首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological activity of an ancient cultivated soil that has been in intense agricultural use since approximately the first half of the XVII century was studied. The potential biological activity of the buried horizon of the antient cultivated soil was higher than that of its modern horizon or that of the noncultivated soil of an adjacent territory occurring under similar lithological and geomorphological conditions. A decrease rate of oxidative processes (decreased rates of CO2 production and CH4 oxidation) and an increased rate of reductive processes (denitrification and nitrogen fixation) were found in the buried horizon. A high potential denitrification activity (with predominant formation of nitrous oxide) was found in the buried horizon; in the upper horizon, the end product was molecular nitrogen.  相似文献   

2.
Rusakov  A. V.  Novikov  V. V. 《Microbiology》2003,72(1):103-109
Biological activity in the urban modern and medieval soils of St. Petersburg was determined using soil samples taken from sections located at the historical center of this city nearby the Kazan Cathedral and the Twelve Colleges building (now the main building of St. Petersburg State University) and on the site where the Swedish fortress Nienshants formerly existed. The studied parameters of biological activity included the rate of microbial transformation of organic matter under aerobic and anaerobic conditions, the intensity of denitrification and nitrogen fixation, and the amount of microbial biomass. This investigation is the first attempt to comparatively study modern urban anthropogenically impacted soils and buried soils that had formed the soil cover of this region before St. Petersburg was founded. The major microbiological and physicochemical parameters of the soils were subjected to correlation analysis.  相似文献   

3.
Although the presence of nanoplastics in aquatic and terrestrial ecosystems has received increasing attention, little is known about its potential effect on ecosystem processes and functions. Here, we evaluated if differentially charged polystyrene (PS) nanoplastics (PS-NH2 and PS-SO3H) exhibit distinct influences on microbial community structure, nitrogen removal processes (denitrification and anammox), emissions of greenhouse gases (CO2, CH4, and N2O), and ecosystem multifunctionality in soils with and without earthworms through a 42-day microcosm experiment. Our results indicated that nanoplastics significantly altered soil microbial community structure and potential functions, with more pronounced effects for positively charged PS-NH2 than for negatively charged PS-SO3H. Ecologically relevant concentration (3 g kg−1) of nanoplastics inhibited both soil denitrification and anammox rates, while environmentally realistic concentration (0.3 g kg−1) of nanoplastics decreased the denitrification rate and enhanced the anammox rate. The soil N2O flux was always inhibited 6%–51% by both types of nanoplastics, whereas emissions of CO2 and CH4 were enhanced by nanoplastics in most cases. Significantly, although N2O emissions were decreased by nanoplastics, the global warming potential of total greenhouse gases was increased 21%–75% by nanoplastics in soils without earthworms. Moreover, ecosystem multifunctionality was increased 4%–12% by 0.3 g kg−1 of nanoplastics but decreased 4%–11% by 3 g kg−1 of nanoplastics. Our findings provide the only evidence to date that the rapid increase in nanoplastics is altering not only ecosystem structure and processes but also ecosystem multifunctionality, and it may increase the emission of CO2 and CH4 and their global warming potential to some extent.  相似文献   

4.
硝态氮异化还原机制及其主导因素研究进展   总被引:12,自引:0,他引:12  
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。  相似文献   

