首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental flume is described which can be used as a tool to assess whether a vegetated marsh surface is a source or sink for nutrients via tidal inundation. An initial calibration study (two tidal cycles) was conducted to determine the optimum sampling design and aid in model development for flux calculations. A statistical analysis of the data showed a negligible concentration difference as a function of water depth for most of the constituents analyzed. This coupled with the low tidal velocities over the marsh surface (<1.5cm/s) suggested that a volumetric model was adequate for calculations of instantaneous discharge and nutrient flux through any station perpendicular to tidal flow. The resultant instantaneous mass flux calculations showed that water discharge was one of the dominant factors controlling the movement of material. A sine-cosine statistical model utilizing the main tidal periodicities was designed to: (1) model the instantaneous fluxes, (2) calculate the average net flux of suspended and dissolved materials, and (3) test the hypothesis that the average net flux equals zero versus a two-sided alternative using a standard regression t-test.  相似文献   

2.
城市物质代谢的生态效率——以深圳市为例   总被引:4,自引:0,他引:4  
张妍  杨志峰 《生态学报》2007,27(8):3124-3131
城市可持续发展研究的关键是城市物质代谢通量及其效率研究,但物质代谢通量仅能反映代谢速率,而其生态效率则能反映支持社会经济发展的物质代谢能力。从工业、生活的源头循环(减少原生资源的消耗)和末端循环(减少污染物的产生)角度,构建城市物质代谢生态效率的度量模型,并依据中国城市化发展进程,选定深圳市作为研究区,核算城市水、能量和废物代谢通量以及代谢的生态效率。结果表明:随着深圳市社会经济的快速发展,水、能源和废物代谢通量呈现出增长势头,但代谢的生态效率不断提高。1998~2004年间,GDP增长2.7倍,城市水和电的代谢通量分别增长1.5倍和3.0倍;工业增加值增长3.7倍,工业水、电、能源和废物的代谢通量分别增长1.9、3.5、2.7倍和2.0倍;常住人口增长1.5倍,居民水和电的代谢通量分别增长1.8倍和1.7倍;资源效率提高1.8倍,环境效率提高3.7倍,生态效率提高2.3倍。虽然深圳市物质代谢的生态效率在提高,但是随着物质资源的日益稀缺,物质代谢的生态效率仍需进一步提高,而提高城市物质代谢生态效率的关键是资源效率和环境效率的协同发展,以及逐步构建废物资源化的循环链条。  相似文献   

3.
With the increasingly competitive commercial production of target proteins by hybridoma and genetically engineered cells, there is an urgent requirement for biosensors to monitor and control on-line and in real time the growth of cultured cells. Since growth is accompanied by an enthalpy change, heat dissipation measured by calorimetry could act as an index for metabolic flow rate. Recombinant CHO cell suspensions producing interferon-γ were pumped to an on-line flow calorimeter. The results showed that an early reflection of metabolic change is size-specific heat flux obtained from dividing heat flow rate by the capacitance change of the cell suspension, using the on-line probe of a dielectric spectroscope. Comparison of heat flux with glucose and glutamine fluxes indicated that the former most accurately reflected decreased metabolic activity. Possibly this was due to accumulation of lactate and ammonia resulting from catabolic substrates being used as biosynthetic precursors. Thus, the heat flux probe is an ideal on-line biosensor for fed-batch culture. A stoichiometric growth reaction was formulated and data for material and heat fluxes incorporated into it. This showed that cell demand for glucose and glutamine was in the stoichiometric ratio of ∼3:1 rather than the ∼5:1 in the medium. It was demonstrated that the set of stoichiometric coefficients in the reaction were related through the extent of reaction (advancement) to overall metabolic activity (flux). The fact that this approach can be used for medium optimisation is the basis for an amino-acid-enriched medium which improved cell growth while decreasing catabolic fluxes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Zhang Y  Yang Z F 《农业工程》2007,27(8):3124-3131
The keys of studying urban sustainable development are material metabolism flux and efficiency. Metabolism flux of urban materials can only reflect the metabolism velocity, while its eco-efficiency can determine the metabolism capacity to support socio-economic development. The general model and the measure model of the eco-efficiency were set up, based on the source recycle (decreasing the consumption of crude resources) and the terminal recycle (decreasing the discharge of pollutants) of production and life. These models were employed to study material metabolism flux and efficiency in Shenzhen, China. Results showed that water, energy and waste metabolism fluxes have increased since 1998 with constant socio-economic development, and their eco-efficiencies have also increased rapidly. When GDP rose by 2.7 times, the metabolism fluxes of urban water and electricity rose by 1.5 and 3.0 times, respectively. When the added value of industry rose by 3.7 times, the metabolism fluxes of industrial water, electricity, energy and waste rose by 1.9, 3.5, 2.7 and 2.0 times, respectively. When population rose by 1.5 times, the metabolism fluxes of residential water and electricity rose by 1.8 and 1.7 times, respectively. During the period, the resource efficiency, environmental efficiency and eco-efficiency rose by 1.8, 3.7 and 2.3 times, respectively. Whereas the efficiency of material metabolism has been improved in Shenzhen, the scarcity of material resources has become more and more serious. Therefore, it is necessary to further improve the efficiency of material metabolism. The keys of improving the eco-efficiency of urban material metabolism are the increasing of resource and environmental efficiencies, and the establishing of the recycling chain of re-utilization of waste resources.  相似文献   

