首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the recent years, the exploration of bioactive phytochemicals as natural feed additives has been of great interest among nutritionists and rumen microbiologists to modify the rumen fermentation favorably such as defaunation, inhibition of methanogenesis, improvement in protein metabolism, and increasing conjugated linoleic acid content in ruminant derived foods. Many phytochemicals such as saponins, essential oils, tannins and flavonoids from a wide range of plants have been identified, which have potential values for rumen manipulation and enhancing animal productivity as alternatives to chemical feed additives. However, their effectiveness in ruminant production has not been proved to be consistent and conclusive. This review discusses the effects of phytochemicals such as saponins, tannins and essential oils on the rumen microbial populations, i.e., bacteria, protozoa, fungi and archaea with highlighting molecular diversity of microbial community in the rumen. There are contrasting reports of the effects of these phytoadditives on the rumen fermentation and rumen microbes probably depending upon the interactions among the chemical structures and levels of phytochemicals used, nutrient composition of diets and microbial components in the rumen. The study of chemical structure–activity relationships is required to exploit the phytochemicals for obtaining target responses without adversely affecting beneficial microbial populations. A greater understanding of the modulatory effects of phytochemicals on the rumen microbial populations together with fermentation will allow a better management of the rumen ecosystem and a practical application of this feed additive technology in livestock production.  相似文献   

2.
This paper analyses the research progress in the use of molecular techniques based on ribosomal RNA and DNA (rRNA/rDNA) for rumen microbial ecosystem since first literature by Stahl et al. (1988). Because rumen microbial populations could be under-estimated by adopting the traditional techniques such as roll-tube technique or most-probable-number estimates, modern molecular techniques based on 16S/18S rRNA/rDNA can be used to more accurately provide molecular characterization, microbe populations and classification scheme than traditional methods. Phylogenetic-group-specific probes can be used to hybridize samples for detecting and quantifying of rumen microbes. But, competitive-PCR and real-time PCR can more sensitively quantify rumen microbes than hybridization. Molecular fingerprinting techniques including both denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and restriction fragment length polymorphisms (RFLP) can used to explore diversity of bacteria, protozoa and fungi in the rumen ecosystem. By constructing clone libraries of 16S/18S rRNA/rDNA of rumen microbes, more new microbes can be discovered and identified. For fungi, internal transcribed spacers (ITS) of fungi are better than 18S rRNA/rDNA for discriminating operational taxonomic units. In conclusion, 16S/18S rRNA/rDNA procedures have been used with success in rumen microbes and are quickly gaining acceptance for studying rumen microbial ecosystem, and will become useful methods for rumen ecology research. However, molecular techniques based on 16S/18S rRNA/rDNA don't preclude classical and traditional microbiological techniques. It should used together to acquire accurate and satisfactory results.  相似文献   

3.
目的建立提取高质量的瘤胃微生物DNA的方法,为采用免培养技术研究山羊瘤胃微生物奠定基础。方法采集山羊瘤胃内容物,用SDS高盐法提取微生物总DNA,以通用引物扩增细菌和古细菌的16SrDNA。结果提取到的瘤胃微生物总DNA片段大于23kb,PCR能够扩增出细菌和古细菌的16SrDNA片段。结论用该提取方法得到的山羊瘤胃微生物总DNA能够满足后续实验的需要。  相似文献   

4.
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.  相似文献   

5.
现代分子生物学技术在瘤胃微生态系统研究中的应用   总被引:4,自引:0,他引:4  
瘤胃中栖息着大量的微生物,由于这些微生物组成复杂且有些细菌在体外无法培养,目前对这些微生物的了解仍然很少。现代分子生物学技术的发展为研究瘤胃微生物提供了有效的方法,利用核酸探针、基因序列分析、遗传指纹技术、全细胞杂交和实时定量PCR等技术可以对瘤胃微生物的分类及进化关系、区系结构图、重要酶的表达以及目的微生物的准确定量进行更为深入和透彻的研究。发展和利用这些技术不仅可以研究微生物之间的关系以及微生物与饲料颗粒之间时间与空间的关系,还能直接在细菌自然生长的环境中对其各种特征进行研究。  相似文献   

6.
Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants.  相似文献   

7.
A survey is given of research results on ruminant lipid digestion obtained at the authors’ laboratory. Results are presented in terms of lipid changes occurring in the rumen and in terms of effects on nature, extent and site of digestion.

