首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the structure and expression of three S-alleles of Petunia hybrida in self-incompatible varieties and in a pseudo-self-compatible line in which the self-incompatibility response is defective. Comparison of derived amino acid sequences from different gametophytic S-alleles revealed a pattern of sequence conservation and variability that was highly nonrandom. In self-incompatible varieties, petunia S-locus mRNA accumulates preferentially in styles during the transition from bud self-compatibility to self-incompatibility. S-Allele sequences homologous to the cloned S1 allele were present in a pseudo-self-compatible variety, and were expressed at levels indistinguishable from those observed in a self-incompatible line homozygous for the S1 allele. Taken together, our data indicate that (1) limited sequence differences may confer allelic specificity, (2) S-locus mRNAs accumulate in a precise organ-specific pattern during floral development, and (3) the ability to inhibit the growth of incompatible pollen tubes appears to require a threshold accumulation of the stylar gene product, along with the participation of as yet undefined pollen gene products.  相似文献   

2.
In the Rosaceae, Scrophulariaceae, and Solanaceae, the stylar product of the self-incompatibility (S-) locus is an RNase. Using protein sequence data from 34 RNase genes (three fungal RNases, seven angiosperm non-S RNases, 11 Rosaceae S-alleles, three Scrophulariaceae S-alleles, and ten Solanaceae S-alleles) we reconstructed the genealogy of angiosperm RNases using the neighbor joining method and two distance metrics in order to assess whether use of S-RNases in these families is the result of homology or convergence. Four monophyletic groups of angiosperm RNases were found: the S-RNases of each of the three families and a group comprising most of the angiosperm non-S RNases. The S-RNases of the Scrophulariaceae and Solanaceae were found to be homologous but strong inference concerning the homology or convergence of S-RNases from the Rosaceae with those of the other families was not possible because of uncertain placement of both the root and two of the angiosperm non-S RNases. The most recent common ancestor of the Rosaceae and both the Scrophulariaceae and Solanaceae is shared by ~80% of dicot families. If the -RNases of the Rosaceae are homologous to those of the Scrophulariaceae and Solanaceae, then many other dicot families might be expected to share RNases as the mechanism of gametophytic self-incompatibility.  相似文献   

3.
Vieira CP  Charlesworth D 《Heredity》2002,88(3):172-181
The self-incompatibility system of flowering plants is a classic example of extreme allelic polymorphism maintained by frequency-dependent selection. We used primers designed from three published Antirrhinum hispanicum S-allele sequences in PCR reactions with genomic DNA of plants sampled from natural populations of Antirrhinum and Misopates species. Not surprisingly, given the polymorphism of S-alleles, only a minority of individuals yielded PCR products of the expected size. These yielded 35 genomic sequences, of nine different sequence types of which eight are highly similar to the A. hispanicum S-allele sequences, and one to a very similar unpublished Antirrhinum S-like RNase sequence. The sequence types are well separated from the S-RNase sequences from Solanaceae and Rosaceae, and also from most known "S-like" RNase sequences (which encode proteins not involved in self-incompatibility). An association with incompatibility types has so far been established for only one of the putative S-alleles, but we describe evidence that the other sequences are also S-alleles. Variability in these sequences follows the pattern of conserved and hypervariable regions seen in other S-RNases, but no regions have higher replacement than silent diversity, unlike the results in some other species.  相似文献   

4.
Almond (Prunus dulcis) displays gametophytic self-incompatibility. In the work reported here, we cloned two novel S-RNase genes from almond cultivar Ferragnès (genotype S1S3) using PCR. The S1-RNase gene has the same coding region as the Sb gene cloned from almond cultivated in the USA; however, their introns are different in sequence. S1 was cloned and sequenced from six different cultivars originating in Europe. The full-length of the S3-RNase gene was cloned using two primers corresponding to the start and stop codons contexts. Two introns are present in the S3 gene, unique among the S-RNase genes. Sequence-specific PCR was performed to confirm that the two cloned genes co-segregate with the S-locus using progenies of a controlled cross between Tuono (S1Sf) and Ferragnès (S1S3). Based on the structural differences of S- and S-like RNase genes, we discuss the evolutionary relationship between the two groups of RNase genes. Received: 18 February 2001 / Accepted: 26 June 2001  相似文献   