5.
The keys of studying urban sustainable development are material metabolism flux and efficiency. Metabolism flux of urban materials can only reflect the metabolism velocity, while its eco-efficiency can determine the metabolism capacity to support socio-economic development. The general model and the measure model of the eco-efficiency were set up, based on the source recycle (decreasing the consumption of crude resources) and the terminal recycle (decreasing the discharge of pollutants) of production and life. These models were employed to study material metabolism flux and efficiency in Shenzhen, China. Results showed that water, energy and waste metabolism fluxes have increased since 1998 with constant socio-economic development, and their eco-efficiencies have also increased rapidly. When GDP rose by 2.7 times, the metabolism fluxes of urban water and electricity rose by 1.5 and 3.0 times, respectively. When the added value of industry rose by 3.7 times, the metabolism fluxes of industrial water, electricity, energy and waste rose by 1.9, 3.5, 2.7 and 2.0 times, respectively. When population rose by 1.5 times, the metabolism fluxes of residential water and electricity rose by 1.8 and 1.7 times, respectively. During the period, the resource efficiency, environmental efficiency and eco-efficiency rose by 1.8, 3.7 and 2.3 times, respectively. Whereas the efficiency of material metabolism has been improved in Shenzhen, the scarcity of material resources has become more and more serious. Therefore, it is necessary to further improve the efficiency of material metabolism. The keys of improving the eco-efficiency of urban material metabolism are the increasing of resource and environmental efficiencies, and the establishing of the recycling chain of re-utilization of waste resources.  相似文献   

6.
Wetlands, and peatlands in particular, are important sources of methylmercury (MeHg) to susceptible downstream ecosystems and organisms, but very little work has addressed MeHg production and export from peatland-dominated watersheds during the spring snowmelt. Through intensive sampling, hydrograph separation, and mass balance, this study investigated the total mercury (THg) and MeHg fluxes from two upland–peatland watersheds in Minnesota, USA during the 2005 spring snowmelt and proportionally attributed these fluxes to either peatland runoff or upland runoff. Between 26% and 39% of the annual THg flux and 22–23% of the annual MeHg flux occurred during the 12-days snowmelt study period, demonstrating the importance of large hydrological inputs to the annual mercury flux from these watersheds. Upland and peatland runoff were both important sources of THg in watershed export. In contrast to other research, our data show that peatland pore waters were the principal source of MeHg to watershed export during snowmelt. Thus, despite cold and mostly frozen surface conditions during the snowmelt period, peatland pore waters continued to be an important source of MeHg to downstream ecosystems.  相似文献   

