首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Influence of aging on sex differences in muscle fatigability.   总被引:1,自引:0,他引:1  
The purpose of this study was to compare time to task failure for a sustained isometric contraction performed at a submaximal intensity with elbow flexor muscles by young and old men and women. Twenty-seven young (14 men and 13 women, 18-35 yr) and 18 old (10 men and 8 women, 65-80 yr) adults sustained an isometric contraction at 20% of maximal voluntary contraction torque until target torque could no longer be achieved for > or = 5 s. Young adults were stronger than old adults (66.8 +/- 17.9 vs. 47.7 +/- 18.1 N x m, P < 0.05), and men were stronger than women (69.8 +/- 17.9 vs. 47.1 +/- 15.3 N x m, P < 0.05), with no interaction between age and sex (P > 0.05). Time to task failure was longer for old than for young adults (22.8 +/- 9.1 vs. 14.4 +/- 7.6 min, P < 0.05) and for young women than for young men (18.3 +/- 8.0 vs. 10.8 +/- 5.2, P < 0.05), but there was no difference between old women and men (21.3 +/- 10.7 and 24.1 +/- 8.0 min, respectively, P > 0.05) or between young women and old adults (P > 0.05). Mean arterial pressure, heart rate, average electromyographic (EMG) activity, and torque fluctuations of elbow flexor muscles increased during the fatiguing contraction (P < 0.05) for all subjects. Rates of increase in mean arterial pressure, heart rate, and torque fluctuations were greater for young men and old adults, with no differences between old men and women (P > 0.05). Similarly, the rate of increase in EMG activity was greater for young men than for the other three groups. EMG bursts were less frequent for old adults (P < 0.05) at the end of the fatiguing contraction, and this was accompanied by reduced fluctuations in torque. Consequently, time to task failure was related to target torque for young, but not old, adults, and differences in task duration were accompanied by parallel changes in the pressor response.  相似文献   

2.
To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 +/- 4.0 (SD) vs. men 24.9 +/- 4.5 yr] but different forearm muscle strength (women 290.7 +/- 44.4 vs. men 509.6 +/- 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time (r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 +/- 113.0 vs. 831.3 +/- 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 +/- 5.3 vs. men 14.5 +/- 4.9 ml.min(-1).100 ml(-1)). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 +/- 0.05 vs. men 0.11 +/- 0.04 ml.min(-1).100 ml(-1).mmHg(-1)). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex.  相似文献   

3.
Limb vascular conductance responses to pharmacological and nonexercise vasodilator stimuli are generally augmented in women compared with men. In the present investigation, we tested the hypothesis that exercise-induced vasodilator responses are also greater in women than men. Sixteen women and 15 men (20-30 yr) with similar fitness and activity levels performed graded quadriceps exercise (supine, single-leg knee extensions, 40 contractions/min) to maximal exertion. Active limb hemodynamics (left common femoral artery diameter and volumetric blood flow), heart rate (ECG), and beat-to-beat mean arterial blood pressure (MAP; radial artery tonometry) were measured during each 3-min workload (4.8 and 8 W/stage for women and men, respectively). The hyperemic response to exercise (slope of femoral blood flow vs. workload) was greater (P < 0.01) in women as was femoral blood flow at workloads >15 W. The leg vasodilatory response to exercise (slope of calculated femoral vascular conductance vs. absolute workload) was also greater in women than in men (P < 0.01) because of the sex difference in hyperemia and the women's lower MAP ( approximately 10-15 mmHg) at all workloads (P < 0.05). The femoral artery dilated to a significantly greater extent in the women ( approximately 0.5 mm) than in the men ( approximately 0.1 mm) across all submaximal workloads. At maximal exertion, femoral vascular conductance was lower in the men (men, 18.0 +/- 0.6 ml.min(-1)xmmHg(-1); women, 22.6 +/- 1.4 mlxmin(-1)xmmHg(-1); P < 0.01). Collectively, these findings suggest that the vasodilatory response to dynamic leg exercise is greater in young women vs. men.  相似文献   

