共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Li Z Takakura N Oike Y Imanaka T Araki K Suda T Kaname T Kondo T Abe K Yamamura K 《Development, growth & differentiation》2003,45(5-6):449-462
The qkI gene encodes an RNA binding protein which was identified as a candidate for the classical neurologic mutation, qkv. Although qkI is involved in glial cell differentiation in mice, qkI homologues in other species play important roles in various developmental processes. Here, we show a novel function of qkI in smooth muscle cell differentiation during embryonic blood vessel formation. qkI null embryos died between embryonic day 9.5 and 10.5. Embryonic day 9.5 qkI null embryos showed a lack of large vitelline vessels in the yolk sacs, kinky neural tubes, pericardial effusion, open neural tubes and incomplete embryonic turning. Using X-gal and immunohistochemical staining, qkI is first shown to be expressed in endothelial cells and smooth muscle cells. Analyses of qkI null embryos in vivo and in vitro revealed that the vitelline artery was too thin to connect properly to the yolk sac, thereby preventing remodeling of the yolk sac vasculature, and that the vitelline vessel was deficient in smooth muscle cells. Addition of QKI and platelet-endothelial cell adhesion molecule-1 positive cells to an in vitro para-aortic splanchnopleural culture of qkI null embryos rescued the vascular remodeling deficit. These data suggest that QKI protein has a critical regulatory role in smooth muscle cell development, and that smooth muscle cells play an important role in inducing vascular remodeling. 相似文献
3.
4.
Tissue engineering of blood vessel 总被引:4,自引:0,他引:4
Vascular grafts are in large demand for coronary and peripheral bypass surgeries. Although synthetic grafts have been developed, replacement of vessels with purely synthetic polymeric conduits often leads to the failure of such graft, especially in the grafts less than 6 mm in diameter or in the areas of low blood flow, mainly due to the early formation of thrombosis. Moreover, the commonly used materials lack growth potential, and long-term results have revealed several material-related failures, such as stenosis, thromboembolization, calcium deposition and infection. Tissue engineering has become a promising approach for generating a bio-compatible vessel graft with growth potential. Since the first success of constructing blood vessels with collagen and cultured vascular cells by Weinberg and Bell, there has been considerable progress in the area of vessel engineering. To date, tissue- engineered blood vessels (TEBVs) could be successfully constructed in vitro, and be used to repair the vascular defects in animal models. This review describes the major progress in the field, including the seeding cell sources, the biodegradable scaffolds, the construction technologies, as well as the encouraging achievements in clinical applications. The remaining challenges are also discussed. 相似文献
5.
Mesaeli N Nakamura K Zvaritch E Dickie P Dziak E Krause KH Opas M MacLennan DH Michalak M 《The Journal of cell biology》1999,144(5):857-868
6.
Hari H. P. Cohly James W. Stephens Michael F. Angel James C. Johnson Angel K. Markov 《In vitro cellular & developmental biology. Animal》1999,35(9):510-514
Summary Both smooth muscle cells and endothelial cells play an important role in vascular wound healing. To elucidate the role of
fructose-1, 6-diphosphate, cell proliferation and cell migration studies were performed with human endothelial cells and rat
smooth muscle cells. To mimic blood vessels, endothelial and smooth muscle cells were used in 1:10, 1:5, and 1:1 concentrations,
respectively, mimicking large-, mid-, and capillary-sized blood vessels. Cell migration was studied with fetal bovine serum-starved
cells. For cell proliferation assay, cells were plated at 30–50% confluency and then starved. The cells were incubated for
48 h with fructose-1, 6-diphosphate at (per ml) 10 mg, 1 mg, 500 μg, 250 μg, 100 μg, and 10 μg, pulsed with tritiated-thymidine
and incubated with 1 N NaOH for 30 min at room temperature, harvested, and counted. For migration assay, confluent cells were starved, wounded,
and incubated for 24 h with same concentrations of fructose-1, 6-diphosphate as in proliferation assay. The cells were fixed
and counted. Smooth muscle cell proliferation was inhibited by fructose-1, 6-diphosphate at 10 mg/ml. In the xenograft models
of 1:10, 1:5, and 1:1 fructose-1, 6-diphosphate inhibited proliferation at 10 mg/ml. In migration studies 10 mg fructose-1,
6-diphosphate per ml was inhibitory to both cell types. In large-, mid-, and capillary-sized blood vessels, fructose-1, 6-diphosphate
inhibited proliferation of both cell types at 10 mg/ml. At the individual cell level, fructose-1, 6-diphosphate is nonstimulatory
to proliferation of endothelial cells while inhibiting migration, and it acts on smooth muscle cells by inhibiting both proliferation
and migration. 相似文献
7.
