-13 family member mitotic centromere-associated kinesin/Kif2C (E491A) isolates the tubulin-removal conformation of the motor, and appears distinct from all previously described kinesin-13 conformations derived from nucleotide analogues. The E491A mutant removes tubulin dimers from stabilized MTs stoichiometrically in adenosine triphosphate (ATP) but is unable to efficiently release from detached tubulin dimers to recycle catalytically. Only in adenosine diphosphate (ADP) can the mutant catalytically remove tubulin dimers from stabilized MTs because the affinity of the mutant for detached tubulin dimers in ADP is low relative to lattice-bound tubulin. Thus, the motor can regenerate for further cycles of disassembly. Using the mutant, we show that release of tubulin by kinesin-13 motors occurs at the transition state for ATP hydrolysis, which illustrates a significant divergence in their coupling to ATP turnover relative to motile kinesins.  相似文献   

10.
The nonprocessive kinesin-14 Ncd motor binds to microtubules and hydrolyzes ATP, undergoing a single displacement before releasing the microtubule. A lever-like rotation of the coiled-coil stalk is thought to drive Ncd displacements or steps along microtubules. Crystal structures and cryoelectron microscopy reconstructions imply that stalk rotation is correlated with ADP release and microtubule binding by the motor. Here we report FRET assays showing that the end of the stalk is more than ~9nm from the microtubule when wild-type Ncd binds microtubules without added nucleotide, but the stalk is within ~6nm of the microtubule surface when the microtubule-bound motor binds an ATP analogue, matching the rotated state observed in crystal structures. We propose that the stalk rotation is initiated when the motor binds to microtubules and releases ADP, and is completed when ATP binds.  相似文献   

11.
The kinesin-1 molecular motor contains an ATP-dependent microtubule-binding site in its N-terminal head domain and an ATP-independent microtubule-binding site in its C-terminal tail domain. Here we demonstrate that a kinesin-1 tail fragment associates with microtubules with submicromolar affinity. Binding is largely electrostatic in nature, and is facilitated by a region of basic amino acids in the tail and the acidic E-hook at the C terminus of tubulin. The tail binds to a site on tubulin that is independent of the head domain-binding site but overlaps with the binding site of the microtubule-associated protein Tau. Surprisingly, the kinesin tail domain stimulates microtubule assembly and stability in a manner similar to Tau. The biological function of this strong kinesin tail-microtubule interaction remains to be seen, but it is likely to play an important role in kinesin regulation due to the close proximity of the microtubule-binding region to the conserved regulatory and cargo-binding domains of the tail.  相似文献   

12.
13.
Kinesin-1 is the founding member of a superfamily of motor proteins that transport macromolecules along microtubules in an ATP-dependent manner. Classic studies show that kinesin-1 binds to intracellular cargos through non-covalent interactions with proteins on the cargo surface, that protein-protein interaction domains are present in the cargo-binding tail domain and that phosphorylation-dependent signal transduction pathways regulate kinesin-cargo interactions. A combination of genetics, biochemistry and proteomics has identified processes in which kinesin-1 has an important role, and helped reveal the mechanisms of kinesin-dependent transport events. These approaches have identified more than 35 proteins that bind to kinesin-1; these proteins act as cargos, cargo receptors and regulators of kinesin-1 activity. This review summarizes our current understanding of kinesin-1 associated proteins, and places those protein-protein interactions into the context of kinesin-1 in vivo function.  相似文献   

14.
Kinesin-5, a widely conserved motor protein required for assembly of the bipolar mitotic spindle in eukaryotes, forms homotetramers with two pairs of motor domains positioned at opposite ends of a dumbbell-shaped molecule [1-3]. It has long been assumed that this configuration of motor domains is the basis of kinesin-5's ability to drive relative sliding of microtubules [2, 4, 5]. Recently, it was suggested that in addition to the N-terminal motor domain, kinesin-5 also has a nonmotor microtubule binding site in its C terminus [6]. However, it is not known how the nonmotor domain contributes to motor activity, or how a kinesin-5 tetramer utilizes a combination of four motor and four nonmotor microtubule binding sites for its microtubule organizing functions. Here we show, in single molecule assays, that kinesin-5 homotetramers require the nonmotor C terminus for crosslinking and relative sliding of two microtubules. Remarkably, this domain enhances kinesin-5's microtubule binding without substantially reducing motor activity. Our?results suggest that tetramerization of kinesin-5's low-processivity motor domains is not sufficient for microtubule sliding because the motor domains alone are unlikely to?maintain persistent microtubule crosslinks. Rather, kinesin-5 utilizes nonmotor microtubule binding sites to tune its microtubule attachment dynamics, enabling it to efficiently align and sort microtubules during metaphase spindle assembly and function.  相似文献   