7.
Tomales Bay, a graben structure along the San Andreas Fault, was selected for modeling ecosystem nutrient dynamics because of its linear, one-dimensional morphology and relatively pristine state. Groundwater is a potentially important term in the nutrient budget. The geologic complexities created by the San Anreas Fault, however, complicate the hydrogeology and require the area to be subdivided into three regions: granite to the west, Franciscan Formation to the east, and alluvial fill in the trough. Nutrient concentrations in the groundwater were determined through extensive well sampling; groundwater discharge was estimated using both Darcy's Law calculations and a soil moisture budget. Results indicate that groundwater discharge is of the same order of magnitude as summer streamflow into the Bay, while being significantly less than other freshwater inputs in winter. Dissolved nutrient (phosphate, nitrate + nitrite, ammonium, silica and DIC) concentrations in groundwater were consistently higher (by as much as an order of magnitude) than in surface water discharges. During the summer months, groundwater flow contributes about as much nutrient load to the bay as does streamflow. During the winter, the groundwater contribution to nutrient loading is about 20% of the streamflow contribution. Our findings indicate that groundwater is a significant component of terrestrial nutrient and freshwater loading to Tomales Bay, particularly so during the summer months. However, neither groundwater nor streamflow nutrient fluxes are large in comparison to the mixing flux at the bay mouth or the flux of N2 gas across the air-water interface.  相似文献   

8.
This paper represents the first continuous dissolved organic carbon (DOC) record, measured in a stream draining an Atlantic blanket bog in South West Ireland for the calendar year 2007. At 30-min intervals, the DOC concentration was automatically measured using an in-stream spectroanalyser whose variation compared well with laboratory analysed samples taken by a 24-bottle auto-sampler. The concentration of DOC ranged from 2.7 to 11.5 mg L?1 with higher values during the summer and lower values during the winter. A simple linear regression model of DOC concentration versus air temperature of the previous day was found, suggesting that temperature more than discharge was controlling the DOC concentration in the stream. The change in DOC concentration with storm events showed two patterns: (1) in the colder period: the DOC concentration seemed to be independent of changes in stream flow; (2) in the warmer period: the DOC concentration was found to rise with increases in stream flow on some occasions and to decrease with increasing stream flow on other occasions. The annual export of DOC for 2007 was 14.1 (±1.5) g C m?2. This value was calculated using stream discharge data that were determined by continuously recorded measurements of stream height. The flux of DOC calculated with the 30-min sampling was compared with that calculated based on lower sampling frequencies. We found that sampling frequency of weekly or monthly were adequate to calculate the annual flux of DOC in our study site in 2007.  相似文献   

9.
During the Late Miocene the Mediterranean experienced a period of extreme salinity fluctuations known as the Messinian Salinity Crisis (MSC). The causes of these high amplitude changes in salinity are not fully understood but are thought to be the result of restriction of flow between the Mediterranean and Atlantic, eustatic sea level change and climate. Results from a new Atmospheric General Circulation Model (AGCM) simulation of Late Miocene climate for the Mediterranean and adjacent regions are presented here. The model, HadAM3, was forced by a Late Miocene global palaeogeography, higher CO2 concentrations and prescribed sea surface temperatures. The results show that fluvial freshwater fluxes to the Mediterranean in the Late Miocene were around 3 times greater than for the present day. Most of this water was derived from North African rivers, which fed the Eastern Mediterranean. This increase in runoff arises from a northward shift in the intertropical convergence zone caused by a reduced latitudinal gradient in global sea surface temperatures. The northwards drainage of the Late Miocene Chad Basin also contributes. Numerical models designed to explore Late Miocene salt precipitation regimes in the Mediterranean, which typically make use of river discharge fluxes within a few tens of percent of present-day values, may therefore be grossly underestimating these fluxes.Although the AGCM simulated Late Miocene river discharge is high, the model predicts a smaller net hydrologic budget (river discharge plus precipitation minus evaporation) than for present day. We discuss a possible mechanism by which this change in the hydrologic budget, coupled with a reduced connection between the Mediterranean and the global ocean, could cause the salinity fluctuations of the MSC.  相似文献   

