首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We previously demonstrated that the ATP/PKA?dependent activation of the human intermediate conductance, Ca2+?activated K+ channel, hIK1, is dependent upon a C?terminal motif. The NH2?terminus of hIK1 contains a multi?basic 13RRRKR17 motif, known to be important in the trafficking and function of ion channels. While individual mutations within this domain have no effect on channel function, the triple mutation (15RKR17/AAA), as well as additional double mutations, result in a near complete loss of functional channels, as assessed by whole?cell patch?clamp. However, cell?surface -immunoprecipitation studies confirmed expression of these mutated channels at the plasma membrane. To elucidate the functional consequences of the 15RKR17/AAA mutation we performed inside?out patch clamp recordings where we observed no difference in Ca2+ affinity between the wild?type and mutated channels. However, in contrast to wild?type hIK1, channels expressing the 15RKR17/AAA mutation exhibited rundown, which could not be reversed by the addition of ATP. Wild-type hIK1 channel activity was reduced by alkaline phosphatase both in the presence and absence of ATP, indicative of a phosphorylation event, whereas the 15RKR17/AAA mutation eliminated this effect of alkaline phosphatase. Further, single channel analysis demonstrated that the 15RKR17/AAA mutation resulted in a four?fold lower channel open probability (Po), in the presence of saturating Ca2+ and ATP, compared to wild?type hIK1. In conclusion, these results represent the first demonstration for a role of the NH2?terminus in the second messenger?dependent regulation of hIK1 and, in -combination with our previous findings, suggest that this regulation is dependent upon a close NH2/C?terminal association.  相似文献   

2.
3.
GrpE proteins function as nucleotide exchange factors for DnaK-type Hsp70s. We have previously identified a chloroplast homolog of GrpE in Chlamydomonas reinhardtii, termed CGE1. CGE1 exists as two isoforms, CGE1a and CGE1b, which are generated by temperature-dependent alternative splicing. CGE1b contains additional valine and glutamine residues in its extreme NH2-terminal region. Here we show that CGE1a is predominant at lower temperatures but that CGE1b becomes as abundant as CGE1a at elevated temperatures. Coimmunoprecipitation experiments revealed that CGE1b had a approximately 25% higher affinity for its chloroplast chaperone partner HSP70B than CGE1a. Modeling of the structure of CGE1b revealed that the extended alpha-helix formed by GrpE NH2 termini is 34 amino acids longer in CGE1 than in Escherichia coli GrpE and appears to contain a coiled coil motif. Progressive deletions of this coiled coil increasingly impaired the ability of CGE1 to form dimers, to interact with DnaK at elevated temperatures, and to complement temperature-sensitive growth of a DeltagrpE E. coli strain. In contrast, deletion of the four-helix bundle required for dimerization of E. coli GrpE did not affect CGE1 dimer formation. Circular dichroism measurements revealed that CGE1, like GrpE, undergoes two thermal transitions, the first of which is in the physiologically relevant temperature range (midpoint approximately 45 degrees C). Truncating the NH2-terminal coiled coil shifted the second transition to lower temperatures, whereas removal of the four-helix bundle abolished the first transition. Our data suggest that bacterial GrpE and chloroplast CGE1 share similar structural and biochemical properties, but some of these, like dimerization, are realized by different domains.  相似文献   

4.
5.
Teraishi F  Zhang L  Guo W  Dong F  Davis JJ  Lin A  Fang B 《FEBS letters》2005,579(29):6681-6687
Although gemcitabine is a potent therapeutic agent in the treatment of human non-small cell lung cancer (NSCLC), resistance to gemcitabine is common. In this study, we investigated the molecular mechanisms involved in acquired gemcitabine resistance against NSCLC cells. Gemcitabine-resistant NSCLC H1299 cells (H1299/GR) were selected by long-term exposure of parental H1299 cells to gemcitabine. The median inhibitory concentrations of gemcitabine in H1299 and H1299/GR cells were 19.4 and 233.1 nM, respectively. Gemcitabine induced activation of c-Jun NH2-terminal kinase (JNK) in parental H1299 cells but not in H1299/GR cells after 48 h. Blocking JNK activation by pretreatment with SP600125, a specific JNK inhibitor, or by transfection with dominant-negative JNK vectors abrogated gemcitabine-induced apoptosis in parental H1299 cells as evidenced by interruption of caspase activation. Transient transfection with a JNKK2-JNK1 plasmid expressing constitutive JNK1 partially restored the effect of gemcitabine in H1299/GR cells. Our results indicate that gemcitabine-induced apoptosis in human NSCLC H1299 cells requires activation of the JNK signaling pathway. Attenuated JNK activation may contribute to development of acquired gemcitabine resistance in cancer cells.  相似文献   