5.
Soil structures built by litter-feeding termites are one of the main soil translocation processes in dry tropical savanna. Runways (soil sheeting) made of soil particles cemented with salivary secretions covering the dead plant pieces collected on the ground surface represent the main soil structures. The aim of this study was to determine the impact of this soil engineering activity on the microbially-mediated N transformations (nitrification and denitrification) associated with termite sheeting. We investigated the hypothesis that the physicochemical and microbial properties of termite soil sheeting depend on (i) the termite species and (ii) the type of organic substrate consumed. Soil sheeting built by two of the main savanna species, Macrotermes subhyalinus and Odontotermes nilensis, were sampled on field plots treated with three different types of litter (Acacia leaves, millet straw, both whole and ground (< 500 µm), and cattle manure). The soils organic C, total N, inorganic N, microbial biomass, potential CO2 respiration, nitrification and denitrification were measured. For both termite species and all types of litter, the soil sheeting was enriched in organic C and inorganic N, resulting in an increase in soil respiration, whereas the microbial biomass was unchanged with respect to the reference soil. With the exception of the soil nitrification potential, the type of organic substrate did not significantly affect the properties of the soil sheeting measured. However, the nitrogen cycle was affected differently by the two termite species. In O. nilensis sheeting, the denitrification potential was reduced with respect to the reference soil, whereas the nitrification potential was inhibited in M. subhyalinus sheeting. The changes in the nitrogen cycle processes resulted in an increase in NH4+ and NO3– in the termite soil sheeting, increasing the availability of nitrogen to plants. This study reinforces the importance of termites as a keystone savanna group whose building activities have an effect on tropical soil mineralization.  相似文献   

6.
Denitrification losses from soils under barley and grass ley crops were simulated. The model, which includes the major processes determining inputs, transformations and outputs of nitrogen in arable soils, represents a scale compatible with information generally available in agricultural field research. The denitrification part of the model includes a field potential denitrification rate and functions for the effect of soil aeration status, soil temperature and soil nitrate content. Easily metabolizable organic matter is assumed not to limit denitrification. Simulated values were compared with denitrification measurements made during two growing seasons in the barley and grass ley treatments of a field experiment in central Sweden.Calibration revealed that the optimal parameter values describing the effect of soil aeration on denitrification rates were similar for both treatments. The response function derived agreed well with two data sets found in the literature. The potential denitrification rate constant, derived in the simulations, was higher for grass ley than for barley, which was consistent with the differences in overall rates of carbon and nitrogen turnover found between treatments.The simulated mean denitrification rates for the two seasons were within 20% of the mean of the measured values. However, simulated denitrification showed less temporal variability and a less skewed frequency distribution than measured denitrification. Some of the measured denitrification events not explained by the model could have been due to the stimulating effects of soil drying/wetting and freezing/thawing on microbial activity.  相似文献   

7.
水分非饱和的森林土壤是大气甲烷(CH4)汇和氧化亚氮(N2O)源,大气氮沉降增加是导致森林土壤碳氮气体通量不平衡的主要原因之一。土壤CH4吸收和N2O排放之间存在协同、消长和随机等复杂的耦合关系,关于氮素对两者产生过程的调节作用以及内在的微生物学机制至今尚不完全清楚。综述了森林土壤CH4吸收和N2O排放耦合过程的理论基础,土壤CH4和N2O的产生与消耗过程对增氮响应的生物化学和微生物学机制,指出各研究领域的不足和未来的研究重点。总体而言,低氮倾向于促进贫氮森林土壤CH4吸收,不改变土壤N2O的排放,而高氮显著抑制富氮森林土壤CH4吸收以及促进N2O排放。外源性氮素通过竞争抑制和毒性抑制来调控森林土壤CH4的吸收,而通过促进土壤硝化和反硝化过程来增加N2O的排放。然而,由于全球氮沉降控制试验网络分布的不均匀性、土壤碳氮通量产生过程的复杂性以及微生物分子生态学方法的局限性等原因,导致氮素对森林土壤碳氮通量的调控机制研究一直进展缓慢,未能将微生物功能群落动态与土壤碳氮通量真正地联系起来。未来研究应该从流域、生态系统和分子尺度上深入探讨土壤碳氮通量耦合作用的环境驱动机制,氮素对土壤CH4氧化和N2O产生过程的调控作用,以及增氮对土壤甲烷氧化菌和N2O产生菌活性和群落组成的影响。  相似文献   