The rumen can be adapted to an extremely high capacity for triglyceride lipolysis, preferentially releasing polyunsaturated fatty acids that are then further hydrogenated with accumulation of oleic acid isomers in vitro only. Evidence was obtained for both microbial incorporation and synthesis of polyunsaturated acids. In vitro lipolysis is inhibited by pH values below 6.3 and by ionophores. Free fatty acids inhibit methanogenesis with associated increases in propionate production and decreases in acetate and butyrate productions; the latter being related to their defaunating effect. Both in the faunated and defaunated rumen, free fatty acids decrease fibre digestion, which is shifted to the hindgut, at least in sheep. Defaunation increases rumen microbial growth efficiency and may result in a higher duodenal flow of both feed and microbial protein, provided these increases are not overcome by a decreased apparent rumen OM digestibility. Considerable between animal variability exists for these effects, associated with variable effects on rumen particle and liquid volumes and outflow rates.  相似文献   

8.
Effect of monensin on rumen metabolism in vitro.   总被引:23,自引:16,他引:7       下载免费PDF全文
The effect of Monensin (Rumensin, Eli Lilly & Co.) in incubations with mixed rumen microorganisms metabolizing carbohydrate or protein substrates was investigated. Monensin partly inhibited methanogenesis and increased propionate production, although the effect was not always statistically significant. Incubations with substrates specific for methane bacteria suggest that inhibition of methanogenesis by Monensin was not due to a specific toxic action on the methanogenic flora, but rather to an inhibition of hydrogen production from formate. Total and net microbial growth were considerably decreased by addition of Monensin, although the amount of substrate fermented was not altered, resulting in lowered values of microbial growth efficiency. In incubations with casein, Monensin lowered protein degradation in line with a lowered ammonia production, whereas a slight accumulation of alpha-amino nitrogen was observed. The results suggest that besides an influence of Monensin on the rumen carbohydrate fermentation pattern, another reason for the beneficial effects observed in vivo might be decreased food protein degradation in the rumen, altering the final site of protein digestion in the animal. Also, the possibility of a decrease in rumen microbial growth efficiency has to be considered when using Monensin as a food additive.  相似文献   

9.
KM Singh  SJ Jakhesara  PG Koringa  DN Rank  CG Joshi 《Gene》2012,507(2):146-151
A major research goal in rumen microbial ecology is to understand the relationship between community composition and its function, particularly involved in fermentation process is of a potential interest. The buffalo rumen microbiota impacts human food safety as well as animal health. Although the bacteria of bovine rumen have been well characterized, techniques have been lacking to correlate total community structure with gene function. We applied 454 next generations sequencing technology to characterize general microbial diversity present in buffalo rumen metagenome and also identified the repertoire of microbial genes present, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that over six percent (6.44%) of the sequences from our buffalo rumen pool sample could be categorized as virulence genes and genes associated with resistance to antibiotic and toxic compounds (RATC), which is a higher proportion of virulence genes reported from metagenome samples of chicken cecum (5.39%), cow rumen (4.43%) and Sargasso sea (2.95%). However, it was lower than the proportion found in cow milk (11.33%) cattle faeces (8.4%), Antarctic marine derived lake (8.45%), human fecal (7.7%) and farm soil (7.79%). The dynamic nature of metagenomic data, together with the large number of RATC classes observed in samples from widely different ecologies indicates that metagenomic data can be used to track potential targets and relative amounts of antibiotic resistance genes in individual animals. In addition, these data can be also used to generate antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.  相似文献   

10.
The use of enzymatic techniques to characterize rumen metabolism was investigated. Assays were developed to estimate the activities of 14 enzymes in cell-free extracts of microorganisms collected from rumen contents of cows fed two diets, selected to produce widely different proportions of fermentation end products. The results reflected the differences between the two diets in metabolic potential, fermentation patterns, and microbial populations. The differences between the diets in the relative activities of succinic dehydrogenase and fumaric reductase, for example, indicated a shift in the microbial population favoring organisms of the Viellonella alcalescens type on the concentrate diet. The data presented indicate that, if employed carefully, enzymatic criteria can be utilized effectively in studies of rumen metabolism.  相似文献   

