首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reduced red to far-red (R/FR) light ratio and low photosynthetically active radiation (PAR) irradiance are both strong signals for inducing etiolation growth of plant stems. Under natural field conditions, plants can be exposed to either a reduced R/FR ratio or lower PAR, or to a combination of both. We used Helianthus annuus L., the sunflower, to study the effect of reduced R/FR ratio, low PAR or their combination on hypocotyl elongation. To accomplish this, we attempted to uncouple light quality from light irradiance as factors controlling hypocotyl elongation. We measured alterations in the levels of endogenous gibberellins (GAs), cytokinins (CKs) and the auxin indole-3-acetic acid (IAA), and the effect of exogenous hormones on hypocotyl growth. As expected, both reduced R/FR ratio and lower PAR can significantly promote sunflower hypocotyl elongation when given separately. However, providing the reduced R/FR ratio at a low PAR resulted in the greatest hypocotyl growth, and this was accompanied by significantly higher levels of endogenous IAA, GA1, GA8, GA20 and of a wide range of CKs. Providing a reduced R/FR ratio under normal PAR also significantly increased growth and again gave significantly higher levels of endogenous IAA, GAs and CKs. However, only under the de-etiolating influence of a normal R/FR ratio did lowering PAR significantly increase levels of GA1, GA8 and GA20. We thus conclude that light quality (e.g. the R/FR ratio) is the most important component of shade for controlling hypocotyl growth and elevated growth hormone content.  相似文献   

2.
An attempt has been made to uncouple the effects of the two primary components of shade light, a reduced red to far-red (R/FR) ratio and low photosynthetically active radiation (PAR), on the elongation of the youngest internode of sunflower (Helianthus annuus) seedlings. Maximal internode growth (length and biomass) was induced by a shade light having a reduced R/FR ratio (0.85) under the low PAR of 157 micromol m(-2) s(-1). Reducing the R/FR ratio under normal PAR (421 micromol m(-2) s(-1)) gave similar growth trends, albeit with a reduced magnitude of the response. Leaf area growth showed a rather different pattern, with maximal growth occurring at the higher (normal) PAR of 421 micromol m(-2) s(-1)), but with variable effects being seen with changes in light quality. Reducing the R/FR ratio (by enrichment with FR) gave significant increases in gibberellin A(1) (GA(1)) and indole-3-acetic acid (IAA) contents in both internodes and leaves. By contrast, a lower PAR irradiance had no significant effect on GA(1) and IAA levels in internodes or leaves, but did increase the levels of other GAs, including two precursors of GA(1). Interestingly, both leaf and internode hormone content (GAs, IAA) are positively and significantly correlated with growth of the internode, as are leaf levels of abscisic acid (ABA). However, changes in these three hormones bear little relationship to leaf growth. By implication, then, the leaf may be the major source of GAs and IAA, at least, for the rapidly elongating internode. Several other hormones were also assessed in leaves for plants grown under varying R/FR ratios and PARs. Leaf ethylene production was not influenced by changes in R/FR ratio, but was significantly reduced under the normal (higher) PAR, the irradiance treatment which increased leaf growth. Levels of the growth-active free base and riboside cytokinins were significantly increased in leaves under a reduced R/FR ratio, but only at the higher (normal) PAR irradiance; other light quality treatments evoked no significant changes. Taken in toto, these results indicate that both components of shade light can influence the levels of a wide range of endogenous hormones in internodes and leaves while evoking increased internode elongation and biomass accumulation. However, it is light quality changes (FR enrichment) which are most closely tied to increased hormone content, and especially with increased GA and IAA levels. Finally, the increases seen in internode and leaf GA content with a reduced R/FR ratio are consistent with FR enrichment inducing an overall increase in sunflower seedling GA biosynthesis.  相似文献   