6.
7.
Peb1 is a peroxisome biogenesis mutant isolated in Saccharomyces cerevisiae that is selectively defective in the import of thiolase into peroxisomes but has a normal ability to package catalase, luciferase and acyl-CoA oxidase (Zhang, J. W., C. Luckey, and P. B. Lazarow. 1993. Mol. Biol. Cell. 4:1351-1359). Thiolase differs from these other peroxisomal proteins in that it is targeted by an NH2-terminal, 16- amino acid peroxisomal targeting sequence type 2 (PTS 2). This phenotype suggests that the PEB1 protein might function as a receptor for the PTS2. The PEB1 gene has been cloned by functional complementation. It encodes a 42,320-D, hydrophilic protein with no predicted transmembrane segment. It contains six WD repeats that comprise the entire protein except for the first 55 amino acids. Peb1p was tagged with hemagglutinin epitopes and determined to be exclusively within peroxisomes by digitonin permeabilization, immunofluorescence, protease protection and immuno-electron microscopy (Zhang, J. W., and P. B. Lazarow. 1995. J. Cell Biol. 129:65-80). Peb1p is identical to Pas7p (Marzioch, M., R. Erdmann, M. Veenhuis, and W.-H. Kunau. 1994. EMBO J. 13: 4908-4917). We have now tested whether Peb1p interacts with the PTS2 of thiolase. With the two-hybrid assay, we observed a strong interaction between Peb1p and thiolase that was abolished by deleting the first 16 amino acids of thiolase. An oligopeptide consisting of the first 16 amino acids of thiolase was sufficient for the affinity binding of Peb1p. Binding was reduced by the replacement of leucine with arginine at residue five, a change that is known to reduce thiolase targeting in vivo. Finally, a thiolase-Peb1p complex was isolated by immunoprecipitation. To investigate the topogenesis of Peb1p, its first 56-amino acid residues were fused in front of truncated thiolase lacking the NH2-terminal 16-amino acid PTS2. The fusion protein was expressed in a thiolase knockout strain. Equilibrium density centrifugation and immunofluorescence indicated that the fusion protein was located in peroxisomes. Deletion of residues 6-55 from native Peb1p resulted in a cytosolic location and the loss of function. Thus the NH2-terminal 56-amino acid residues of Peb1p are necessary and sufficient for peroxisomal targeting. Peb1p is found in peroxisomes whether thiolase is expressed or not. These results suggest that Peb1p (Pas7p) is an intraperoxisomal receptor for the type 2 peroxisomal targeting signal.  相似文献   

8.
9.
10.
Stimulation of B cell antigen receptor (BCR) may induce proliferation, differentiation, or apoptosis, depending upon the maturational stage of the cell and the presence or absence of signals transmitted via coreceptors. One such signal is delivered via CD40; for instance, ligation of CD40 rescues B cells from BCR-induced apoptosis. Here we show that, in contrast to WEHI-231 cells, CD40 ligation did not reverse BCR-induced growth inhibition in the BAL-17 mature B cell line and CD40 ligation itself inhibited proliferation. This inhibitory signaling was not observed in CD45-deficient cells. Further analyses demonstrate that transfection of dominant-negative form of SEK1 or treatment with SB203580 strongly reduced CD40-induced inhibition of BAL-17 proliferation, suggesting a requirement for c-Jun NH2-terminal kinase and p38 in CD40-induced inhibition of proliferation. Interestingly, CD40-initiated activation of c-Jun NH2-terminal kinase and p38 was enhanced and sustained in CD45-deficient cells, and these phenotypes were reversed by transfecting CD45 gene. However, CD40-mediated induction of cell surface molecules was not affected in CD45-deficient cells. Taken collectively, these results suggest that CD45 exerts a decisive effect on selective sets of CD40-mediated signaling pathways, dictating B cell fate.  相似文献   

11.
We have identified a highly conserved phenylalanine in motif IV of the DEAD-box helicases that is important for their enzymatic activities. In vivo analyses of essential proteins in yeast showed that mutants of this residue had severe growth phenotypes. Most of the mutants also were temperature sensitive, which suggested that the mutations altered the conformational stability. Intragenic suppressors of the F405L mutation in yeast Ded1 mapped close to regions of the protein involved in ATP or RNA binding in DEAD-box crystal structures, which implicated a defect at this level. In vitro experiments showed that these mutations affected ATP binding and hydrolysis as well as strand displacement activity. However, the most pronounced effect was the loss of the ATP-dependent cooperative binding of the RNA substrates. Sequence analyses and an examination of the Protein Data Bank showed that the motif IV phenylalanine is conserved among superfamily 2 helicases. The phenylalanine appears to be an anchor that maintains the rigidity of the RecA-like domain. For DEAD-box proteins, the phenylalanine also aligns a highly conserved arginine of motif VI through van der Waals and cation-pi interactions, thereby helping to maintain the network of interactions that exist between the different motifs involved in ATP and RNA binding.  相似文献   

12.
Calf fetuin, one of the 3 major known fetal proteins has been isolated by a two-step purification procedure and characterized by aminoacid composition. The purified glycoprotein, which consisted of a single chain, was submitted to 47 steps of automatic aminoacid sequencing, allowing to determine 44 positions. This section of the molecule was devoid of carbohydrates. Comparison of this sequence with a variety of detectable potentially related protein did not allow to point to any detectable homology.  相似文献   