11.
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.  相似文献   

12.
The temporal sequence of microbial establishment in the rumen of the neonatal ruminant has important ecological and pathophysiological implications. In this study, we characterized the rumen microbiota of pre-ruminant calves fed milk replacer using two approaches, pyrosequencing of hypervariable V3-V5 regions of the 16S rRNA gene and whole-genome shotgun approach. Fifteen bacterial phyla were identified in the microbiota of pre-ruminant calves. Bacteroidetes was the predominant phylum in the rumen microbiota of 42-day-old calves, representing 74.8% of the 16S sequences, followed by Firmicutes (12.0%), Proteobacteria (10.4%), Verrucomicrobia (1.2%) and Synergistetes (1.1%). However, the phylum-level composition of 14-day-old calves was distinctly different. A total of 170 bacterial genera were identified while the core microbiome of pre-ruminant calves included 45 genera. Rumen development seemingly had a significant impact on microbial diversity. The dazzling functional diversity of the rumen microbiota was reflected by identification of 8298 Pfam and 3670 COG protein families. The rumen microbiota of pre-ruminant calves displayed a considerable compositional heterogeneity during early development. This is evidenced by a profound difference in rumen microbial composition between the two age groups. However, all functional classes between the two age groups had a remarkably similar assignment, suggesting that rumen microbial communities of pre-ruminant calves maintained a stable function and metabolic potentials while their phylogenetic composition fluctuated greatly. The presence of all major types of rumen microorganisms suggests that the rumen of pre-ruminant calves may not be rudimentary. Our results provide insight into rumen microbiota dynamics and will facilitate efforts in formulating optimal early-weaning strategies.  相似文献   

13.
AIMS: To determine the effect of condensed tannins in Calliandra calothyrsus (calliandra) on rumen microbial function. METHODS AND RESULTS: Microbial populations, ruminal protein synthesis and fermentation end-products were measured in sheep fed roughage hay supplemented with calliandra (30%), with and without inclusions of polyethylene glycol (PEG) to counteract the effect of tannin. Molecular and conventional enumeration techniques were used to quantify rumen bacteria, fungi and protozoa, and protein synthesis was predicted from estimates of urinary purine excretion. The total number of cellulolytic bacteria, including populations of Fibrobacter succinogenes and Ruminococcus spp., was significantly lower in sheep supplemented with calliandra and these populations increased when animals were treated with PEG. By contrast, protozoa and fungi and the microbial group containing Bacteroides-Porphyromonas-Prevotella bacteria appeared to be less affected. The efficiency of microbial protein synthesis in the rumen was not altered significantly. CONCLUSION: Calliandra caused significant shifts in rumen microbial populations without changing the efficiency of protein synthesis. SIGNIFICANCE AND IMPACT OF THE STUDY: The effect of calliandra tannins on rumen digestion may result more from complexing with nutrients than direct inhibition of micro-organisms.  相似文献   

14.
The cattle rumen has a diverse microbial ecosystem that is essential for the host to digest plant material. Extremes in body weight (BW) gain in mice and humans have been associated with different intestinal microbial populations. The objective of this study was to characterize the microbiome of the cattle rumen among steers differing in feed efficiency. Two contemporary groups of steers (n=148 and n=197) were fed a ration (dry matter basis) of 57.35% dry-rolled corn, 30% wet distillers grain with solubles, 8% alfalfa hay, 4.25% supplement, and 0.4% urea for 63 days. Individual feed intake (FI) and BW gain were determined. Within contemporary group, the four steers within each Cartesian quadrant were sampled (n=16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the harvested bovine rumen fluid samples using next-generation sequencing technology. No significant changes in diversity or richness were indicated, and UniFrac principal coordinate analysis did not show any separation of microbial communities within the rumen. However, the abundances of relative microbial populations and operational taxonomic units did reveal significant differences with reference to feed efficiency groups. Bacteroidetes and Firmicutes were the dominant phyla in all ruminal groups, with significant population shifts in relevant ruminal taxa, including phyla Firmicutes and Lentisphaerae, as well as genera Succiniclasticum, Lactobacillus, Ruminococcus, and Prevotella. This study suggests the involvement of the rumen microbiome as a component influencing the efficiency of weight gain at the 16S level, which can be utilized to better understand variations in microbial ecology as well as host factors that will improve feed efficiency.  相似文献   