3.
Y L Xu  D A Gage    J A Zeevaart 《Plant physiology》1997,114(4):1471-1476
Arabidopsis thaliana (L.) Heynh. is a quantitative long-day (LD) rosette plant in which stem growth is mediated by gibberellins (CAs). Application of GAs to plants in short-day (SD) conditions resulted in rapid stem elongation and flower formation, with GA4 and GA9 being equally effective, and GA1 showing lower activity. The effects of photoperiod on the levels of endogenous GAs were measured by combined gas chromatography-mass spectrometry with selected ion monitoring. When plants were transferred from SD to LD conditions there was a slight decrease in the level of GA53 and an increase in the levels of C19-GAs, GA9, GA20, GA1, and GA8, indicating that GA 20-oxidase activity is stimulated in LD conditions. Expression of GA5, which encodes GA 20-oxidase, was highest in elongating stems and was correlated with the rate of stem elongation. By contrast, GA4, which encodes 3 beta-hydroxylase, showed low expression in stems and its expression was not correlated with the rate of stem elongation. We conclude that stem elongation in LD conditions is at least in part due to increased expression of GA5, whereas expression of GA4 is not under photoperiodic control.  相似文献   

4.
The aim of this study was to investigate the role of plant hormones, particularly the gibberellins (GAs), in the thermoperiodic regulation of stem elongation in the short day plant (SDP) Begonia x hiemalis. Effects of GAs and some GA precursors were tested on plants grown under alternating day/night temperatures (DT/NT; 12/12 h), and the effects of these temperature regimes on endogenous plant hormones were analyzed using combined gas chromatography and mass spectrometry (GC-MS).Compared with constant temperatures (19/19 °C; 21/21 °C), stem elongation was significantly inhibited by low DT/high NT (14/24 °C; 18/24 °C) and enhanced by the opposite treatments (24/14 °C; 26/17 °C). GA1 stimulated elongation of internodes and petioles while ent-kaurene, kaurenoic acid, GA12, GA19, GA20 had no significant effect. The effect of GA1 was enhanced by a simultaneous application of calcium 3,5-dioxo-4-propionylcyclohexanecarboxylate (BX-112). BX-112 inhibited internode elongation at high DT/low NT (24/14 °C) but not at the reverse temperature regime.Gibberellins A53, A19, A20, A1, A4, A9, and indoleacetic acid (IAA), were identified by GC-MS from both leaves, including the petioles, and stems of B. x hiemalis. There were no apparent relationships between elongation of internodes and petioles and endogenous contents of gibberellins A53, A19, A20, and A1. Recoveries of deuterated GA4 and GA9 were generally too low for estimation of endogenous levels of these GAs.Constant temperature resulted in more open flowers and flower buds compared to alternating DT and NT. BX-112 decreased the time to anthesis.  相似文献   

5.
The role of endogenous gibberellins (GAs) in the regulation of potato (Solanum tuberosum) tuber dormancy was examined by determining: 1. changes in endogenous GA levels during natural dormancy progression, 2. the effects of GA biosynthesis inhibitors on tuber dormancy duration and 3. the dormancy status and tuber GA levels in a dwarf mutant of potato. The tubers (cv. Russet Burbank) used in these studies were still completely dormant after 98 days of storage. Between 98 and 134 days of storage, dormancy began to end and tubers exhibited limited (< 2 mm) sprout growth. Tuber dormancy weakened with further storage and tubers exhibited greater rates of sprout growth after 187 days of storage. Tubers stored for 212 days or longer were completely non-dormant and exhibited vigorous sprout growth. Immediately after harvest, the endogenous contents of GA19, GA20, and GA1 were relatively high (0.48-0.62 ng g fresh weight(-1)). The content of these GAs declined between 33 and 93 days of storage. Internal levels of GA19, GA20, and GA, rose slightly between 93 and 135 days of storage reaching levels comparable to those found in highly dormant tubers immediately after harvest. Levels of GA19, GA20, and GA1 continued to increase as sprout growth became more vigorous. Neither GA4 nor GA8 was detected in any tuber sample regardless of dormancy status. Dormant tubers exhibited a time-dependent increase in apparent GA sensitivity. Freshly harvested tubers were completely insensitive to exogenous GAs. As postharvest storage continued, exogenous GAs promoted premature dormancy release with GA1 and GA20 eliciting the greatest response. Injection of up to 5 microg tuber(-1) of kaurene, GA12, GA19 or GA8 had no effect on dormancy release. Sprout growth from non-dormant tubers was also promoted by exogenous GA in the following sequence of activity: GA1 = GA20 > GA19. Kaurene, GA12, and GA8 were inactive. Continuous exposure of developing tubers to inhibitors of GA biosynthesis (AMO-1618, ancymidol, or tetcyclasis) did not extend tuber dormancy but rather hastened dormancy release. Comparison of tuber dormancy and GA1 content in tubers of a wild-type and dwarf mutant of S. tuberosum ssp. andigena revealed a near-identical pattern of dormancy progression in spite of the absence of detectable levels of GA1 in tubers of the dwarf sibling at any time during dormancy progression. Collectively, these results do not support a role for endogenous GA in potato tuber dormancy release but are consistent with a role for GAs in the regulation of subsequent sprout growth.  相似文献   