5.
6.
Recently, the self-incompatibility (S-) genotypes of 56 apple cultivars were examined by protein analysis, which led to the identification by Boskovic and Tobutt of 14 putative ’new’ S-alleles, S12 to S25. This paper reports a re-examination of the S-genotypes of some of these cultivars through S-allele ’specific’ PCR and sequence analysis. The results obtained by this analysis indicated that the number of S-alleles that are present in apple is probably smaller than the number proposed by Boskovic and Tobutt. The existence of three ’new’ S-alleles (S20, S22 and S24) was confirmed. The existence of two other putative ’new’ S-alleles (S23 and S25) was, however, contradicted. The coding sequences of the S-alleles that correspond to the S10 and the S25 ribonuclease bands as well as those corresponding to the S22 and the S23 ribonuclease bands were shown to be identical in sequence. Interestingly, the S-allele corresponding to the S22 and the S23 ribonuclease bands shared a high sequence identity (99% identity) with S27, which was previously cloned and sequenced from Baskatong, but which was not included in the analysis conducted by Boskovic and Tobutt. Both S-alleles only differ in point mutations, which are not translated into differences in amino-acid sequence. To our knowledge, this is the first report of two S-alleles that differ at the nucleotide level but still encode for identical S-RNases. The implications of these observations for determining the S-genotypes of plants by PCR analysis or protein analysis are discussed. Received: 10 January 2001 / Accepted: 19 January 2001  相似文献   

7.
Origin of allelic diversity in antirrhinum S locus RNases.   总被引:17,自引:0,他引:17       下载免费PDF全文
In many plant species, self-incompatibility (SI) is genetically controlled by a single multiallelic S locus. Previous analysis of S alleles in the Solanaceae, in which S locus ribonucleases (S RNases) are responsible for stylar expression of SI, has demonstrated that allelic diversity predated speciation within this family. To understand how allelic diversity has evolved, we investigated the molecular basis of gametophytic SI in Antirrhinum, a member of the Scrophulariaceae, which is closely related to the Solanaceae. We have characterized three Antirrhinum cDNAs encoding polypeptides homologous to S RNases and shown that they are encoded by genes at the S locus. RNA in situ hybridization revealed that the Antirrhinum S RNase are primarily expressed in the stylar transmitting tissue. This expression is consistent with their proposed role in arresting the growth of self-pollen tubes. S alleles from the Scrophulariaceae form a separate group from those of the Solanaceae, indicating that new S alleles have been generated since these families separated (approximately 40 million years). We propose that the recruitment of an ancestral RNase gene into SI occurred during an early stage of angiosperm evolution and that, since that time, new alleles subsequently have arisen at a low rate.  相似文献   

8.
A genomic clone of the S11 allele from the self-incompatibility locus (S locus) in Solanum chacoense Bitt. has been isolated by cross-hybridization to the S. chacoense S13 allele and sequenced. The sequence of the S11 allele contains all the features expected for S genes of the Solanaceae, and S11 expression, as assessed by northern blots and RNA-PCR, was similar to that of other S. chacoense S alleles. The S11 protein sequence shares 95% identity with the phenotypically distinct S13 protein of S. chacoense and is the gametophytic S allele with the highest similarity to an existing allele so far discovered. Only 10 amino acid changes differentiate the mature proteins from these two alleles, which sets a new lower limit to the number of changes that can produce an altered S allele specificity. The amino acid substitutions are not clustered, suggesting that an accumulation of random point mutations can generate S allele diversity. The S11 intron is unusual in that it could be translated in frame with the coding sequence, thus suggesting an additional mechanism for the generation of new S alleles.  相似文献   

9.
This review summarises current understanding of the evolution of self-incompatibility inferred from DNA sequence analysis. Self-incompatibility in many plant families is controlled by a single, highly polymorphicS-locus which, in the Solanaceae, encodes an allelic series of stylar ribonucleases known as the S-RNases. PCR approaches are a convenient way to examine the diversity of S-RNase sequences within and between wild populations of a self-incompatible species and provide a unique view into the species' current and historic population structure. Similar molecular appoaches have also been used to show that S-RNases are involved in self-incompatibility in families other than the Solanaceae. A model for the evolution of ribonuclease-based self-incompatibility systems is discussed.  相似文献   