4.
The purpose of this study was to evaluate the possible differences in the postexercise cutaneous vasodilatory response between men and women. Fourteen subjects (7 men and 7 women) of similar age, body composition, and fitness status remained seated resting for 15 min or cycled for 15 min at 70% of peak oxygen consumption followed by 15 min of seated recovery. Subjects then donned a liquid-conditioned suit. Mean skin temperature was clamped at approximately 34 degrees C for 15 min. Mean skin temperature was then increased at a rate of 4.3 +/- 0.8 degrees C/h while local skin temperature was clamped at 34 degrees C. Skin blood flow was measured continuously at two forearm skin sites, one with (UT) and without (BT) (treated with bretylium tosylate) intact alpha-adrenergic vasoconstrictor activity. The exercise threshold for cutaneous vasodilation in women (37.51 +/- 0.08 degrees C and 37.58 +/- 0.04 degrees C for UT and BT, respectively) was greater than that measured in men (37.33 +/- 0.06 degrees C and 37.35 +/- 0.06 degrees C for UT and BT, respectively) (P < 0.05). Core temperatures were similar to baseline before the start of whole body warming for all conditions. Postexercise heart rate (HR) for the men (77 +/- 4 beats/min) and women (87 +/- 6 beats/min) were elevated above baseline (61 +/- 3 and 68 +/- 4 beats/min for men and women, respectively), whereas mean arterial pressure (MAP) for the men (84 +/- 3 mmHg) and women (79 +/- 3 mmHg) was reduced from baseline (93 +/- 3 and 93 +/- 4 mmHg for men and women, respectively) (P < 0.05). A greater increase in HR and a greater decrease in the MAP postexercise were noted in women (P < 0.05). No differences in core temperature, HR, and MAP were measured in the no-exercise trial. The postexercise threshold for cutaneous vasodilation measured at the UT and BT sites for men (37.15 +/- 0.03 degrees C and 37.16 +/- 0.04 degrees C, respectively) and women (37.36 +/- 0.05 degrees C and 37.42 +/- 0.03 degrees C, respectively) were elevated above no exercise (36.94 +/- 0.07 degrees C and 36.97 +/- 0.05 degrees C for men and 36.99 +/- 0.09 degrees C and 37.03 +/- 0.11 degrees C for women for the UT and BT sites, respectively) (P < 0.05). A difference in the magnitude of the thresholds was measured between women and men (P < 0.05). We conclude that women have a greater postexercise onset threshold for cutaneous vasodilation than do men and that the primary mechanism influencing the difference between men and women in postexercise skin blood flow is likely the result of an altered active vasodilatory response and not an increase in adrenergic vasoconstrictor tone.  相似文献   

5.
We hypothesized that abnormal endothelium-dependent vasodilation (EDD) found in older otherwise healthy subjects can be attenuated with long-term endurance training. Ten endurance-trained men, 68.5 +/- 2.3 yr old, and 10 healthy sedentary men, 64.7 +/- 1.4 yr old, were studied. Aerobic exercise capacity (VO(2 max)), fasting plasma cholesterol, insulin, and homocysteine concentrations were measured. Master athletes had higher VO(2 max) (42 +/- 2.3 vs. 27 +/- 1.4 ml. kg(-1). min(-1), P < 0.001), slightly higher total cholesterol (226 +/- 8 vs. 199 +/- 8 mg/dl, P = 0.05), similar insulin, and higher homocysteine (10.7 +/- 1.3 vs. 9.2 +/- 1.4 micromol/ml, p = 0.02) concentrations. Brachial arterial diameter, determined with vascular ultrasound, during the hyperemic response was greater in the master athletes than in controls (P = 0.005). Peak vasodilatory response was 109.1 +/- 2 vs. 103.6 +/- 2% (P < 0.05) in the athletes and controls, respectively. Endothelium-independent vasodilation in response to nitroglycerin was similar between the two groups. The increased arterial diameter during the hyperemic response correlated significantly with the VO(2 max) in the entire population (r = 0.66, P < 0.002). Our results suggest that long-term endurance exercise training in older men is associated with systemic enhanced EDD, which is even detectable in the conduit arteries of untrained muscle.  相似文献   