6.
Winter canola (Brassica napus cv Crystal) is an oilseed crop that requires vernalization (chilling treatment) for the induction of stem elongation and flowering. To investigate the role of gibberellins (GAs) in vernalization-induced events, endogenous GA content and the metabolism of [3H]GAs were examined in 10-week vernalized and nonvernalized plants. Shoot tips were harvested 0, 8, and 18 d postvernalization (DPV), and GAs were purified and quantified using 2H2-internal standards and gas chromatography-selected ion monitoring. Concentrations of GA1, GA3, GA8, GA19, and GA20 were 3.1-, 2.3-, 7.8-, 12.0-, and 24.5-fold higher, respectively, in the vernalized plants at the end of the vernalization treatment (0 DPV) relative to the nonvernalized plants. Thermoregulation apparently occurs prior to GA19 biosynthesis, since vernalization elevated the concentration of all of the monitored GAs. [3H]GA20 or [3H]GA1 was applied to the shoot tips of vernalized and nonvernalized plants, and after 24 h, plants were harvested at 6, 12, and 15 DPV. Following high-performance liquid chromatography analyses, vernalized plants showed increased conversion of [3H]GA20 to a [3H]GA1-like metabolite and reduced conversion of [3H]GA1 or [3H]GA20 to polar 3H-metabolites, putative glucosyl conjugates. These results demonstrate that vernalization influences GA content and GA metabolism, with GAs serving as probable regulatory intermediaries between chilling treatment and subsequent stem growth.  相似文献   

7.
[14C4]GA53, [14C4]GA44, and [2H2/14C4]GA19 were injected separately into seedlings of rice (Oryza sativa) using a dwarf mutant (d35) that has low levels of endogenous gibberellins (GAs). After 8 h incubation, the shoots were extracted and the labeled metabolites were identified by full-scan gas chromatography mass spectrometry (GC-MS) and Kovats retention indices (KRIs). Our results document the metabolic sequence, GA53-->GA44-->GA19-->GA20 and the presence of endogenous GA53, GA44, GA19, GA20 and GA1. Previous metabolic studies have shown the presence of the step, GA20-->GA1 in rice. Taken together, the data establish in vegetative shoots of rice the presence of the early 13-hydroxylation pathway, a pathway that originates from GA12 and leads to bioactive GA1.  相似文献   