15.
The end-products of dietary carbohydrate fermentation catalysed by rumen microflora can serve as the primary source of energy for ruminants. However, ruminants provided with continuous carbohydrate-containing feed can develop a metabolic disorder called “acidosis”. We have evaluated the fermentation pattern of both soluble monomeric and non-soluble polymeric carbohydrates in the rumen in in vitro fermentation trials. We found that acidosis could occur within 6 h of incubation in the rumen culture fermenting sugars and starch. The formation of lactic acid and acetic acid, either alone or in mixture with ethanol, accounted for high build-up of acid in the rumen. Acidosis resulted even when only 20% of a normal daily feed load for all soluble and non-soluble carbohydrates was provided. DNA-based microbial analysis revealed that Prevotella was the dominant microbial species present in the rumen fluid.  相似文献   

16.
Microbial transformations in the rumen ecosystem have a major impact on our ability to meet the challenge of reducing the environmental footprint of ruminant livestock agriculture, as well as enhancing product quality. Current understanding of the rumen microbial ecosystem is limited, and affects our ability to manipulate rumen output. The view of ruminal fermentation as the sum of activities of the dominant rumen microbiota is no longer adequate, with a more holistic approach required. This paper reviews rumen functionality in the context of the microbiota of the rumen ecosystem, addressing ruminal fermentation as the product of an ecosystem while highlighting the consequences of this for ruminant agriculture. Microbial diversity in the rumen ecosystem enhances the resistance of the network of metabolic pathways present, as well as increasing the potential number of new pathways available. The resulting stability of rumen function is further promoted by the existence of rumen microbiota within biofilms. These protected, structured communities offer potential advantages, but very little is currently known about how ruminal microorganisms interact on feed-surfaces and how these communities develop. The temporal and spatial development of biofilms is strongly linked to the availability of dietary nutrients, the dynamics of which must also be given consideration, particularly in fresh-forage-based production systems. Nutrient dynamics, however, impact not only on pathway inputs but also the turnover and output of the whole ecosystem. Knowledge of the optimal balance of metabolic processes and the corresponding microbial taxa required to provide a stable, balanced ecosystem will enable a more holistic understanding of the rumen. Future studies should aim to identify key ecosystem processes and components within the rumen, including microbial taxa, metabolites and plant-based traits amenable to breeding-based modification. As well as gaining valuable insights into the biology of the rumen ecosystem, this will deliver realistic and appropriate novel targets for beneficial manipulation of rumen function.  相似文献   

17.
Based on repeatedly reported extensive pantothenic acid disappearance in the rumen, the present study is aimed at examining if pantothenic acid is used for a more efficient ruminal fermentation and microbial growth in an artificial rumen (Rusitec). Three substrates differing in roughage/concentrate ratio were incubated with and without the addition of Ca-D-pantothenate. Pantothenic acid was extensively degraded without notably influencing fermentation, microbial protein synthesis and the status of other B-vitamins such as riboflavin, vitamin B6 and niacin. Therefore, pantothenic acid supplementation cannot be expected to contribute to microbial benefit for the ruminant animal.  相似文献   

18.
Ruminants are unique among livestock due to their ability to efficiently convert plant cell wall carbohydrates into meat and milk. This ability is a result of the evolution of an essential symbiotic association with a complex microbial community in the rumen that includes vast numbers of bacteria, methanogenic archaea, anaerobic fungi and protozoa. These microbes produce a diverse array of enzymes that convert ingested feedstuffs into volatile fatty acids and microbial protein which are used by the animal for growth. Recent advances in high-throughput sequencing and bioinformatic analyses have helped to reveal how the composition of the rumen microbiome varies significantly during the development of the ruminant host, and with changes in diet. These sequencing efforts are also beginning to explain how shifts in the microbiome affect feed efficiency. In this review, we provide an overview of how meta-omics technologies have been applied to understanding the rumen microbiome, and the impact that diet has on the rumen microbial community.  相似文献   