15.
The emerging view of smooth/nonmuscle myosin regulation suggests that the attainment of the completely inhibited state requires numerous weak interactions between components of the two heads and the myosin rod. To further examine the nature of the structural requirements for regulation, we engineered smooth muscle heavy meromyosin molecules that contained one complete head and truncations of the second head. These truncations eliminated the motor domain but retained two, one, or no light chains. All constructs contained 37 heptads of rod sequence. None of the truncated constructs displayed complete regulation of both ATPase and motility, reinforcing the idea that interactions between motor domains are necessary for complete regulation. Surprisingly, the rate of ADP release was slowed by regulatory light chain dephosphorylation of the truncated construct that contained all four light chains and one motor domain. These data suggest that there is a second step (ADP release) in the smooth muscle myosin-actin-activated ATPase cycle that is modulated by regulatory light chain phosphorylation. This may be part of the mechanism underlying "latch" in smooth muscle.  相似文献   

16.
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility.  相似文献   

17.
Eg5 is a homotetrameric kinesin-5 motor protein that generates outward force on the overlapping, antiparallel microtubules (MTs) of the mitotic spindle. Upon binding an MT, an Eg5 dimer releases one ADP molecule, undergoes a slow (∼0.5 s−1) isomerization, and finally releases a second ADP, adopting a tightly MT-bound, nucleotide-free (APO) conformation. This conformation precedes ATP binding and stepping. Here, we use mutagenesis, steady-state and pre-steady-state kinetics, motility assays, and electron paramagnetic resonance spectroscopy to examine Eg5 monomers and dimers as they bind MTs and initiate stepping. We demonstrate that a critical element of Eg5, loop 5 (L5), accelerates ADP release during the initial MT-binding event. Furthermore, our electron paramagnetic resonance data show that L5 mediates the slow isomerization by preventing Eg5 dimer heads from binding the MT until they release ADP. Finally, we find that Eg5 having a seven-residue deletion within L5 can still hydrolyze ATP and move along MTs, suggesting that L5 is not required to accelerate subsequent steps of the motor along the MT. Taken together, these properties of L5 explain the kinetic effects of L5-directed inhibition on Eg5 activity and may direct further interventions targeting Eg5 activity.  相似文献   

18.
Adaptation of molecular structure to the ligand chemistry and interaction with the cytoskeletal filament are key to understanding the mechanochemistry of molecular motors. Despite the striking structural similarity with kinesin-1, which moves towards plus-end, Ncd motors exhibit minus-end directionality on microtubules (MTs). Here, by employing a structure-based model of protein folding, we show that a simple repositioning of the neck-helix makes the dynamics of Ncd non-processive and minus-end directed as opposed to kinesin-1. Our computational model shows that Ncd in solution can have both symmetric and asymmetric conformations with disparate ADP binding affinity, also revealing that there is a strong correlation between distortion of motor head and decrease in ADP binding affinity in the asymmetric state. The nucleotide (NT) free-ADP (φ-ADP) state bound to MTs favors the symmetric conformation whose coiled-coil stalk points to the plus-end. Upon ATP binding, an enhanced flexibility near the head-neck junction region, which we have identified as the important structural element for directional motility, leads to reorienting the coiled-coil stalk towards the minus-end by stabilizing the asymmetric conformation. The minus-end directionality of the Ncd motor is a remarkable example that demonstrates how motor proteins in the kinesin superfamily diversify their functions by simply rearranging the structural elements peripheral to the catalytic motor head domain.  相似文献   

19.
Cytoplasmic dynein is a force-transducing ATPase that powers the movement of cellular cargoes along microtubules. Two identical heavy chain polypeptides (> 500 kDa) of the cytoplasmic dynein complex contain motor domains that possess the ATPase and microtubule-binding activities required for force production [1]. It is of great interest to determine whether both heavy chains (DHCs) in the dynein complex are required for progression of the mechanochemical cycle and motility, as observed for other dimeric motors. We have used transgenic constructs to investigate cooperative interactions between the two motor domains of the Drosophila cytoplasmic dynein complex. We show that 138 kDa and 180 kDa amino-terminal fragments of DHC can assemble with full-length DHC to form heterodimeric complexes containing only a single motor domain. The single-headed dynein complexes can bind and hydrolyze ATP, yet do not show the ATP-induced detachment from microtubules that is characteristic of wild-type homodimeric dynein. These results suggest that cooperative interactions between the monomeric units of the dimer are required for efficient ATP-induced detachment of dynein and unidirectional movement along the microtubule.  相似文献   

20.
Transport of proteins and lipids between intracellular compartments is fundamental to the organization and function of eukaryotic cells. The efficiency of this process is greatly enhanced through coupling of membranes to microtubules. This serves two functions, organelle positioning and vesicular transport. In this study, we show that in addition to the well-known role for the minus-end motor dynein in endoplasmic reticulum (ER)-to-Golgi transport, the plus-end-directed motor kinesin-1 is involved in positioning coat protein II-coated ER exit sites (ERES) in cells as well as the formation of transport carriers and their movement to the Golgi. Using two-dimensional Gaussian fitting to determine their location at high spatial resolution, we show that ERES undergo short-range bidirectional movements. Bidirectionality depends on both kinesin-1 and dynein. Suppression of kinesin-1 (KIF5B) also inhibits ER-to-Golgi transport and affects the morphology of ER-to-Golgi transport carriers. Furthermore, we show that suppression of dynein heavy chain expression increases the range of movement of ERES, suggesting that dynein might anchor ERES, or the ER itself, to microtubules. These data implicate kinesin-1 in the spatial organization of the ER/Golgi interface as well as in traffic outside the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号