8.
Both hypocotyl and root growth of sunflower (Helianthus annuus) were examined in response to a range of narrow-band width light treatments. Changes in two growth-regulating hormones, ethylene and gibberellins (GAs) were followed in an attempt to better understand the interaction of light and hormonal signaling in the growth of these two important plant organs. Hydroponically-grown 6-day-old sunflower seedlings had significantly elongated hypocotyls and primary roots when grown under far-red (FR) light produced by light emitting diodes (LEDs), compared to narrow-band red (R) and blue (B) light. However, hypocotyl and primary root lengths of seedlings given FR light were still shorter than was seen for dark-grown seedlings. Light treatment in general (compared to dark) increased lateral root formation and FR light induced massive lateral root formation, relative to treatment with R or B light. Levels of ethylene evolution (roots and hypocotyls) and concentrations of endogenous GAs (hypocotyls) were assessed from both 6-day-old sunflower plants either grown in the dark, or treated with FR, R or B light. Both R and B light had similar effects on hypocotyl and root growth as well as on ethylene and on hypocotyl GA levels. Dark treatment resulted in the highest ethylene levels, whereas FR treatment significantly reduced ethylene evolution for both hypocotyls and roots. R- and B-light treatments elevated ethylene evolution relative to FR light. Endogenous GA53 and GA19 levels in hypocotyls were significantly higher and GA44, GA20 and GA1 levels significantly lower, for dark and FR light treatments compared to R and B light-treatments. The patterns seen for changes in GA concentrations indicate FR-, R- and B-light-mediated effects [differences] in the metabolism of the early C20 GAs, GA53 → GA44 → GA19. Surprisingly, GA20, GA1 and GA8 levels in hypocotyls were very much reduced by treatment of the plants with FR light, relative to B and R-light treatments, e.g. the increased hypocotyl elongation induced by FR light was correlated with reduced levels of all three of the downstream C19 GAs. The best explanation, albeit speculative, is that a more rapid metabolism, i.e. GA20 → GA1 → GA8 → GA8 conjugates occurs under FR light. Although this study provided no evidence that elevated ethylene evolution by roots or hypocotyls of sunflower is controlling growth via endogenous GA biosynthesis, there are differences between soil-grown and hydroponically-grown sunflower seedlings with regard to trends seen for hypocotyl GA concentrations and both root and hypocotyl ethylene evolution in response to narrow band width R and FR light signaling.  相似文献   

9.
Degradation of active C(19)-gibberellins (GAs) by dioxygenases through 2beta-hydroxylation yields inactive GA products. We identified two genes in Arabidopsis (AtGA2ox7 and AtGA2ox8), using an activation-tagging mutant screen, that encode 2beta-hydroxylases. GA levels in both activation-tagged lines were reduced significantly, and the lines displayed dwarf phenotypes typical of mutants with a GA deficiency. Increased expression of either AtGA2ox7 or AtGA2ox8 also caused a dwarf phenotype in tobacco, indicating that the substrates for these enzymes are conserved. AtGA2ox7 and AtGA2ox8 are more similar to each other than to other proteins encoded in the Arabidopsis genome, indicating that they may constitute a separate class of GA-modifying enzymes. Indeed, enzymatic assays demonstrated that AtGA2ox7 and AtGA2ox8 both perform the same GA modification: 2beta-hydroxylation of C(20)-GAs but not of C(19)-GAs. Lines containing increased expression of AtGA2ox8 exhibited a GA dose-response curve for stem elongation similar to that of the biosynthetic mutant ga1-11. Double loss-of-function Atga2ox7 Atga2ox8 mutants had twofold to fourfold higher levels of active GAs and displayed phenotypes associated with excess GAs, such as early bolting in short days, resistance to the GA biosynthesis inhibitor ancymidol, and decreased mRNA levels of AtGA20ox1, a gene in the GA biosynthetic pathway.  相似文献   

10.
Stems of mango (Mangifera indica L.) rest in a nongrowing, dormant state for much of the year. Ephemeral flushes of vegetative or reproductive shoot growth are periodically evoked in apical or lateral buds of these resting stems. The initiation of shoot growth is postulated to be primarily regulated by a critical ratio of root-produced cytokinins, which accumulate in buds and by leaf-produced auxin, which decreases in synthesis and transport over time. Exogenously applied gibberellic acid (GA3) delays initiation of bud break but does not determine whether the resulting flush of growth is vegetative or reproductive. We tested the hypothesis that endogenous GA3, which influences release of these resting buds, may decrease in stem tips or leaves with increasing age of mango stems. GA3 and several other GAs in stem tip buds and leaves were identified and quantified in stems of different ages. The major endogenous GAs found in apical buds and leaves of vegetative mango stems were early 13-hydroxylation pathway gibberellins: GA1, epi-GA1, GA3, GA19, GA20, and GA29, as identified by gas chromatography-mass spectrometry (GC-MS). A novel but unidentified GA-like compound was also present. The most abundant GAs in apical stem buds were GA3 and GA19. Contrary to the hypothesis, the concentration of GA3 increased within buds with increasing age of the stems. The concentrations of other GAs in buds were variable. The concentration of GA3 did not change significantly with age in leaves, whereas that of most of the other GAs declined. GA1 levels were greatest in leaves of elongating shoots. These results are consistent with the concept that rapid shoot growth is associated with synthesis of GAs leading to GA1. The role of GA3 in delaying bud break in mango is not known, but it is proposed that it may enhance or maintain the synthesis or activity of endogenous auxin. It, thereby, maintains a high auxin/cytokinin ratio similar to responses to GA3 that maintain apical dominance in other plant species.  相似文献   