19.
The feed and feces of a continuously fed sheep were analyzed for carbon, hydrogen, and nitrogen, with oxygen as the remainder. The daily feed-feces weight difference was used as the reactant in an equation representing the rumen fermentation. The measured products were the daily production of volatile fatty acids (VFA), CH(4), CO(2), and ammonia. The carbon unaccounted for was assumed to be in the microbial cell material produced in the rumen and absorbed before reaching the feces. The ratio of C to H, O, and N in bacteria was used to represent the elemental composition of the microbes formed in the rumen fermentation, completing the following equation:C(20.03)H(36.99)O(17.406)N(1.345) + 5.65 H(2)O --> C(12)H(24)O(10.1) + 0.83 CH(4) VFA + 2.76 CO(2) + 0.50 NH(3) + C(4.44)H(8.88)O(2.35)N(0.785) microbial cells absorbed With C arbitrarily balanced and O balanced by appropriate addition of water, any error is reflected in the H. The H recovery was 98.5%. The turnover rate constant for rumen liquid equilibrating with polyethylene glycol (PEG) was 2.27 per day. Direct counts and volume measurements of the individual types of bacteria and protozoa in the rumen were used to calculate the total microbial cell volume in the rumen, not equilibrating with it. The dry matter in the rumen (582 g) and the nitrogen content (12.05) of the microbes in the rumen were estimated, the latter constituting 85% of the measured N in the rumen. Calculations for rumen dry matter and nitrogen turning over at the PEG rate introduce big discrepancies with other parameters; a rumination pool must be postulated. Its size and composition are estimated. Arguments are presented to support the view that dry matter and some of the microbes, chiefly the protozoa, do not leave the rumen at the PEG rate. One experiment with the same sheep fed twice daily showed significantly less production of microbial cells than did the continuous (each 2 hr) feeding. Analysis of the microbial cell yield suggests that, on the basis of 11 mg of cells per adenosine triphosphate molecule, a maximum of six adenosine triphosphate molecules could have been formed from each molecule of hexose fermented.  相似文献   

20.
Rumen microorganisms play an important role in ruminant digestion and absorption of nutrients and have great potential applications in the field of rumen adjusting, food fermentation and biomass utilization etc. In order to investigate the composition of microorganisms in the rumen of camel (Camelus dromedarius), this study delves in the microbial diversity by culture-independent approach. It includes comparison of rumen samples investigated in the present study to other currently available metagenomes to reveal potential differences in rumen microbial systems. Pyrosequencing based metagenomics was applied to analyze phylogenetic and metabolic profiles by MG-RAST, a web based tool. Pyrosequencing of camel rumen sample yielded 8,979,755 nucleotides assembled to 41,905 sequence reads with an average read length of 214 nucleotides. Taxonomic analysis of metagenomic reads indicated Bacteroidetes (55.5 %), Firmicutes (22.7 %) and Proteobacteria (9.2 %) phyla as predominant camel rumen taxa. At a finer phylogenetic resolution, Bacteroides species dominated the camel rumen metagenome. Functional analysis revealed that clustering-based subsystem and carbohydrate metabolism were the most abundant SEED subsystem representing 17 and 13 % of camel metagenome, respectively. A high taxonomic and functional similarity of camel rumen was found with the cow metagenome which is not surprising given the fact that both are mammalian herbivores with similar digestive tract structures and functions. Combined pyrosequencing approach and subsystems-based annotations available in the SEED database allowed us access to understand the metabolic potential of these microbiomes. Altogether, these data suggest that agricultural and animal husbandry practices can impose significant selective pressures on the rumen microbiota regardless of rumen type. The present study provides a baseline for understanding the complexity of camel rumen microbial ecology while also highlighting striking similarities and differences when compared to other animal gastrointestinal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号