10.
Abscisic acid concentrations and fluxes in droughted conifer saplings   总被引:7,自引:1,他引:6  
We present the first study of abscisic acid (ABA) concentrations and fluxes in the xylem sap of conifers during a drought cycle. In both Pinus sylvestris and Picea sitchensis the concentration of ABA in the sap rose 11-fold as the drought progressed. There were clear diurnal trends in this concentration, which reached its maximum (6–8.ininol ABA m?3) near the middle of the day. The fluxes of ABA were calculated by multiplying the xylem ABA concentration by the sap flow rate. The ABA fluxes in the droughted plants in the middle of the day were usually no higher than those of the controls, as a result of the very low sap flow in the droughted plants at that time. However, the ABA flux in the droughted plants was higher than in the controls in the morning, and we postulate that the stomata are responding to these ‘morning doses’ Stomatal conductance, gs, could not be related statistically to leaf turgor or to the ABA flux. However, £s did display a negative exponential relationship with ABA concentration in the xylem. Pinus displayed more acclimation to drought than Picea, Its ABA concentration rose and its stomatal conductance fell at day 6 of the drought, as opposed to day 17 for Picea, and its osmotic potential fell during the drought treatment.  相似文献   

11.
Natural soil pipes, which have been widely reported in peatlands, have been shown to contribute significantly to total stream flow. Here, using measurements from eight pipe outlets, we consider the role of natural pipes in the transport of fluvial carbon within a 17.4‐ha blanket‐peat‐covered catchment. Concentrations of dissolved and particulate organic carbon (DOC and POC) from pipe waters varied greatly between pipes and over time, ranging between 5.3 and 180.6 mg L?1 for DOC and 0.08 and 220 mg L?1 for POC. Pipes were important pathways for peatland fluvial carbon export, with fluxes varying between 0.6 and 67.8 kg yr?1 (DOC) and 0.1 and 14.4 kg yr?1 (POC) for individual pipes. Pipe DOC flux was equivalent to 20% of the annual DOC flux from the stream outlet while the POC flux from pipes was equivalent to 56% of the annual stream POC flux. The proportion of different forms of aquatic carbon to total aquatic carbon flux varied between pipes, with DOC ranging between 80.0% and 91.2%, POC from 3.6% to 17.1%, dissolved CO2‐C from 2.4% to 11.1% and dissolved CH4‐C from 0.004% to 1.3%. The total flux of dissolved CO2‐C and CH4‐C scaled up to all pipe outlets in the study catchment was estimated to be 89.4 and 3.6 kg yr?1 respectively. Overall, pipe outlets produced discharge equivalent to 14% of the discharge in the stream but delivered an amount of aquatic carbon equivalent to 22% of the aquatic carbon flux at the catchment outlet. Pipe densities in blanket peatlands are known to increase when peat is affected by drainage or drying. Hence, environmental change in many peatlands may lead to an increase in aquatic carbon fluxes from natural pipes, thereby influencing the peatland carbon balance and downstream ecological processes.  相似文献   