11.
Stems of mango (Mangifera indica L.) rest in a nongrowing, dormant state for much of the year. Ephemeral flushes of vegetative or reproductive shoot growth are periodically evoked in apical or lateral buds of these resting stems. The initiation of shoot growth is postulated to be primarily regulated by a critical ratio of root-produced cytokinins, which accumulate in buds and by leaf-produced auxin, which decreases in synthesis and transport over time. Exogenously applied gibberellic acid (GA3) delays initiation of bud break but does not determine whether the resulting flush of growth is vegetative or reproductive. We tested the hypothesis that endogenous GA3, which influences release of these resting buds, may decrease in stem tips or leaves with increasing age of mango stems. GA3 and several other GAs in stem tip buds and leaves were identified and quantified in stems of different ages. The major endogenous GAs found in apical buds and leaves of vegetative mango stems were early 13-hydroxylation pathway gibberellins: GA1, epi-GA1, GA3, GA19, GA20, and GA29, as identified by gas chromatography-mass spectrometry (GC-MS). A novel but unidentified GA-like compound was also present. The most abundant GAs in apical stem buds were GA3 and GA19. Contrary to the hypothesis, the concentration of GA3 increased within buds with increasing age of the stems. The concentrations of other GAs in buds were variable. The concentration of GA3 did not change significantly with age in leaves, whereas that of most of the other GAs declined. GA1 levels were greatest in leaves of elongating shoots. These results are consistent with the concept that rapid shoot growth is associated with synthesis of GAs leading to GA1. The role of GA3 in delaying bud break in mango is not known, but it is proposed that it may enhance or maintain the synthesis or activity of endogenous auxin. It, thereby, maintains a high auxin/cytokinin ratio similar to responses to GA3 that maintain apical dominance in other plant species.  相似文献   

12.
Eriksson ME  Moritz T 《Planta》2002,214(6):920-930
Physiologically active gibberellins (GAs) are key regulators of shoot growth in trees. To investigate this mechanism of GA-controlled growth in hybrid aspen, we cloned cDNAs encoding gibberellin 20-oxidase (GA 20-oxidase), a key, highly regulated enzyme in the biosynthesis of GAs. Clones were isolated from leaf and cambium cDNA libraries using probes generated by polymerase chain reaction, based on conserved domains of GA 20-oxidases. Upon expression in Escherichia coli, the GST-fusion protein was shown to oxidise GA12 as well as oxidising the 13-hydroxylated substrate GA53, successively to GA9 and GA20, respectively. The gene PttGA20ox1 was expressed in meristematic cells and growing tissues such as expanding internodes, leaves and roots. The expression was negatively regulated by both GA4 and overexpression of phytochrome A. RNA analysis also showed that the expression was down-regulated in late-expanding leaf tissue in response to short days (SDs). Actively growing tissues such as early elongating internodes, petioles and leaf blades had the highest levels of C19-GAs. Upon transfer to SDs an accumulation of GA19 was observed in early elongating internodes and leaf blades. The levels of C19-GAs were also to some extent changed upon transfer to SDs. The levels of GA20 were down-regulated in internodes, and those of GA1 were significantly reduced in early expanding leaf blades. In roots the metabolites GA19 and GA8 decreased upon shifts to SDs, while GA20 accumulated slightly. The down-regulation of GA 20-oxidase activity in response to SDs was further indicated by studies of [14C]GA12 metabolism in shoots, demonstrating that the substrate for GA 20-oxidase, [14C]GA53, accumulates in SDs.  相似文献   