6.
Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 +/- 3.6 yr, mean +/- SD) and 9 men (25.4 +/- 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 +/- 9.2 vs. 42.7 +/- 8.0 N.m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 +/- 3.0 vs. 93.3 +/- 3.6%; P > 0.05) and at the start of the fatiguing task (P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 +/- 3% of initial MVC) than the women (52 +/- 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue (P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 +/- 4.1 vs. 7.3 +/- 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 +/- 5.9 vs. 10.5 +/- 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 +/- 7.4 vs. 90.4 +/- 6.8%, n = 13) and end of the sixth contraction (77.2 +/- 13.3% vs. 73.1 +/- 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.  相似文献   

7.
AIM: Data are inconsistent whether hyperinsulinemia might be associated with adrenal hyperandrogenism in young adults born with low birth weight (LBW). METHOD: We investigated the insulin and adrenal steroid production of 70 young LBW adults [33 women (birth weight: 1,795 +/- 435 g) and 37 men (birth weight: 1,832 +/- 337 g)]. Their results were compared to those of 30 controls (14 men, 16 women), born with normal weight. RESULTS: In LBW women, we measured higher basal DHEA (33.5 +/- 13.1 vs. 23.6 +/- 8.7 nmol/l, p < 0.05), DHEAS (8.0 +/- 2.3 vs. 6.3 +/- 2.1 micromol/l, p < 0.05), androstenedione (8.3 +/- 2.8 vs. 6.0 +/- 2.2 nmol/l, p < 0.05) and cortisol (0.25 +/- 0.07 vs. 0.20 +/- 0.07 micromol/l, p < 0.05) levels and higher insulin response during oral glucose tolerance test (log.AUCins: 2.62 +/- 0.06 vs. 2.57 +/- 0.03, p < 0.05). DHEA levels correlated with fasting insulin levels (r = 0.45, p < 0.01) and insulin response (r = 0.33, p < 0.05). In LBW men, higher cortisol (0.27 +/- 0.06 vs. 0.22 +/- 0.06 micromol/l, p < 0.01) and SHBG (18.4 +/- 10.4 vs. 12.7 +/- 5.9 nmol/l, p < 0.05) levels were found. CONCLUSIONS: Our results suggest that modest hypercortisolism is present in young LBW adults. While the endocrine sequel of hypercortisolism raised insulin response and hyperandrogenism is detectable in apparently healthy young LBW women, it is absent in young LBW men. This suggests that gender-dependent mechanisms might play a role in the development of insulin resistance in LBW adults.  相似文献   

8.
We tested for gender differences in dietary fatty acid metabolism in 12 nonobese men and 12 nonobese women using the meal fatty acid tracer/adipose tissue biopsy study design. In addition to determining body composition, measurements of regional adipose tissue lipoprotein lipase activity, blood flow, and fat cell size were performed to place the meal fatty acid kinetic studies in perspective. Twenty-four hours after ingesting the test meal, the concentration of meal fatty acids was greater (P < 0.05) in abdominal subcutaneous than in thigh adipose tissue in both men (0. 61 +/- 0.12 vs. 0.45 +/- 0.09 mg/g) and women (0.59 +/- 0.10 vs. 0. 43 +/- 0.05) but was not different between men and women. A greater percentage of dietary fat was stored in subcutaneous adipose tissue in women than in men (38 +/- 3 vs. 24 +/- 3%, respectively, P < 0. 05), and a greater portion of meal fatty acid disposal was unaccounted for in men. Significant gender differences in regional adipose tissue blood flow after meal ingestion were noted; the differences were in the direction that could support greater nutrient storage in lower body fat in women.  相似文献   