10.
We surveyed ribonuclease activity in the styles of Nicotiana spp. and found little or no activity in self-compatible species and in a self-compatible accession of a self-incompatible species. All self-incompatible species had high levels of ribonuclease activity in their style. Interestingly, one self-compatible species, N. sylvestris, had a level of stylar ribonuclease activity comparable to that of some self-incompatible Nicotiana species. A ribonuclease with biochemical properties similar to those of the self-incompatibility (S-)RNases of N. alata was purified from N. sylvestris styles. The N-terminal sequence of this protein was used to confirm the identity of a cDNA corresponding to the stylar RNase. The amino acid sequence deduced from the cDNA was related to those of the S-RNases and included the five conserved regions characteristic of these proteins. It appears that the N. sylvestris RNase may have evolved from the S-RNases and is an example of a 'relic S-RNase'. A number of features distinguish the N. sylvestris RNase from the S-RNases, and the role these may have played in the presumed loss of the self-incompatibility response during the evolution of this species are discussed.  相似文献   

11.
Specific primers were designed according to the sequences of class Ⅰ and class Ⅱ SLG genes. The PCR products using these primers amplified from the cabbage (Brassica oleracea L.) gDNAs of Southwest China Agricultural University (SCAU) and Horticulture Research International (HRI), Wellesbourne, showed that those with class Ⅰ SLG genes were strong self-incompatibility (SI) lines and those with class Ⅱ were included both strong and weak SI lines. Thus the whole length of DNA fragment of class Ⅱ SLG gene may be the molecular marker for distinguishing SI lines from SC lines. Furthermore, RFLP analysis of the class  Ⅱ SLG genes from various S-alleles of cabbage was conducted by using 6 restriction endonucleases which recognize 4 bp DNA sequence and the results showed that the S-alleles from HRI as well as the weak SI lines from SCAU presented obvious different RFLP profiles which could be used for distinguishing S-alleles of cabbage.  相似文献   

12.
Stylar riboncleases (RNases) are associated with gametophytic self-incompatibility in two plant families, the Solanaceae and the Rosaceae. The self-incompatibility-associated RNases (S-RNases) of both the Solanaceae and the Rosaceae were recently reported to belong to the T2 RNase gene family, based on the presence of two well-conserved sequence motifs. Here, the cloning and characterization of S-RNase genes from two species of Rosaceae, apple (Malus × domestica) and Japanese pear (Pyrus serotina) is described and these sequences are compared with those of other T2-type RNases. The S-RNases of apple specifically accumulated in styles following maturation of the flower bud. Two cDNA clones for S-RNases from apple, and PCR clones encoding a further two apple S-RNases as well as two Japanese pear S-RNases were isolated and sequenced. The deduced amino acid sequences of the rosaceous S-RNases contained two conserved regions characteristic of the T2/S-type RNases. The sequences showed a high degree of diversity, with similarities ranging from 60.4% to 69.2%. Interestingly, some interspecific sequence similarities were higher than those within a species, possibly indicating that diversification of S-RNase alleles predated speciation in the Rosaceae. A phylogenetic tree of members of the T2/S-RNase superfamily in plants was obtained. The rosaceous S-RNases formed a new lineage in the tree that was distinct from those of the solanaceous S-RNases and the S-like RNases. The findings suggested that self-incompatibility mechanisms in Rosaceae and Solanaceae are similar but arose independently in the course of evolution.  相似文献   

13.
A molecular technique for the identification of S-alleles involved in self-incompatibility has been used to analyse the S-allele reference collection of Brassica oleracea. The reference collection contains nearly 50 different lines each with a different S-allele present in the homozygous state. The technique consists of amplifying by the polymerase chain reaction (PCR) sequences belonging to the S multigene sequence family using a single pair of conserved primers. PCR products are then analysed further by digestion with six restriction enzymes followed by gel electrophoresis of the digestion products. A simple method of estimating the band sizes of the digestion products is described. The S-locus-related sequences can be distinguished from S-locus glycoprotein and S-receptor kinase genes by the restriction patterns. Furthermore, with any one restriction enzyme, several alleles showed the same restriction pattern. Alleles could therefore be grouped together. With two exceptions, each member of the S-allele reference collection showed a unique set of restriction patterns. Investigation of the exceptions using pollen tube growth tests showed that these accessions represented duplications within the collection. This technique therefore provides a simple and useful method for identifying different S-alleles.  相似文献   