13.
Dark-grown seedlings of the lip1 (light independent photomorphogenesis) mutant of Pisum sativum L. display many features of de-etiolated growth and are similar in many respects to wild-type (WT) seedlings grown in the light. The involvement of gibberellins (GAs) with the mutant phenotype was examined by applying GA1 and GA20 to the mutant and WT, and by quantifying endogenous GA1, GA8, GA19, GA20, and GA29 levels in the two genotypes. These experiments were conducted in both the light and the dark. In neither environment could GA application restore elongation in the mutant to that in GA-treated WT plants. Quantification of GAs provided further evidence that the mutant phenotype is not attributable to a deficiency in endogenous GA1. However, dark-grown lip1 seedlings contained lower levels of GA19 and higher levels of GA20 than dark-grown WT plants, whereas in the light, the effect of the mutation on the ratio of GA19 to GA20 was reversed. Thus, there appears to be a complex interaction between the lip1 mutation, the light regime, and the step GA19 to GA20.  相似文献   

14.
J. A. D. Zeevaart 《Planta》1985,166(2):276-279
The effects of the new growth retardant tetcyclacis (TCY) on stem growth and endogenous gibberellin (GA) levels were investigated in the long-day rosette plant Agrostemma githago. Application of TCY (10 ml of a 5·10-5M solution daily) to the soil suppressed stem elongation in Agrostemma grown under long-day conditions. A total of 10 g GA1 (1 g applied on alternate days) per plant overcame the growth retardation caused by TCY.Control plants and plants treated with TCY were analyzed for endogenous GAs after exposure to nine long days. The acidic extracts were fractionated by high-performance liquid chromatography. Part of each fraction was tested in the d-5 maize bioassay, while the remainder was analyzed by combined gas chromatography-selected ion monitoring. The bioassay results indicated that the GA content of plants treated with TCY was much lower than that of untreated plants. The data obtained by gas chromatography-selected ion monitoring confirmed that the levels of seven GAs present in Agrostemma were much reduced in TCY-treated plants when compared with the levels in control plants: GA53 (13%), GA44 (0%), GA19 (1%), GA17 (33%), GA20 (15%), GA1 (4%), and epi-GA1 (13%). These results provide evidence that TCY inhibits stem growth in Agrostemma by blocking GA biosynthesis and thus lowering the levels of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - HPLC high-performance liquid chromatography - TCY Tetcyclacis (5-[4-chlorophenyl]-3,4,5,9,10-pentaaza-tetracyclo-5,4,1,02,6,08,11-dodeca-3,9-diene)  相似文献   

15.
Wild type (WT) tomato seedlings responded to a low red to far-red (R/FR) ratio with increased stem elongation, similar leaflet area expansion and lower shoot ethylene levels. The levels of endogenous growth-active GA1 and its immediate precursor GA20 were decreased by low R/FR ratio, whereas the levels of GA1 catabolite, GA8, increased. To examine the interaction of ethylene with GAs in regulating tomato shoot growth under low R/FR ratio, transgenic (T) seedlings bearing Le-ACS2 and Le-ACS4 antisense mRNA were utilized. Low R/FR ratio increased stem elongation and decreased ethylene levels in T tomato shoots, as it did in WT shoots. However, T stems were significantly taller than the WT stems under low R/FR ratio. Leaflet areas were significantly larger for T, than WT seedlings under both R/FR ratios. Low R/FR ratio did not decrease endogenous levels of GA1 and GA20 in T shoots, but did increase GA8 levels, which were higher than in WT shoots. These results, and hormone/inhibitor application studies, showed that in tomato shoots subjected to low R/FR ratio, GAs play a growth-promotive role in stem elongation, whereas ethylene is growth-inhibitory. Further, these results may imply that decreasing ethylene production under low R/FR ratio causes increases in stem elongation and GA levels.  相似文献   