9.
We examined the muscle fatigue characteristics in older men and women and determined whether these were related to the size, strength, or quality of muscle. A total of 1,512 men and women aged 70-79 yr from the Health, Aging, and Body Composition Study participated in this study. Muscle cross-sectional area and attenuation were determined with computed tomography. Skeletal muscle fatigue and strength (peak torque) of the knee extensors and flexors were measured using isokinetic dynamometry. Men were more fatigue resistant than women for both knee extension (fatigue index: 70.4 +/- 15.3 vs. 66.9 +/- 14.3%; P < 0.05) and knee flexion (67.9 +/- 16.4 vs. 64.9 +/- 17.6%; P < 0.05). Peak torque and muscle quality (specific torque) were higher in men than women for knee extension (99.6 +/- 28.2 vs. 63.0 +/- 16.8 N x m and 1.62 +/- 0.43 vs. 1.51 +/- 0.39 N x m/cm2; both P < 0.05) and for knee flexion (74.0 +/- 26.4 vs. 49.6 +/- 15.9 N x m and 2.47 +/- 1.29 vs. 2.22 +/- 0.78 N x m/cm2; both P < 0.05). Total work and power output was greater in men compared with women for both the quadriceps (1,353 +/- 451 vs. 832 +/- 264 J and 87.7 +/- 33.5 vs. 53.3 +/- 19.2 W; both P < 0.05) and the hamstrings (741 +/- 244 vs. 510 +/- 141 J and 35.4 +/- 16.0 vs. 23.7 +/- 10.2 W; both P < 0.05). In both genders, the quadriceps was able to perform more work with greater power compared with the hamstrings. Those who were stronger actually had greater fatigue after adjusting for age, race, physical activity, and total body fat. In conclusion, older men were more fatigue resistant than women, although in both men and women greater fatigue was not related to muscle weakness.  相似文献   

10.
The purpose of this study was to compare the time to task failure for a series of intermittent submaximal contractions performed with the elbow flexor muscles by men and women who were matched for strength (n = 20, 18-34 yr). The fatigue task comprised isometric contractions at 50% of maximal voluntary contraction (MVC) torque (6-s contraction, 4-s rest). The MVC torque was similar for the men and women [64.8 +/- 9.2 (SD) vs. 62.2 +/- 7.9 N.m; P > 0.05]. However, the time to task failure was longer for the women (1,408 +/- 1,133 vs. 513 +/- 194 s; P < 0.05), despite the similar torque levels. The mean arterial pressure, heart rate, and rating of perceived exertion started and ended at similar values for the men and women, but the rate of increase was less for the women. The rate of increase in the average of the rectified electromyogram (AEMG; % peak MVC) for the elbow flexor muscles was less for the women: the AEMG was greater for the men compared with the women at task failure (72 +/- 28 vs. 50 +/- 21%; P < 0.05), despite similar AEMG values at the start of the fatiguing contraction (32 +/- 9 vs. 36 +/- 13%). These results indicate that for intermittent contractions performed with the elbow flexor muscles 1) the sex difference in time to task failure was not explained by the absolute strength of the men and women, but involved another mechanism that is present during perfused conditions, and 2) men required a more rapid increase in descending drive to maintain a similar torque.  相似文献   