8.
The efforts to explain the ‘missing sink’ for anthropogenic carbon dioxide (CO2) have included in recent years the role of nitrogen as an important constraint for biospheric carbon fluxes. We used the Nitrogen Carbon Interaction Model (NCIM) to investigate patterns of carbon and nitrogen storage in different compartments of the terrestrial biosphere as a consequence of a rising atmospheric CO2 concentration, in combination with varying levels of nitrogen availability. This model has separate but closely coupled carbon and nitrogen cycles with a focus on soil processes and soil–plant interactions, including an active compartment of soil microorganisms decomposing litter residues and competing with plants for available nitrogen. Biological nitrogen fixation is represented as a function of vegetation nitrogen demand. The model was validated against several global datasets of soil and vegetation carbon and nitrogen pools. Five model experiments were carried out for the modeling periods 1860–2002 and 2002–2100. In these experiments we varied the nitrogen availability using different combinations of biological nitrogen fixation, denitrification, leaching of soluble nitrogen compounds with constant or rising atmospheric CO2 concentrations. Oversupply with nitrogen, in an experiment with nitrogen fixation, but no nitrogen losses, together with constant atmospheric CO2, led to some carbon sequestration in organismic pools, which was nearly compensated by losses of C from soil organic carbon pools. Rising atmospheric CO2 always led to carbon sequestration in the biosphere. Considering an open nitrogen cycle including dynamic nitrogen fixation, and nitrogen losses from denitrification and leaching, the carbon sequestration in the biosphere is of a magnitude comparable to current observation based estimates of the ‘missing sink.’ A fertilization feedback between the carbon and nitrogen cycles occurred in this experiment, which was much stronger than the sum of separate influences of high nitrogen supply and rising atmospheric CO2. The demand‐driven biological nitrogen fixation was mainly responsible for this result. For the modeling period 2002–2100, NCIM predicts continued carbon sequestration in the low range of previously published estimates, combined with a plausible rate of CO2‐driven biological nitrogen fixation and substantial redistribution of nitrogen from soil to plant pools.  相似文献   

9.
To evaluate the effect of cultivation, nitrogen fertilizer, and set aside on CH4 uptake after drained marshland was converted into agricultural fields, CH4 fluxes and CH4 concentrations in soil gas were in situ measured in a drained marsh soil, a set‐aside cultivated soil, and cultivated soils in Sanjiang Plain of Northeast China in August 2001. Over the measuring period, the highest CH4 uptake rate was 120.7±6.2 μg CH4 m?2 h?1 in the drained marsh soil and the lowest was 29.5±4.9 μg CH4 m?2 h?1 in the set‐aside cultivated soil, showing that there was no significant recovery of CH4 uptake ability 5 years after cultivation activity was stopped. CH4 uptake rates were significantly less in the cultivated soils than in the drained marsh soil by 30.1–74.6%, which resulted mainly from cultivation and partly from nitrogen addition. A significantly negative correlation between CH4 flux and bulk density in the cultivated soils tilled by machine suggests that cultivation reduced CH4 uptake through compaction, because of the enhanced diffusion resistance for CH4 and O2. Nitrogen fertilization slowly reduced but persistently affected CH4 uptake even after long‐term application of nitrogen.  相似文献   

10.
范峰华  郑荣波  刘爽  郭雪莲 《生态学报》2021,41(16):6525-6532
近年来,二氧化钛纳米颗粒(TiO2NPs)环境释放量不断增加,并通过多种途径进入湿地生态系统,不可避免地影响到湿地生态系统环境和功能。然而,关于TiO2NPs对沼泽土壤反硝化作用和氧化亚氮(N2O)排放的影响机及制尚不明确。选择典型沼泽土壤,通过室内培养实验研究土壤理化性质、反硝化酶活性、反硝化速率(DNR)和N2O排放对不同剂量TiO2NPs 0 mg/kg (CK)、10 mg/kg (A10)、100 mg/kg (A100)、1000 mg/kg (A1000)输入的响应,探讨TiO2NPs输入对沼泽土壤反硝化作用和N2O排放影响的内在机制。结果表明:不同剂量TiO2NPs处理显著降低了土壤pH (P<0.05),A10处理显著降低土壤总有机碳(TOC)含量(P<0.01),A1000处理显著降低硝态氮(NO3--N)和亚硝态氮(NO2--N)含量(P<0.05)。TiO2NPs处理抑制硝酸盐还原酶(NAR)活性,促进一氧化氮还原酶(NOR)和氧化亚氮还原酶(NOS)活性(P<0.01),A1000处理先促进后抑制了亚硝酸盐还原酶(NIR)活性(P<0.05)。不同剂量TiO2NPs处理抑制了土壤DNR,促进了N2O排放,TiO2NPs处理通过抑制NIR活性,降低土壤DNR,同时通过促进NOR活性,提高N2O排放。综上,TiO2NPs输入通过影响反硝化还原酶活性改变沼泽土壤反硝化过程,导致沼泽土壤N2O排放增加,改变湿地氮的源、汇功能,影响全球气候变化。为TiO2NPs输入的湿地环境风险评估研究提供理论基础。  相似文献   