13.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

14.
Hypoxia-induced multidrug resistance 1 (MDR1) gene expression is known to be mediated by c-Jun NH(2)-terminal kinase (JNK) activation. However, the molecular mechanisms underlying this action of JNK remain elusive. On the contrary, there has been increasing evidence for a negative correlation of JNK activity with MDR1 expression under normoxic conditions. Here, we present evidence that the JNK pathway represses MDR1 expression in normoxia and activates MDR1 expression in hypoxia. Our data show that JNK pathway-induced MDR1 repression in normoxia is mediated by increased c-Jun binding to activator protein 1 site, located in the MDR1 promoter, and requires the activity of histone deacetylase 5. In contrast, JNK pathway-induced MDR1 activation in hypoxia is independent of the activator protein 1 site. Rather, this action is dependent on increased hypoxia-inducible factor 1 (HIF1) binding to the hypoxia response element in the MDR1 promoter, which is promoted by the interaction of HIF1alpha with c-Jun in the nucleus and requires the activity of the p300/CBP (CREB-binding protein) coactivator.  相似文献   

15.
16.
17.
It is important to establish the structural properties of linker histones to understand the role they play in chromatin higher order structure and gene regulation. Here, we use CD, NMR, and IR spectroscopy to study the conformation of the amino-terminal domain of histone H1 degrees, free in solution and bound to the DNA. The NH(2)-terminal domain has little structure in aqueous solution, but it acquires a substantial amount of alpha-helical structure in the presence of trifluoroethanol (TFE). As in other H1 subtypes, the basic residues of the NH(2)-terminal domain of histone H1 degrees are clustered in its COOH-terminal half. According to the NMR results, the helical region comprises the basic cluster (Lys(11)-Lys(20)) and extends until Asp(23). The fractional helicity of this region in 90% TFE is about 50%. His(24) together with Pro(25) constitute the joint between the NH(2)-terminal helix and helix I of the globular domain. Infrared spectroscopy shows that interaction with the DNA induces an amount of alpha-helical structure equivalent to that observed in TFE. As coulombic interactions are involved in complex formation, it is highly likely in the complexes with DNA that the minimal region with alpha-helical structure is that containing the basic cluster. In chromatin, the high positive charge density of the inducible NH(2)-terminal helical element may contribute to the binding stability of the globular domain.  相似文献   

18.
Novel antibodies were raised against a synthetic NH2-terminal myristoyl glycine moiety which is characteristic of N-myristoyl-proteins. Antisera raised against N-myristoyl-Gly-hemocyanin reacted with N-myristoyl-Gly-[125I]albumin. The immunoreaction was competed for by albumin conjugated with N-myristoyl-glycine, while underivatized albumin had no effect. Of the [3H]myristate-labeled proteins detected, pp60v-src, which is a transforming protein of Rous sarcoma virus, and p19gag and p17gag, which are core proteins in the human T-cell leukemia virus and the human immunodeficiency virus, were identified as N-myristoylated proteins by the radioimmunoprecipitation analyses with the antibody.  相似文献   

19.
We previously demonstrated that hIK1 is activated directly by ATP in excised, inside-out patches in a protein kinase A inhibitor 5-24 dependent manner, suggesting a role for phosphorylation in the regulation of this Ca(2+)-dependent channel. However, mutation of the single consensus cAMP-dependent protein kinase phosphorylation site (S334A) failed to modify the response of hIK1 to ATP (Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000) J. Biol. Chem. 275, 585-598). Here we demonstrate that ATP does not similarly activate the highly homologous Ca(2+)-dependent K(+) channels, hSK1, rSK2, and rSK3. To define the region of hIK1 responsible for the ATP-dependent regulation, we generated a series of hIK1 truncations and hIK1/rSK2 chimeras. ATP did not activate a chimera containing the N terminus plus S1-S4 from hIK1. In contrast, ATP activated a chimera containing the hIK1 C-terminal amino acids His(299)-Lys(427). Furthermore, truncation of hIK1 at Leu(414) resulted in an ATP-dependent channel, whereas larger truncations of hIK1 failed to express. Additional hIK1/rSK2 chimeras defined the minimal region of hIK1 required to confer complete ATP sensitivity as including amino acids Arg(355)-Ala(413). An alanine scan of all non-conserved serines and threonines within this region failed to alter the response of hIK1 to ATP, suggesting that hIK1 itself is not directly phosphorylated. Additionally, substitution of amino acids Arg(355)-Met(368) of hIK1 into the corresponding region of rSK2 resulted in an ATP-dependent activation, which was approximately 50% of that of hIK1. These results demonstrate that amino acids Arg(355)-Ala(413) within the C terminus of hIK1 confer sensitivity to ATP. Finally, we demonstrate that the ATP-dependent phosphorylation of hIK1 or an associated protein is independent of Ca(2+).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号