11.
The purpose of this study was to compare the time to task failure for a submaximal fatiguing contraction sustained with the elbow flexor muscles by men and women who were matched for strength (n = 20, 18-35 yr). The maximal torque exerted at the wrist was similar for the men and women [64.5 +/- 8.7 (SD) vs. 64.5 +/- 8.3 N.m; P > 0.05], which meant that the average torque exerted during the fatiguing contraction [20% of maximum voluntary contraction (MVC)] was similar for the two sexes. The time to task failure was similar for these strength-matched men and women (819 +/- 306 vs. 864 +/- 391 s; P > 0.05). The mean arterial pressure was similar at the beginning of the contraction for men (97 +/- 12 mmHg) and women (96 +/- 15 mmHg; P > 0.05) and at task failure (134 +/- 18 vs. 126 +/- 26 mmHg; P > 0.05, respectively). Furthermore, the increases in heart rate, torque fluctuations, and rating of perceived exertion during the fatiguing contraction were similar for the two sexes. However, the electromyogram (EMG) activity differed for the men and women: the rate of increase in the average of the rectified EMG (% peak MVC) for all the elbow flexor muscles was less for the women compared with the men (P < 0.05). Furthermore, the bursts of EMG activity for the elbow flexor muscles increased toward exhaustion for all subjects but at a greater rate for the women compared with the men (P < 0.05). The results indicate that strength-matched men and women experienced similar levels of muscle fatigue and cardiovascular adjustments during a sustained low-force isometric contraction, despite differences in the EMG activity for the two groups of subjects.  相似文献   

12.
Inhibition of a sympathetic stimulus (i.e., sympatholysis) during forearm exercise is reduced with age in women. This age-related alteration has not been characterized in the lower extremity vasculature of women, and the potential for blunting of the conduit artery dilatory response to a sudden increase in shear stress [flow-mediated dilation (FMD)] has not been examined in older adults of either sex. In the present study, we assessed popliteal artery diameter and velocity (Doppler ultrasound) in 16 young (23 +/- 1 yr) and 14 older (69 +/- 1 yr) women after 5 min of distal calf occlusion (FMD), 3 min of hand immersion in ice water [cold pressor test (CPT)], and 5 min of distal calf occlusion combined with hand immersion in ice water (FMD+CPT). Peak popliteal conductance after 5-min ischemia was not significantly different in young vs. older women. During the combined stimulus (FMD+CPT), the magnitude of vasoconstriction in the calf (reduction in peak popliteal artery conductance) was similar (5-8%), despite reduced resting adrenergic sensitivity to CPT [young (Y): -27.3 +/- 3.8%; older (O): -15.8 +/- 2.2%; P < 0.05] and blunted muscle sympathetic nerve activity responses to CPT (Y: 12.7 +/- 3.6 bursts/min; O: 7.8 +/- 2.5 bursts/min; P < 0.05) in older women. Popliteal FMD, normalized to the shear stimulus, was attenuated by 60-70% in older women. Peak popliteal diameter, measured during the combined stimulus (FMD+CPT), was blunted in young but not in older women (Y FMD: 5.5 +/- 0.1 mm; Y FMD+CPT: 5.4 +/- 0.1 mm; P = 0.03; O FMD: 5.8 +/- 0.2 mm; O FMD+CPT: 5.8 +/- 0.2 mm). These results confirm previous findings of diminished reactivity in the conduit arteries of older humans and provide the first evidence of reduced sympatholysis in the leg resistance vasculature of older women.  相似文献   

13.
The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion after 60-min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five nonischemic controls. Relative flow heterogeneity was expressed as relative dispersion (RD) and computed as standard deviation/mean. In postischemic vs. preischemic hearts, RD was increased for the whole LV (0.92 +/- 0.41 vs. 0.37 +/- 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium considered separately (1.28 +/- 0.74 vs. 0.30 +/- 0.09 and 0.69 +/- 0.22 vs. 0.38 +/- 0.08; P < 0.05 for both comparisons, respectively) during early reperfusion. During late reperfusion, the increased RD for the whole LV and Endo remained significant (0.70 +/- 0.22 vs. 0.37 +/- 0.07 and 1.06 +/- 0.55 vs. 0.30 +/- 0.09; P < 0.05 for both comparisons, respectively). In addition to the increase in postischemic flow heterogeneity, there were some regions demonstrating severely impaired reflow, indicating that regional ischemia can persist despite restoration of normal global flow. Also, the relationship between regional and global flow was altered by the increased postischemic flow heterogeneity, substantially reducing the significance of measured global LV reflow. These observations emphasize the need to quantify regional flow during reperfusion after sustained no-flow ischemia in the isolated rabbit heart.  相似文献   