11.
Recent identification of the widespread distribution of legacy sediments deposited in historic mill ponds has increased concern regarding their role in controlling land–water nutrient transfers in the mid-Atlantic region of the US. At Big Spring Run in Lancaster, Pennsylvania, legacy sediments now overlay a buried relict hydric soil (a former wetland soil). We compared C and N processing in legacy sediment to upland soils to identify soil zones that may be sources or sinks for N transported toward streams. We hypothesized that legacy sediments would have high nitrification rates (due to recent agricultural N inputs), while relict hydric soils buried beneath the legacy sediments would be N sinks revealed via negative net nitrification and/or positive denitrification (because the buried former wetland soils are C rich but low in O2). Potential net nitrification ranged from 9.2 to 77.9 g m?2 year?1 and potential C mineralization ranged from 223 to 1,737 g m?2 year?1, with the highest rates in surface soils for both legacy sediments and uplands. Potential denitrification ranged from 0.37 to 21.72 g m?2 year?1, with the buried relict hydric soils denitrifying an average of 6.2 g m?2 year?1. Contrary to our hypothesis, relict hydric layers did not have negative potential nitrification or high positive potential denitrification rates, in part because microbial activity was low relative to surface soils, as indicated by low nitrifier population activity, low substrate induced respiration, and low exoenzyme activity. Despite high soil C concentrations, buried relict hydric soils do not provide the ecological services expected from a wetland soil. Thus, legacy sediments may dampen N removal pathways in buried relict hydric soils, while also acting as substantial sources of NO3 ? to waterways.  相似文献   

12.
The denitrification potential in moderately fertilized soil sampled four times during 1995 decreased significantly after cold storage, at 4 +/- 2 degrees C for 1 week. Prolonged storage (up to 24 weeks) resulted in a further decrease of denitrification potential which dropped to 38-54% of the original values. Similarly, denitrification potential decreased substantially during the first week of storage in differently fertilized soils. After 24 weeks of storage, denitrification potential dropped to 29-55% of that in fresh soils. The effects of storage at 4 +/- 2 degrees C on denitrification potential and respiration (determined as carbon dioxide evolution) were in general the same in moderately fertilized soils from four different sites: in all soils, depression of both the denitrification potential and potential respiration was found after 8 weeks. However, the extent to which the parameters were decreased differed from case to case. Not only the duration and storage conditions but also unidentified soil parameters are important for the persistence of biological activity in stored soils.  相似文献   

13.
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural runoff through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient runoff from plant nurseries and compares these to similar forest soils not exposed to nutrient runoff. Nursery runoff also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g−1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g−1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g−1 in soil slurries. The addition of PO4 (5 μg PO4-P g−1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forest soils.  相似文献   

14.
Soil denitrification is one of the most significant contributors to global nitrous oxide (N(2) O) emissions, and spatial patterns of denitrifying communities and their functions may reveal the factors that drive denitrification potential and functional consortia. Although denitrifier spatial patterns have been studied extensively in most soil ecosystems, little is known about these processes in arctic soils. This study aimed to unravel the spatial relationships among denitrifier abundance, denitrification potential and soil resources in 279 soil samples collected from three Canadian arctic ecosystems encompassing 7° in latitude and 27° in longitude. The abundance of nirS (10(6) -10(8) copies?g(-1) dry soil), nirK (10(3) -10(7) copies?g(-1) dry soil) and nosZ (10(6) -10(7) copies?g(-1) dry soil) genes in these soils is in the similar range as non-arctic soil ecosystems. Potential denitrification in Organic Cryosols (1034?ng?N(2) O-N?g(-1) soil) was 5-11 times higher than Static/Turbic Cryosols and the overall denitrification potential in Cryosols was also comparable to other ecosystems. We found denitrifier functional groups and potential denitrification were highly spatially dependent within a scale of 5?m. Functional groups and soil resources were significantly (P?相似文献   