12.
Error propagation from prime variables into specific rates and metabolic fluxes was quantified for high‐concentration CHO cell perfusion cultivation. Prime variable errors were first determined from repeated measurements and ranged from 4.8 to 12.2%. Errors in nutrient uptake and metabolite/product formation rates for 5–15% error in prime variables ranged from 8–22%. The specific growth rate, however, was characterized by higher uncertainty as 15% errors in the bioreactor and harvest cell concentration resulted in 37.8% error. Metabolic fluxes were estimated for 12 experimental conditions, each of 10 day duration, during 120‐day perfusion cultivation and were used to determine error propagation from specific rates into metabolic fluxes. Errors of the greater metabolic fluxes (those related to glycolysis, lactate production, TCA cycle and oxidative phosphorylation) were similar in magnitude to those of the related greater specific rates (glucose, lactate, oxygen and CO2 rates) and were insensitive to errors of the lesser specific rates (amino acid catabolism and biosynthesis rates). Errors of the lesser metabolic fluxes (those related to amino acid metabolism), however, were extremely sensitive to errors of the greater specific rates to the extent that they were no longer representative of cellular metabolism and were much less affected by errors in the lesser specific rates. We show that the relationship between specific rate and metabolic flux error could be accurately described by normalized sensitivity coefficients, which were readily calculated once metabolic fluxes were estimated. Their ease of calculation, along with their ability to accurately describe the specific rate‐metabolic flux error relationship, makes them a necessary component of metabolic flux analysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
We performed a meta-data analysis to investigate the importance of event based fluxes to DOC export from forested watersheds. A total of 30 small eastern United States forested watersheds with no wetland component, with a total of 5,176 DOC and accompanying discharge measurements were used in this analysis. There is a clear increase in DOC concentration during hydrologic events (storms and snow melt) that follows a power relationship. We estimate that 86% of DOC is exported during events. The majority (70%) of this event based DOC flux occurs during the rising hydrograph and during large events. Events with a discharge greater than 1.38 cm day?1 make up only 4.8% of the annual hydrograph, yet are responsible for 57% of annual DOC flux. The relationship between event discharge and both DOC concentration and flux is also regulated by temperature and antecedent conditions, with a larger response in both fluxes and concentrations to events during warmer periods and periods where the preceding discharge was low. The temperature relationship also shows seasonality indicating a potential link to the size or reactivity of watershed OM pools. The 86% of DOC lost during events represents a conservative estimate of the amount of allochthonous forested DOC transported laterally to streams. Future research on watershed cycling of DOC should take into account the importance of events in regulating the transport of DOC to downstream ecosystems, determine the relative importance of abiotic versus biotic processes for the temperature regulation of event-associated DOC fluxes, and elucidate the interactions between processes that respond to climate on event versus longer time scales.  相似文献   

14.
It is hypothesized that perennial freshwater tidal wetland habitat exports inorganic and organic material needed to support the estuarine food web and to create favorable habitat for aquatic organisms in San Francisco Estuary. It is also hypothesized that most of the material flux in this river-dominated region is controlled by river flow. The production and export of material by Liberty Island were measured and compared using discrete monthly and continuous (15 min) measurements of a suite of inorganic and organic materials and flow between 2004 and 2005. Seasonal material flux was estimated from monthly discrete data for inorganic nutrients, suspended solids and salts, organic carbon and nitrogen and phytoplankton and zooplankton group carbon and chlorophyll a and pheophytin pigment. Estimates of material flux from monthly values were compared with measured daily material flux values for chlorophyll a concentration, salt and suspended solids obtained from continuous measurements (15 min) using YSI water quality sondes. Phytoplankton carbon produced within the wetland was estimated by in situ primary productivity. Most inorganic and organic materials were exported from the wetland on an annual basis, but the magnitude and direction varied seasonally. Dissolved inorganic nutrients such as nitrate, soluble phosphorus, total phosphorus and silica as well as total suspended solids were exported in the summer while total and dissolved organic carbon were exported in the winter. Salts like chloride and bromide were exported in the fall. Chlorophyll a and pheophytin were exported in the fall and associated with diatom and cyanobacteria carbon. Mesozooplankton carbon was dominated by calanoid copepods and exported most of the year except summer. Continuous sampling revealed high hourly and daily variation in chlorophyll a, salt and total suspended solids flux due to high frequency changes in concentration and tidal flow. In fact, tidal flow rather than river discharge was responsible for 90% or more of the material flux of the wetland. These studies indicate that freshwater tidal wetlands can be a source of inorganic and organic material but the export of material is highly variable spatially and temporally, varies most closely with tidal flow and requires high frequency measurements of both tidal flow and material concentration for accurate estimates.  相似文献   