14.
The myogenic response, the inherent ability of blood vessels to rapidly respond to changes in transmural pressure, is involved in local blood flow autoregulation. Animal studies suggest that aging impairs the myogenic response. The purpose of this study was to compare the effects of changes in transmural pressure on mean blood velocity (MBV, cm/s) in young and older subjects. Twelve younger men and women (25 +/- 1 yr) were gender and body composition matched to twelve older men and women (65 +/- 1 yr). A specially designed tank raised or lowered forearm pressure by 50 mmHg within 0.2 s. Brachial artery MBV was measured directly above the site of forearm pressure change using Doppler methods. In response to increasing transmural pressure (i.e., release of +50 mmHg), older subjects compared with younger subjects had significantly lower peak MBV (Delta 12.43 +/- 1.16 vs. Delta 17.97 +/- 2.01 cm/s; P < 0.05), reduced rates in the dynamic fall of MBV after peak values were achieved (vasoconstriction) (-1.88 +/- 0.17 vs. -2.90 +/- 0.28 cm.s(-1).s(-1); P < 0.05), and lower MBV values with sustained suction. In response to decreasing transmural pressure (i.e., change to +50 mmHg), there was a significantly greater increase in MBV (Delta peak flow from trough 7.71 +/- 1.32 vs. 4.38 +/- 0.71 cm/s; P < 0.05) and a trend toward a greater rate of rise in MBV (vasodilation; 1.61 +/- 0.29 vs. 0.96 +/- 0.21 cm.s(-1).s(-1); P = 0.08) in the older subjects. Older subjects compared with the younger subjects exhibited decreased dynamic vasoconstriction, enhanced steady-state constriction, as well as evidence for enhanced dynamic vasodilation responses to sustained alterations in forearm transmural pressure.  相似文献   

15.
Two potential mechanisms, reduced skin blood flow (SBF) and sweating rate (SR), may be responsible for elevated intestinal temperature (T(in)) during exercise after bed rest and spaceflight. Seven men underwent 13 days of 6 degrees head-down bed rest. Pre- and post-bed rest, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-bed rest supine peak exercise capacity) in a thermoneutral room. After bed rest, T(in) was elevated at rest (+0.31 +/- 0.12 degrees C) and at the end of exercise (+0.33 +/- 0.07 degrees C). Percent increase in SBF during exercise was less after bed rest (211 +/- 53 vs. 96 +/- 31%; P < or = 0.05), SBF/T(in) threshold was greater (37.09 +/- 0.16 vs. 37.33 +/- 0.13 degrees C; P < or = 0.05), and slope of SBF/T(in) tended to be reduced (536 +/- 184 vs. 201 +/- 46%/ degrees C; P = 0.08). SR/T(in) threshold was delayed (37.06 +/- 0.11 vs. 37.34 +/- 0.06 degrees C; P < or = 0.05), but the slope of SR/T(in) (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg x min-1 x cm-2 x degrees C-1) and total sweat loss (0.42 +/- 0.06 vs. 0.44 +/- 0.08 kg) were not changed. The higher resting and exercise T(in) and delayed onset of SBF and SR suggest a centrally mediated elevation in the thermoregulatory set point during bed rest exposure.  相似文献   