14.
A cDNA for an S-like RNase (RNase PD2) has been isolated from a pistil cDNA library of Prunus dulcis cv. Ferragnés. The cDNA encodes an acidic protein of 226 amino acid residues with a molecular weight of 25 kDa. A potential N-glycosylation site is present at the N-terminus in RNase PD2. A signal peptide of 23 amino acid residues and a transmembrane domain are predicted. The two active-site histidines present in enzymes of the T2/S RNase superfamily were detected in RNase PD2. Its amino acid sequence shows 71.2% similarity to RNS1 of Arabidopsis and RNase T2 of chickpea, respectively. Northern blotting and RT-PCR analyses indicate that PD2 is expressed predominantly in petals, pistils of open flowers and leaves of the almond tree. Analyses of shoots cultured in vitro suggested that the expression of RNase PD2 is associated with phosphate starvation. Southern analysis detected two sequences related to RNase PD2 in the P. dulcis genome. RFLP analysis showed that S-like RNase genes are polymorphic in different almond cultivars. The PD2 gene sequence was amplified by PCR and two introns were shown to interrupt the coding region. Based on sequence analysis, we have defined three classes of S-like RNase genes, with the PD2 RNase gene representing a distinct class. The significance of the structural divergence of S-like RNase genes is further discussed. Received: 24 January 2000 / Accepted: 17 March 2000  相似文献   

15.
Petunia inflata, a species with gametophytic self-incompatibility, has previously been found to contain a large number of ribonucleases in the pistil. The best characterized of the pistil ribonucleases are the products of the S alleles, the S proteins, which are thought to be involved in self-incompatibility interactions. Here we report the characterization of a gene encoding another pistil ribonuclease of P. inflata, RNase X2. Degenerate oligonucleotides, synthesized based on the amino-terminal sequence of RNase X2, were used as probes to isolate cDNA clones, one of which was in turn used as a probe to isolate genomic clones containing the gene for RNase X2, rnx2. The deduced amino acid sequence of RNase X2 shows 42% to 71% identity to the 20 solanaceous S proteins reported so far, with the highest degree of similarity being to S3 and S6 proteins of Nicotiana alata. The cDNA sequence predicts a leader peptide of 22 amino acids, suggesting that RNase X2, like S proteins, is an extracellular ribonuclease. Also, similar to the S gene, rnx2 is expressed only in the pistil, and contains a single intron comparable in size and identical in location to that of the S gene. However, rnx2 is not linked to the S locus, and, in contrast to the highly polymorphic S gene, it is monomorphic. The possible biological function of RNase X2 is discussed.  相似文献   

16.
Apple trees display gametophytic self-incompatibility which is controlled by a series of polymorphic S-alleles. To resolve the discrepancies in S-allele assignment that appeared in the literature, we have re-examined the identity of S-alleles known from domestic apple cultivars. Upon an alignment of S-allele nucleotide sequences, we designed allele-specific primer pairs to selectively amplify a single S-allele per reaction. Alternatively, highly similar S-alleles that were co-amplified with the same primer pair were discriminated through their distinct restriction digestion pattern. This is an extension of our previously developed allele-specific PCR amplification approach to reveal the S-genotypes in apple cultivars. Amplification parameters were optimised for the unique detection of the 15 apple S-alleles of which the nucleotide sequences are known. Both the old cultivars with a known S-genotype and a number of more common cultivars were assayed with this method. In most cases, our data coincided with those obtained through phenotypic and S-RNase analysis. However, three S-alleles were shown to relate to RNases that were previously proposed as being encoded by distinct S-alleles. For another S-allele the corresponding gene product has not been discriminated. Consequently, we propose the re-numbering of these four S-alleles. Furthermore, two alleles that were previously identified as S(27a) and S(27b) now received a distinct number, despite their identical S-specificity. To ease widespread future analysis of S-genotypes, we identified common cultivars that may function as a witness for bearing a particular S-allele. We discuss the assignment of new S-alleles which should help to avoid further confusion.  相似文献   