Nguyen VA Fürhapter C Obexer P Stössel H Romani N Sepp N 《Journal of cellular and molecular medicine》2009,13(3):522-534
The existence of endothelial progenitor cells (EPC) with high cell-cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC-derived cells generated from cord blood CD34+ cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM-1), CD105 (endoglin), CD144 (VE-cadherin), Tie-1, Tie-2, VEGFR-1/Flt-1 and VEGFR-2/Flk-1. Few EPC-derived cells became positive for LYVE-1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell-specific markers such as podoplanin and Prox-1. Functional tests demonstrated that the cobblestone EPC-derived cells up-regulated CD54 and CD62E expression in response to TNF-α, incorporated DiI-acetylated low-density liproprotein and formed cord- and tubular-like structures with capillary lumen in three-dimensional collagen culture – all characteristic features of the vascular endothelium. Structures compatible with Weibel-Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC-derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system. 相似文献
8.
Blood vessel development is in part regulated by pericytes/presumptive vascular smooth muscle cells (PC/pvSMCs). Here, we demonstrate that interactions between PC/pvSMCs and extracellular matrix play a critical role in this event. We show that the cranial vessels in alpha4 integrin-deficient mouse embryos at the stage of vessel remodeling are increased in diameter. This defect is accompanied by a failure of PC/pvSMCs, which normally express alpha4beta1 integrin, to spread uniformly along the vessels. We also find that fibronectin but not VCAM-1 is localized in the cranial vessels at this stage. Furthermore, cultured alpha4 integrin-null PC/pvSMCs plated on fibronectin display a delay in initiating migration, a reduction in migration speed, and a decrease in directional persistence in response to a polarized force of shear flow. These results suggest that specific motile activities of PC/pvSMCs regulated by mechanical signals imposed by the interstitial extracellular matrix may also be required in vivo for the distribution and function of the PC/pvSMCs during blood vessel development. 相似文献
9.
Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development 总被引:10,自引:0,他引:10 下载免费PDF全文
van Meeteren LA Ruurs P Stortelers C Bouwman P van Rooijen MA Pradère JP Pettit TR Wakelam MJ Saulnier-Blache JS Mummery CL Moolenaar WH Jonkers J 《Molecular and cellular biology》2006,26(13):5015-5022
Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.5 (E9.5) with profound vascular defects in yolk sac and embryo resembling the Galpha13 knockout phenotype. Furthermore, at E8.5, ATX-deficient embryos showed allantois malformation, neural tube defects, and asymmetric headfolds. The onset of these abnormalities coincided with increased expression of ATX and LPA receptors in normal embryos. ATX heterozygous mice appear healthy but show half-normal ATX activity and plasma LPA levels. Our results reveal a critical role for ATX in vascular development, indicate that ATX is the major LPA-producing enzyme in vivo, and suggest that the vascular defects in ATX-deficient embryos may be explained by loss of LPA signaling through Galpha13. 相似文献
10.
11.
M J Bourner W H Busby N R Siegel G G Krivi R H McCusker D R Clemmons 《Journal of cellular biochemistry》1992,48(2):215-226
Insulin-like growth factor binding proteins (IGFBPs) are secreted by several cell types and can modify IGF actions. Mandin-Darby Bovine Kidney (MDBK) cells have been shown to secrete a 34,000 Da form of IGF binding protein whose N-terminal sequence is similar to a form of IGFBP purified from rat BRL-3A cells that has recently been named IGFBP-2. These studies report the complete amino acid sequence of bovine IGFBP-2 and compare its functional properties with human IGFBP-1. The protein is 81% identical to rat IGFBP-2. When compared with both rat IGFBP-2 and human IGFBP-1, the positions of all 18 cysteine residues are conserved. Similarly an RGD sequence is present near the carboxyl terminus in both proteins. IGFBP-2 has a higher affinity for IGF-II than for IGF-I and its affinity for both forms of IGF is greater than for human IGFBP-1. Like IGFBP-1 the protein can enhance the DNA synthesis response of porcine aortic smooth muscle cells to IGF-I; however, IGFBP-2 was much less potent. The maximum potentiation of the IGF-mediated mitogenic response that could be achieved was approximately 42% that of IGFBP-1. This potentiation is dependent upon a factor contained in platelet poor plasma and if this factor is omitted from the incubation medium, IGFBP-2 inhibits DNA synthesis. The purification of IGFBP-2 will allow more detailed comparisons to be made between it and other forms of IGFBPs in physiologic test systems. 相似文献
12.