15.
A system was set up to provide direct exposure of cells cultured in vitro to radon and its decay products. Radon gas emanating from a uranium source was introduced at a measured concentration in a closed 10-m(3) exposure chamber. Cells were cultured on the microporous membrane of an insert that was floating over the culture medium in a six-well cluster plate. Plates with cells were placed in an open thermoregulated bath within the chamber. Under these conditions, cells were irradiated by direct deposition of radon and radon decay products. During exposure, all parameters, including radon gas concentrations, decay product activities, and potential alpha-particle energy concentrations, were determined by periodic air-grab samplings inside the chamber. The energy spectrum of deposited decay products was characterized. An estimation of alpha-particle flux density on the area containing cells was performed using CR-39 detector films that were exposed in cell-free wells during the cell exposure. The number of alpha-particle traversals per cell was deduced both from the mean number of CR-39 tracks per surface unit and from measurements of entire cells or nuclear surfaces. This paper describes the design of experiment, the dosimetry of radon and radon decay product, and the procedures for aerosol measurements. Our preliminary data show the usefulness of the in vitro cell culture approach to the study of the early cellular effects of radon and its decay products.  相似文献   

16.
Geothermal heat fluxes into the deepest waters of four caldera lakes were measured. Temperature profiles within the stratification period between July and November 2007 allowed a quantification of the acquired heat. Due to their enormous depth, heat input from the lake bed was locally separated from heat fluxes at the surface. In conclusion, a direct measurement of geothermal heat input could be accomplished. Although enhanced geothermal activity could be suspected in all cases, two lakes showed a geothermal heat flux of 0.29 or 0.27 W/m2 (Lake Shikotsu and Lake Tazawa), as found in other regions not affected by volcanism, while both other lakes (Lake Kuttara and Lake Towada) showed a greatly enhanced heat input of 1 or 18.6 W/m2, respectively. In conclusion, within our investigated set, all lakes acquired more heat from the underground than the continental heat flux average. Hence, the heat flux into the lakes from the ground was not dominated by the temperature gradient implied by the inner heat of the earth. Other effects like the general temperature difference of deep lake water and the groundwater or local sources of heat in the underground deliver more important contributions. Obviously the flow of water in the underground can play a decisive role in the heat transport into the deep waters of lakes.  相似文献   

17.
Groundwater and pore water inputs to the coastal zone   总被引:13,自引:0,他引:13  
Both terrestrial and marine forces drive underground fluid flows in the coastal zone. Hydraulic gradients on land result in groundwater seepage near shore and may contribute to flows further out on the shelf from confined aquifers. Marine processes such as tidal pumping and current-induced pressure gradients may induce interfacial fluid flow anywhere on the shelf where permeable sediments are present. The terrestrial and oceanic forces overlap spatially so measured fluid advection through coastal sediments may be a result of composite forcing. We thus define “submarine groundwater discharge” (SGD) as any and all flow of water on continental margins from the seabed to the coastal ocean, regardless of fluid composition or driving force. SGD is typically characterized by low specific flow rates that make detection and quantification difficult. However, because such flows occur over very large areas, the total flux is significant. Discharging fluids, whether derived from land or composed of re-circulated seawater, will react with sediment components. These reactions may increase substantially the concentrations of nutrients, carbon, and metals in the fluids. These fluids are thus a source of biogeochemically important constituents to the coastal ocean. Terrestrially-derived fluids represent a pathway for new material fluxes to the coastal zone. This may result in diffuse pollution in areas where contaminated groundwaters occur. This paper presents an historical context of SGD studies, defines the process in a form that is consistent with our current understanding of the driving forces as well as our assessment techniques, and reviews the estimated global fluxes and biogeochemical implications. We conclude that to fully characterize marine geochemical budgets, one must give due consideration to SGD. New methodologies, technologies, and modeling approaches are required to discriminate among the various forces that drive SGD and to evaluate these fluxes more precisely.  相似文献   