17.
A stylar S-RNase is associated with gametophytic self-incompatibility in the Rosaceae, Solanaceae, and Scrophulariaceae. This S-RNase is responsible for S-allele-specific recognition in the self-incompatible reaction, but how it functions in specific discrimination is not clear. Window analysis of the numbers of synonymous (dS) and non-synonymous (dN) substitutions in rosaceous S-RNases detected four regions with an excess of dN over dS in which positive selection may operate (PS regions). The topology of the secondary structure of the S-RNases predicted by the PHD method is very similar to that of fungal RNase Rh whose tertiary structure is known. When the sequences of S-RNases are aligned with the sequence of RNase Rh based on the predicted secondary structures, the four PS regions correspond to two surface sites on the tertiary structure of RNase Rh. These findings suggest that in S-RNases the PS regions also form two sites and are candidates for the recognition sites for S-allele-specific discrimination.  相似文献   

18.
Wild potato species have a gametophytic self-incompatibility system controlled by a single multiallelic S locus. In the style, the S-RNase gene codes for an allele-specific ribonuclease that is involved in the rejection of pollen that carries the same S haplotype. This gene has 5 conserved regions (C1-C5) and highly variable regions outside of these areas that play a role in S-RNase allele specificity. In this work, PCR-mediated amplification of genomic DNA from 2 Solanum chacoense accessions was performed using primers designed on the basis of the C1 and C4 conserved regions. By sequencing the PCR products, a new S-RNase allele (S16) was identified in 1 plant of the QBCM argentinian accession. Comparison of the partial sequence (from C2 to C3) of S16 RNase with those of 11 S-RNase genes of other Solanaceae species showed the highest and the lowest similarity scores within the same plant species (respectively, 71% with the S11 and S13 RNase and 35% with the S2 RNase). Differences at the nucleotide level between S16 and S11 RNase alleles are discussed.  相似文献   

19.
A cDNA encoding a stylar protein was cloned from flowers of self-incompatible wild tomato (Lycopersicon peruvianum). The corresponding gene was mapped to the S locus, which is responsible for self-incompatibility. The nucleotide sequence was determined for this allele, and compared to other S-related sequences in the Solanaceae. The S allele was used to probe DNA from 92 plants comprising 10 natural populations of Lycopersicon peruvianum. Hybridization was conducted under moderate and permissive stringencies in order to detect homologous sequences. Few alleles were detected, even under permissive conditions, underscoring the great sequence diversity at this locus. Those alleles that were detected are highly homologous. Sequences could not be detected in self-incompatible Nicotiana alata, self-compatible L. esculentum (cultivated tomato) or self-compatible L. hirsutum. However, hybridization to an individual of self-incompatible L. hirsutum revealed a closely related sequence that maps to the S locus in this reproductively isolated species. This supports the finding that S locus polymorphism predates speciation. The extraordinarily high degree of sequence diversity present in the gametophytic self-incompatibility system is discussed in the context of other highly divergent systems representing several kingdoms.  相似文献   

20.
 Many flowering plants contain stylar S-RNases that are involved in self-incompatibility and S-like RNases of which the biological function is uncertain. This paper reports the deduced amino acid sequence of an S-like RNase gene (PD1) from the self-incompatible plant Prunus dulcis (almond). The amino acid sequence of PD1, which was derived from cDNA and genomic DNA clones, showed 34–86% identity to acidic plant S-like RNases reported so far, with the highest degree of similarity being to an S-like RNase from Japanese pear (Pyrus pyrifolia). Based on RNA hybridisation experiments it appears that, like for many other S-like RNases, the expression of PD1 is not pistil-specific. Analysis of the genomic structure revealed the presence of three introns, of which one is similar in location to that of the related S-RNase gene from Solanaceae and Rosaceae. At least four bands hybridising to PD1 were found upon Southern hybridisation, suggesting the presence of a multigene family of S-like RNase genes in almond. The putative biological function of PD1 is discussed. Received: 22 November 1999 / Revision received: 18 February 2000 · Accepted: 13 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号