15.
Restored forested wetlands reduce N loads in surface discharge through plant uptake and denitrification. While removal of reactive N reduces impact on receiving waters, it is unclear whether enhanced denitrification also enhances emissions of the greenhouse gas N2O, thus compromising the water-quality benefits of restoration. This study compares denitrification rates and N2O:N2 emission ratios from Sharkey clay soil in a mature bottomland forest to those from an adjacent cultivated site in the Lower Mississippi Alluvial Valley. Potential denitrification of forested soil was 2.4 times of cultivated soil. Using intact soil cores, denitrification rates of forested soil were 5.2, 6.6 and 2.0 times those of cultivated soil at 70, 85 and 100% water-filled pore space (WFPS), respectively. When NO3 was added, N2O emissions from forested soil were 2.2 times those of cultivated soil at 70% WFPS. At 85 and 100% WFPS, N2O emissions were not significantly different despite much greater denitrification rates in the forested soil because N2O:N2 emission ratios declined more rapidly in forested soil as WFPS increased. These findings suggest that restoration of forested wetlands to reduce NO3 in surface discharge will not contribute significantly to the atmospheric burden of N2O.  相似文献   

16.
Kushiro Mire is the largest mire in Japan and in 1980 was the first wetland in Japan registered under the Ramsar Convention. Recent reports indicate an increase in nutrient loading into Kushiro Mire from changes in land use. We measured vertical profiles of dissolved inorganic nitrogen (DIN; NO3 , NO2 , NH4 +), dissolved organic carbon (DOC), and various types of microbial activity in soil samples collected to approximately 1.5 m deep at two sites in Kushiro Mire. We found an accumulation of NO3 and DOC in the deeper soil. Denitrifying activity was highest in the shallower soils and decreased drastically with depth, whereas higher levels of fluoresceindiacetate hydrolysis, β-glucosidase, acid phosphatase, and xylosidase enzyme activity were found in the deeper layers. We also detected humic-like substances as components of the DOC. These results suggest that the DOC in the wetland soil cannot be used as a substrate for denitrification, causing denitrification to be suppressed in the deeper soil. In addition, denitrifying activity would be very low in the deeper layers due to low soil temperature. As a result, nitrogen input to the mire has resulted in a large accumulation of NO3 in the deeper soil. This will eventually change the mire ecosystem through effects such as increased eutrophication and acidification.  相似文献   

17.
Big Asian knotweeds (Fallopia spp.) are among the most invasive plant species in north-western Europe. We suggest that their success is partially explained by biological and chemical niche construction. In this paper, we explored the microbial mechanisms by which the plant modifies the nitrogen cycle. We found that Fallopia spp. decreased potential denitrification enzyme activity (DEA) by reducing soil moisture and reducing denitrifying bacteria density in the soil. The plant also reduced potential ammonia and nitrite oxydizing bacteria enzyme activities (respectively, AOEA and NOEA) in sites with high AOEA and NOEA in uninvaded situation. Modification of AOEA and NOEA were not correlated to modifications of the density of implicated bacteria. AOB and Nitrobacter-like NOB community genetic structures were significantly different in respectively two and three of the four tested sites while the genetic structure of denitrifying bacteria was not affected by invasion in none of the tested sites. Modification of nitrification and denitrification functioning in invaded soils could lead to reduced nitrogen loss from the ecosystem through nitrate leaching or volatilization of nitrous oxides and dinitrogen and could be considered as a niche construction mechanism of Fallopia.  相似文献   