13.
A carboxylated pullulan, for use as a structural material for a number of tissue engineering applications, was synthesized and conjugated with heparin. By immobilization of heparin to pullulan, endothelial cells (ECs) attached on the heparin-conjugated pullulan were more aggregated than when attached to other pullulan derivatives. Attachments were 50, 45, 49, and 90% for a polystyrene dish, pullulan acetate, carboxylated pullulan, and heparin-conjugated pullulan, respectively. Heparin-conjugated pullulan inhibited the proliferation of smooth muscle cells (SMCs) in vitro. Heparin-conjugated pullulan material can thus be used for the proliferation of vascular ECs and to inhibit the proliferation of SMCs. 相似文献
14.
Testis-specific sulfoglycolipid, seminolipid, is essential for germ cell function in spermatogenesis
More than 90% of the glycolipid in mammalian testis consists of a unique sulfated glyceroglycolipid, seminolipid. The sulfation of the molecule is catalyzed by a Golgi membrane-associated sulfotransferase, cerebroside sulfotransferase (CST). Disruption of the Cst gene in mice results in male infertility due to the arrest of spermatogenesis prior to the metaphase of the first meiosis. However, the issue of which side of the cell function-germ cells or Sertoli cells-is deteriorated in this mutant mouse remains unknown. Our findings show that the defect is in the germ cell side, as evidenced by a transplantation analysis, in which wild-type spermatogonia expressing the green fluorescent protein were injected into the seminiferous tubules of CST-null testis. The transplanted GFP-positive cells generated colonies and spermatogenesis proceeded over meiosis in the mutant testis. The findings also clearly show that the seminolipid is expressed on the plasma membranes of spermatogonia, spermatocytes, spermatids, and spermatozoa, as evidenced by the immunostaining of wild-type testes using an anti-sulfogalactolipid antibody, Sulph-1 in comparison with CST-null testes as a negative control, and that seminolipid appears as early as day 8 of age, when Type B spermatogonia emerge. 相似文献
15.
16.
Cevallos M Riha GM Wang X Yang H Yan S Li M Chai H Yao Q Chen C 《Differentiation; research in biological diversity》2006,74(9-10):552-561
The objective of this study was to determine whether cyclic strain could promote human umbilical vein endothelial cells (HUVECs) to express markers in common with the mature smooth muscle cell (SMC) phenotype, suggesting endothelial cell to SMC transdifferentiation. HUVECs were cultured on stretched membranes at 10% stretch and 60 cycles/min for 24-96 hr, and demonstrated elongation with enhanced and organized F-actin distribution. By using real-time polymerase chain reaction analysis, the mRNA levels of five specific SMC markers, SM22-alpha, alpha-smooth muscle actin (alpha-SMA), caldesmon-1, smooth muscle myosin heavy chain (SMMHC), and calponin-1 were significantly increased in cyclic strain-treated HUVECs as compared with those in static control cells. Protein levels of SM22-alpha and alpha-SMA were also substantially increased by Western blot and immunofluorescence staining. In addition, two specific endothelial markers, von Willebrand factor (vWF) and vascular endothelial growth factor receptor-2 (VEGFR-2), showed a reduction in mRNA expression. In addition, cyclic strain-induced increase of SM22-alpha and alpha-SMA expression were reversible when cells were cultured back to the static condition. These results demonstrate a possible endothelial cell to SMC transdifferentiation in response to cyclic strain. Hemodynamic forces in modulating endothelial phenotype may play an important role in the vascular system. 相似文献
17.
Hao Liu Wenpeng Dong Zhiqi Lin Jingbo Lu Heng Wan Zhongxin Zhou Zhengjun Liu 《Molecules and cells》2013,36(2):112-118
The migration and proliferation of vascular smooth muscle cells (VSMCs) are essential elements during the development of atherosclerosis and restenosis. An increasing number of studies have reported that extracellular matrix (ECM) proteins, including the CCN protein family, play a significant role in VSMC migration and proliferation. CCN4 is a member of the CCN protein family, which controls cell development and survival in multiple systems of the body. Here, we sought to determine whether CCN4 is involved in VSMC migration and proliferation. We examined the effect of CCN4 using rat cultured VSMCs. In cultured VSMCs, CCN4 stimulated the adhesion and migration of VSMCs in a dose-dependent manner, and this effect was blocked by an antibody for integrin α5β1. CCN4 expression was enhanced by the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). Furthermore, knockdown of CCN4 by siRNA significantly inhibited the VSMC proliferation. CCN4 also could up-regulate the expression level of marker proteins of the VSMCs phenotype. Taken together, these results suggest that CCN4 is involved in the migration and proliferation of VSMCs. Inhibition of CCN4 may provide a promising strategy for the prevention of restenosis after vascular interventions. 相似文献
18.