16.
In sedentary individuals, H(1) receptors mediate the early portion of postexercise skeletal muscle hyperemia, whereas H(2) receptors mediate the later portion. It is not known whether postexercise hyperemia also presents in endurance-trained individuals. We hypothesized that the postexercise skeletal muscle hyperemia would also exist in endurance-trained individuals and that combined blockade of H(1) and H(2) receptors would abolish the long-lasting postexercise hyperemia in trained and sedentary individuals. We studied 28 sedentary and endurance trained men and women before and through 90 min after a 60-min bout of cycling at 60% peak O(2) uptake on control and combined H(1)- and H(2)-receptor antagonist days (fexofenadine and ranitidine). We measured arterial pressure (brachial auscultation) and femoral blood flow (Doppler ultrasound). On the control day, femoral vascular conductance (calculated as flow/pressure) was elevated in all groups 60 min after exercise (sedentary men: Delta86 +/- 35%, trained men, Delta65 +/- 18%; sedentary women, Delta61 +/- 19%, trained women: Delta59 +/- 23%, where Delta is change; all P < 0.05 vs. preexercise). In contrast, on the histamine antagonist day, femoral vascular conductance was not elevated in any of the groups after exercise (sedentary men: Delta21 +/- 17%, trained men: Delta9 +/- 5%, sedentary women: Delta19 +/- 4%, trained women: Delta11 +/- 11%; all P > 0.16 vs. preexercise; all P < 0.05 vs. control day). These data suggest postexercise skeletal muscle hyperemia exists in endurance trained men and women. Furthermore, histaminergic mechanisms produce the long-lasting hyperemia in sedentary and endurance-trained individuals.  相似文献   

17.
Hypercholesterolemia and atherosclerosis have been associated with changes in the microvasculature, in particular with endothelial dysfunction. In the present study, the impact of atherogenic conditions on arteriolar vasomotor control was determined. Arteriolar [second-order (2A) and third-order (3A) arterioles; diameter range: 9-37 microm] responses during reactive hyperemia (RH) were determined in cremaster muscle of anesthetized mice. C57Bl/6 mice on normal rodent chow were used as controls and high-fat/high-cholesterol (HFC)-fed C57Bl/6 and ApoE3-Leiden mice as hypercholesterolemic mice. The HFC diet resulted in time-dependent increases in plasma cholesterol and triglyceride concentrations (P < 0.001), which were more pronounced in ApoE3-Leiden mice (P < 0.001). In control mice, inhibition of nitric oxide (NO) synthesis with Nomega-nitro-L-arginine (L-NNA) reduced baseline diameter from 17.9 +/- 1.2 to 15.9 +/- 1.3 microm (P < 0.05) and decreased the duration of RH [time to 50% (t50) of recovery: 23.3 +/- 3.6 vs. 12.5 +/- 1.3 s (P = 0.003)]. t50 was longer in 2A versus 3A arterioles (33 +/- 3 vs. 18 +/- 2 s, P < 0.001) and increased with wall shear rate at the beginning of RH in 2A arterioles only. Compared with control mice, RH duration was reduced in 2A arterioles of HFC mice (t50: 11 +/- 2 s, P < 0.001 vs. control) but not affected in 3A vessels. L-NNA did not affect baseline diameter in HFC mice and reduced t50 only in "slow" responders (t50 > or = 10 s). It is concluded that hypercholesterolemia results in an impairment of NO-mediated vasomotor control in 2A but not 3A arterioles during dynamic changes of perfusion like RH. 2A arterioles likely therefore represent the functional locus of endothelial dysfunction during atherogenic conditions.  相似文献   