18.
Metabolic processes result in the release and exchange of H and O atoms from organic material as well as some inorganic salts and gases. These fluxes of H and O atoms into intracellular water result in an isotopic gradient that can be measured experimentally. Using isotope ratio mass spectroscopy, we revealed that slightly over 50% of the H and O atoms in the intracellular water of exponentially-growing cultured Rat-1 fibroblasts were isotopically distinct from growth medium water. We then employed infrared spectromicroscopy to detect in real time the flux of H atoms in these same cells. Importantly, both of these techniques indicate that the H and O fluxes are dependent on metabolic processes; cells that are in lag phase or are quiescent exhibit a much smaller flux. In addition, water extracted from the muscle tissue of rats contained a population of H and O atoms that were isotopically distinct from body water, consistent with the results obtained using the cultured Rat-1 fibroblasts. Together these data demonstrate that metabolic processes produce fluxes of H and O atoms into intracellular water, and that these fluxes can be detected and measured in both cultured mammalian cells and in mammalian tissue.  相似文献   

19.
Jouanneau  J. M.  Latouche  C. 《Hydrobiologia》1982,91(1):23-29
Evaluation of the quantity of estuarine flux material carried into the ocean, is difficult. High tides produce major oscillations in ocean waters and suspended matter (S.M.) near river mouths and, therefore, direct measurements at the river outlet do not represent real expulsions of S.M. The temperate climate, characterised by important seasonal variations throughout the year, induces significant hydrologic variations and consequently material fluxes into the ocean. Hence, it is difficult to represent measurements with respect to the time, season and especially the year, during which they take place.The Gironde estuary is a good example of this type of estuary, and shows that the evaluation of flux material can only be made from the following equation: expulsion = fluviatile inputs-deposits. Measurements are made from the fluxes of S.M. and from a few metals such as Zn, Cu, and Pb.It took three consecutive years (1976–1979) to carry out our measurements, which helped us to develop a general idea of the chief components of the system and to determine the flux variations.According to the results, important variations occur from year to year, particularly as far as S. M. is concerned. The estuary, thanks to its significant oscillating stock of S.M. (turbidity maximum), behaves as a regulator for the metals. In a surplus year it acts as a sink, and in a deficit year it acts as a source.  相似文献   

20.
Clear-cutting considerably alters the flow of nutrients through the forest ecosystem. These changes are reflected in soil solution concentrations and fluxes. The effects of clear-cutting (stems only) on the fluxes of water soluble phosphorus (P), sulphur (S) and base cations (Ca, Mg and K) through a podzolic soil were studied in a Norway spruce dominated mixed boreal forest in eastern Finland. Bulk deposition, total throughfall (throughfall + stemflow) and soil percolate from below the organic (O), eluvial (E) and illuvial (B) horizons were collected for 4 years before and for 3 years after cutting. Annual deposition loads (kg ha–1) to the forest floor were less after clear-cutting, averaging 1.7 S, 0.84 Ca, 0.14 Mg, 0.64 K and 0.10 P. Before cutting, the loads were 4.6 S, 2.7 Ca, 0.70 Mg, 6.2 K and 0.20 P. Annual fluxes of total S and sulphate (SO 4 2– ) from below the O-horizon were also lower (33%) after clear-cutting, total S averaging 2.0 kg ha–1, the flux from below the B-horizon also diminished after clear-cutting. The flux of total P (mainly inorganic) from below the O-horizon increased threefold (6.9 kg ha–1; sum over the 3-year period) compared to period before cutting. The fluxes of base cations from below the O-horizon increased twofold. The flux of K+ from below the O- and E-horizons was most strongly correlated with that of phosphate (PO 4 3– ) and those of Ca2+ and Mg2+ with the DOC flux. Increased fluxes of P and base cations to the mineral soil generated only slightly increased fluxes from below the B-horizon. The retention of base cations and P in the mineral soil indicates there was little change in leaching to ground and surface waters after clear-cutting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号