A Novel Regulatory Mechanism for Differentiation of Mesenchymal Stem Cell: Redox State of DJ‐1 Matters 下载免费PDF全文
Hideyuki Yamawaki 《Proteomics》2018,18(1)
Reactive oxygen species (ROS) are multifunctional gas transmitters with diverse biological actions (adverse vs beneficial) dependent on their level. The differentiation of vascular stem cells into smooth muscle cells (SMCs) might be involved in the pathogenesis of cardiovascular disorders including hypertension and atherosclerosis. Therefore, controlling the differentiation of vascular stem cells is a potential strategy for the treatment of vascular diseases. Nonetheless, it remains to be revealed whether ROS could mediate the differentiation of mesenchymal stem cells (MSCs) into SMCs. In addition, there are no redox (reduction–oxidation)‐sensitive molecules identified, which are responsible for the ROS‐induced differentiation of MSCs. In article number 1700208, Baek et al. [Proteomics 2017, 17, Issue 21] found that ROS mediate the differentiation of MSCs into SMCs through the modification of redox states of a multifunctional ROS‐responsive protein, DJ‐1, revealing a novel regulatory mechanism for differentiation of MSCs into SMCs and shedding light into the future development of stem‐cell‐targeted pharmacotherapy. 相似文献
19.
Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering 下载免费PDF全文
Elham Vatankhah Molamma P. Prabhakaran Dariush Semnani Shahnaz Razavi Mohammad Morshed Seeram Ramakrishna 《Biopolymers》2014,101(12):1165-1180
Tissue engineering techniques particularly using electrospun scaffolds have been intensively used in recent years for the development of small diameter vascular grafts. However, the development of a completely successful scaffold that fulfills multiple requirements to guarantee complete vascular regeneration remains challenging. In this study, a hydrophilic and compliant polyurethane namely Tecophilic (TP) blended with gelatin (gel) at a weight ratio of 70:30 (TP(70)/gel(30)) was electrospun to fabricate a tubular composite scaffold with biomechanical properties closely simulating those of native blood vessels. Hydrophilic properties of the composite scaffold induced non‐thrombogenicity while the incorporation of gelatin molecules within the scaffold greatly improved the capacity of the scaffold to serve as an adhesive substrate for vascular smooth muscle cells (SMCs), in comparison to pure TP. Preservation of the contractile phenotype of SMCs seeded on electrospun TP(70)/gel(30) was yet another promising feature of this scaffold. The nanostructured TP(70)/gel(30) demonstrated potential feasibility toward functioning as a vascular graft. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1165–1180, 2014. 相似文献
20.
Yan‐Ling Shi Li‐Wen Wang Jian Huang Bao‐Di Gou Tian‐Lan Zhang Kui Wang 《Journal of cellular biochemistry》2009,108(5):1184-1191
A major cellular event in vascular calcification is the phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteoblast‐like cells. After demonstrating that lanthanum chloride (LaCl3) suppresses hydrogen peroxide‐enhanced calcification in rat calcifying vascular cells (CVCs), here we report its effect on the osteoblastic differentiation of rat VSMCs, a process leading to the formation of CVCs. Cells were isolated from aortic media of male SD rats, and passages between three and eight were cultured in Dulbeccol's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS) and 10 mM β‐glycerophosphate (β‐GP) in the presence or absence of LaCl3. Exposure of cells to LaCl3 suppressed the β‐GP‐induced elevations in calcium deposition, alkaline phosphatase (ALP) activity, and Cbfa1/Runx2 expression, as well as the concomitant loss of SM α‐actin. Furthermore, LaCl3 activated the phosphorylation of extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK), and the blockage of either pathway with a specific inhibitor abolished the effects of LaCl3. In addition, pretreatment of the cells with pertussis toxin (PTx), an inhibitor of G protein‐mediated signaling pathway, repealed all the changes induced by LaCl3. These findings demonstrate that LaCl3 suppresses the β‐GP‐induced osteoblastic differentiation and calcification in rat VSMCs, and its effect is mediated by the activation of both ERK and JNK MAPK pathways via PTx‐sensitive G proteins. J. Cell. Biochem. 108: 1184–1191, 2009. © 2009 Wiley‐Liss, Inc. 相似文献