18.
The purpose of this investigation was to assess the interactive influence of sympathetic activation and supplemental nitric oxide (NO) on brachial artery distensibility vs. its diameter. It was hypothesized that 1) sympathetic activation and NO competitively impact muscular conduit artery (brachial artery) mechanics, and 2) neurogenic constrictor input affects conduit vessel stiffness independently of outright changes in conduit vessel diastolic diameter. Lower body negative pressure (LBNP) and a cold pressor stress (CPT) were used to study the changes in conduit vessel mechanics when the increased sympathetic outflow occurred with and without changes in heart rate (LBNP -40 vs. -15 mmHg) and blood pressure (CPT vs. LBNP). These maneuvers were performed in the absence and presence of nitroglycerin. Neither LBNP nor CPT altered brachial artery diastolic diameter; however, distensibility was reduced by 25 to 54% in each reflex (all P < 0.05). This impact of sympathetic activation on brachial artery distensibility was not altered by nitroglycerin supplementation (21-54%; P < 0.05), although baseline diameter was increased by the exogenous NO (P < 0.05). The results indicate that sympathetic excitation can reduce the distensibility of the brachial artery independently of concurrent changes in diastolic diameter, heart rate, and blood pressure. However, exogenous NO did not minimize or reverse brachial stiffening during sympathetic activation. Therefore, sympathetic outflow appears to impact the stiffness of this conduit vessel rather than its diastolic diameter or, by inference, its local resistance to flow.  相似文献   

19.
Previous studies suggest that women experience less vascular occlusion than men when generating the same relative contractile force. This study examined forearm blood flow (FBF) in women and men during isometric handgrip exercise requiring the same relative force. Thirty-eight subjects [20 women and 18 men, 22.8 +/- 0.6 yrs old (means +/- SE)] performed low- and moderate-force handgrip exercise on two occasions. Subjects performed five maximum voluntary contractions (MVC) before exercise to determine 20% and 50% MVC target forces. Time to task failure (TTF) was determined when the subject could not maintain force within 5% of the target force. Mean blood velocity was measured in the brachial artery with the use of Doppler ultrasonography. Arterial diameter was measured at rest and used to calculate absolute FBF (FBFa; ml/min) and relative FBF (FBFr; ml.min(-1).100 ml(-1)). Women generated less (P < 0.05) absolute maximal force (208 +/- 10 N) than men (357 +/- 17 N). The TTF was longer (P < 0.05) at 20% MVC for women (349 +/- 32 s) than for men (230 +/- 23 s), but no difference between the sexes was observed at 50% MVC (women: 69 +/- 5 s; men: 71 +/- 8 s). FBFa and FBFr increased (P < 0.05) from rest to TTF in both women and men during 20% and 50% MVC trials. FBFr was greater in women than in men at > or =30% TTF during 50% MVC. At exercise durations > or =60% of TTF, FBFa was lower (P < 0.05) in women than in men during handgrip at 20% MVC. Despite the longer exercise duration for women at the lower contraction intensity, FBFr was similar between the sexes, suggesting that muscle perfusion is matched to the exercising muscle mass independent of sex.  相似文献   

20.
Sex differences in fatigue resistance of the adductor pollicis (AP) muscle were studied in 24 older adults who were divided into three groups: 12 older men (69.8 +/- 4.60 years), 6 older women not on hormone replacement therapy (HRT) (70.2 +/- 4.02 years), and 6 older women on HRT (68.7 +/- 6.47 years). Fatigue in the AP muscle was induced using an intermittent (5 s contraction, 5 s rest) submaximal voluntary contraction (50% of maximal voluntary contraction (MVC)) protocol, which was continued until exhaustion (i.e., when subjects could either no longer maintain a 5-s contraction at 50% MVC or when the MVC was deemed to be lower than the target force). There was no effect of HRT on MVC or time to fatigue (TTF); therefore, the older women were pooled as one subject group. At baseline, men were stronger than women for MVC (75.9 +/- 18.8 N in men vs. 56.8 +/- 10.0 N in women; P < 0.05) and evoked twitch force (7.3 +/- 1.7 N in men vs. 5.2 +/- 0.8 N in women; P < 0.05). There was no difference in TTF between men and women (14.77 +/- 7.06 min in men vs. 11.53 +/- 4.91 min in women; P > 0.20), nor was there a significant relationship between baseline muscle force and TTF (r = 0.14). There was also no difference in the pattern of fatigue and recovery between the men and women. These results suggest that there is no difference in endurance or fatigue characteristics of the AP muscle in men and women over the age of 65 years, and that baseline muscle force does not predict fatigue resistance in this muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号