16.
Effects of Low Irradiance Stress on Gibberellin Levels in Pea Seedlings   总被引:9,自引:0,他引:9  
Using gas chromatography-selected ion monitoring with internalstandards we analyzed endogenous levels of GA1, GA8, GA19, GA20,GA29, GA44 and GA53 in shoots of pea cv. Alaska grown underdifferent levels of irradiance: high irradiance, 386±70µmolm-2s-1, control (100%); medium (50%); low (10%); darkness (0%).The average plant heights for medium and low irradiance anddark grown plants were 157%, 275%, and 460% of the control plants,respectively. Plants grown in medium and low irradiance developedthe same numbers of internodes as control plants but plantsin darkness developed fewer internodes and exhibited suppressedleaf expansion. The endogenous levels of GA1 GA8 and GA29 werehigher in medium and low irradiance grown plants than thoseof the high irradiance control. In particular, the GA20 levelof low irradiance plants was markedly higher (7.6-fold) thanthat of control plants. In dark-grown plants GA1, and GA8 levelsalso slightly increased but GA20 and GA29 levels decreased andthe levels of GA19, GA44 and GA53 did not change. Feeding ofGA1, and a GA biosynthesis inhibitor (uniconazole) to plantsgrown at reduced irradiance and in darkness suggests that theresponsiveness of plants to GA1, also increased at low irradianceand in darkness. In conclusion, plants increase both GA1, andGA20 biosynthesis or altered catabolism and GA1, responsivenessunder low irradiance stress 1Present address: Dept. of Plant Physiol., Warsaw AgriculturalUniversity, Rakowiecka 26-30, 02-528 Warsaw, Poland  相似文献   

17.
18.
Reproductive and vegetative tissues of the seeded Pineapple cultivars of sweet orange (Citrus sinensis L.) contained the following C-13 hydroxylated gibberellins (GAs): GA53, GA17, GA19, GA20, GA1, GA29, and GA8, as well as GA97, 3-epi-GA1, and several uncharacterized GAs. The inclusion of 3-epi-GA1 as an endogenous substance was based on measurements of the isomerization rates of previously added [2H2]GA1. Pollination enhanced amounts of GA19, GA20, GA29, and GA8 in developing ovaries. Levels of GA1 increased from 5.0 to 9.5 ng/g dry weight during anthesis and were reduced thereafter. The amount of GA in mature pollen was very low. Emasculation reduced GA levels and caused a rapid 100% ovary abscission. This effect was partially counteracted by either pollination or application of GA3. In pollinated ovaries, repeated paclobutrazol applications decreased the amount of GA and increased ovary abscission, although the pattern of continuous decline was different from the sudden abscission induced by emasculation. The above results indicate that, in citrus, pollination increases GA levels and reduces ovary abscission and that the presence of exogenous GA3 in unpollinated ovaries also suppresses abscission. Evidence is also presented that pollination and GAs do not, as is generally assumed, suppress ovary abscission through the reactivation of cell division.  相似文献   

19.
K Wu  L Li  D A Gage    J A Zeevaart 《Plant physiology》1996,110(2):547-554
Spinach (Spinacia oleracea L.) is a long-day (LD) rosette plant in which stem growth under LD conditions is mediated by gibberellins (GAs). Major control points in spinach are the later steps of sequential oxidation and elimination of C-20 of C20-GAs. Degenerate oligonucleotide primers were used to obtain a polymerase chain reaction product from spinach genomic DNA that has a high homology with GA 20-oxidase cDNAs from Cucurbita maxima L. and Arabidopsis thaliana Heynh. This polymerase chain reaction product was used as a probe to isolate a full-length cDNA clone with an open reading frame encoding a putative 43-kD protein of 374 amino acid residues. When this cDNA clone was expressed in Escherichia coli, the fusion protein catalyzed the biosynthetic sequence GA53-->GA44-->GA19-->GA20 and GA19-->GA17. This establishes that in spinach a single protein catalyzes the oxidation and elimination of C-20. Transfer of spinach plants from short day (SD) to LD conditions caused an increase in the level of all GAs of the early-13-hydroxylation pathway, except GA53, with GA20, GA1, and GA8 showing the largest increases. Northern blot analysis indicated that the level of GA 20-oxidase mRNA was higher in plants in LD than in SD conditions, with highest level of expression in the shoot tips and elongating stems. This expression pattern of GA 20-oxidase is consistent with the different levels of GA20, GA1, and GA8 found in spinach plants grown in SD and LD conditions.  相似文献   

20.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号