18.
以3年生新红星苹果树为试验材料,在春季将稻草苫、农用地毯、透明塑料膜和园艺地布覆盖地表,于夏秋季调查根区土壤硝化-反硝化作用、硝酸还原酶(NR)和亚硝酸还原酶(NiR)活性以及铵态氮、硝态氮、亚硝态氮含量和植株生长的变化.结果表明: 4种覆盖处理均降低了夏季土壤硝化强度和夏秋之交的土壤NiR活性,提高了秋季土壤铵态氮含量以及夏秋之交的土壤反硝化强度、NR活性和铵态氮含量,降低了夏秋季土壤硝化强度、反硝化强度和NR活性的变异系数;稻草苫提高了夏季和秋季土壤反硝化强度与硝态氮含量,降低了夏季土壤NR和NiR活性;在4种处理中,稻草苫覆盖的土壤硝化与反硝化强度及NR活性在整个夏秋季的变异系数最低;农用地毯降低了夏季土壤反硝化强度,提高了夏季土壤NR和NiR活性、夏秋之交土壤硝态氮含量和秋季土壤反硝化强度;透明塑料膜降低了夏季土壤硝态氮含量,提高了夏季土壤亚硝态氮含量、夏秋之交土壤硝态氮含量以及秋季土壤硝化强度和NiR活性;园艺地布提高了夏季土壤反硝化强度、夏秋之交和秋季土壤的硝化强度以及秋季土壤硝态氮含量.4种覆盖处理均促进了植株生长,其中稻草苫和园艺地布促进新梢和干径增粗的效果更显著;4种覆盖处理对夏秋季土壤硝酸盐代谢的影响不同,但对土壤硝酸盐代谢与转化都具有稳定作用,其中稻草苫的稳定效果最好.  相似文献   

19.
The effect of soil warming on CO2 and CH4 flux from a spruce–fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May – November) in replicated 15 × 15-m plots using electric cables buried 1–2 cm below the soil surface; replicated unheated plots served as the control. CO2 evolution from the soil surface and soil air CO2 concentrations both showed clear seasonal trends and significant (P < 0.0001) positive exponential relationships with soil temperature. Soil warming caused a 25–40% increase in CO2 flux from the heated plots compared to the controls. No significant differences were observed between heated and control plot soil air CO2 concentrations which we attribute to rapid equilibration with the atmosphere in the O horizon and minimal treatment effects in the B horizon. Methane fluxes were highly variable and showed no consistent trends with treatment.  相似文献   

20.
It is frequently assumed that nitrogen (N2) fixation and denitrification do not co-occur in streams because each process should be favored under different concentrations of dissolved inorganic nitrogen (DIN), and therefore these processes are rarely quantified together. We asked if these processes could co-exist by conducting a spatial survey of N2 fixation using acetylene reduction and denitrification using acetylene block [with and without amendments of carbon (C) as glucose and nitrogen (N) as nitrate]. Rates were measured on rocks and sediment in 8 southeastern Idaho streams encompassing a DIN gradient of 26–615 µg L?1. Sampling at each site was repeated in summer 2015 and 2016. We found that both denitrification and N2 fixation occurred across the gradient of DIN concentrations, with N2 fixation occurring primarily on rocks and denitrification occurring in sediment. N2 fixation rates on rocks significantly decreased 100× across the DIN gradient in 1 year of the study, and amended (with N and C) denitrification rates increased 10× across the DIN gradient in both years. Multiple linear regression and partial least squares models with environmental characteristics measured at the scale of entire stream reaches showed that C and phosphorus were positive predictors of amended and unamended denitrification rates, but no significant model could explain N2 fixation rates across all streams and years. This, coupled with the observation that detectable rates of N2 fixation occurred primarily on rocks and denitrification occurred primarily on sediment, suggests that microhabitat scale factors may better predict the co-occurrence of these processes within stream reaches. Overlooking the potential co-occurrence of N2 fixation and denitrification in stream ecosystems will impede understanding by oversimplifying the contribution of each process to the N cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号