首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kv2.1 potassium channel plays an important role in regulating membrane excitability and is highly phosphorylated in mammalian neurons. Our previous results showed that variable phosphorylation of Kv2.1 at multiple sites allows graded activity-dependent regulation of channel gating. Our previous studies also found functional differences between recombinant Kv2.1 channels expressed in HEK293 cells and COS-1 cells that were eliminated upon complete dephosphorylation of Kv2.1. To better understand how phosphorylation affects Kv2.1 gating in HEK293 and COS-1 cells we used stable isotope-labeling by amino acids in cell culture (SILAC) and mass spectrometry to determine the level of phosphorylation at one newly and thirteen previously identified sites on Kv2.1 purified from HEK293 and COS-1 cells. We identified seven phosphorylation sites on the Kv2.1 C-terminus that exhibit different levels of phosphorylation in HEK293 and COS-1 cells. Six sites have enhanced phosphorylation in HEK293 compared to COS-1, while one site exhibits enhanced phosphorylation in COS-1 cells. No sites were found phosphorylated in one cell type and not the other. Interestingly, the sites exhibiting differential phosphorylation in HEK293 and COS-1 cells under basal conditions are the same subset targeted by calcineurin-mediated signaling pathways. The data presented here suggests that differential phosphorylation at a specific subset of sites, as opposed to utilization of novel cell-specific phosphorylation sites, can explain differences in the gating properties of Kv2.1 in different cell types under basal conditions, and in the same cell type under basal versus stimulated conditions.  相似文献   

2.
The neurotensin receptor subtype 1 (NTS1) is a G-protein-coupled receptor (GPCR) mediating a large number of central and peripheral effects of neurotensin. Upon stimulation, NTS1 is rapidly internalized and targeted to lysosomes. This process depends on the interaction of the phosphorylated receptor with β–arrestin. Little is known about other accessory endocytic proteins potentially involved. Here, we investigated the involvement of dynamin, amphiphysin, and intersectin in the internalization of NTS1 receptor-ligand complexes in transfected COS-7 and HEK 293 cells, by using the transferrin receptor as an internal control for the constitutive endocytic pathway. We found that NTS1 endocytosis was not only arrestin–dependent, but also dynamin–dependent in both COS-7 and HEK 293 cells, whereas internalization of the transferrin receptor was independent of arrestin but required dynamin. Overexpression of the SH3 domain of amphiphysin II had no effect on receptor internalization in either cell type. By contrast, overexpression of full-length intersectin or of its SH3 domain (but not of its EH domain) inhibited NTS1 internalization in COS-7 but not in HEK 293 cells. This difference between COS-7 and HEK 293 cells was not attributable to differences in endogenous intersectin levels between the two cell lines. Indeed, the same constructs inhibited transferrin endocytosis equally well in COS-7 and HEK 293 cells. However, immunogold electron microscopy revealed that internalized NTS1 receptors were associated with clathrin-coated pits in COS-7 cells but with smooth vesicles in HEK 293 cells, suggesting that NTS1 internalization proceeds via different endocytic pathways in these two cell types. This work was supported by grants to A.B. from CIHR and FRSQ.  相似文献   

3.
We recently reported that zacopride is a selective inward rectifier potassium current (IK1 ) channel agonist, suppressing ventricular arrhythmias without affecting atrial arrhythmias. The present study aimed to investigate the unique pharmacological properties of zacopride. The whole-cell patch-clamp technique was used to study IK1 currents in rat atrial myocytes and Kir2.x currents in human embryonic kidney (HEK)-293 cells transfected with inward rectifier potassium channel (Kir)2.1, Kir2.2, Kir2.3, or mutated Kir2.1 (at phosphorylation site S425L). Western immunoblots were performed to estimate the relative protein expression levels of Kir2.x in rat atria and ventricles. Results showed that zacopride did not affect the IK1 and transmembrane potential of atrial myocytes. In HEK293 cells, zacopride increased Kir2.1 homomeric channels by 40.7%±9.7% at 50 mV, but did not affect Kir2.2 and Kir2.3 homomeric channels, and Kir2.1-Kir2.2, Kir2.1-Kir2.3 and Kir2.2-Kir2.3 heteromeric channels. Western immunoblots showed that similar levels of Kir2.3 protein were expressed in rat atria and ventricles, but atrial Kir2.1 protein level was only 25% of that measured in the ventricle. In addition, 5-hydroxytryptamine (5-HT) 3 receptor was undetectable, whereas 5-HT 4 receptor was weakly expressed in HEK293 cells. The Kir2.1-activating effect of zacopride in these cells was abolished by inhibition of protein kinase A (PKA), but not PKC or PKG. Furthermore, zacopride did not activate the mutant Kir2.1 channel in HEK293 cells but selectively activated the Kir2.1 homomeric channel via a PKA-dependent pathway, independent to that of the 5-HT receptor.  相似文献   

4.
To identify proteins that regulate potassium channel activity and expression, we performed functional screening of mammalian cDNA libraries in yeast that express the mammalian K(+) channel Kir2.1. Growth of Kir2.1-expressing yeast in media with low K(+) concentration is a function of K(+) uptake via Kir2.1 channels. Therefore, the host strain was transformed with a human cDNA library, and cDNA clones that rescued growth at low K(+) concentration were selected. One of these clones was identical to the protein of unknown function isolated previously as gamma-aminobutyric acid receptor-interacting factor 1 (GRIF-1) (Beck, M., Brickley, K., Wilkinson, H., Sharma, S., Smith, M., Chazot, P., Pollard, S., and Stephenson, F. (2002) J. Biol. Chem. 277, 30079-30090). GRIF-1 specifically enhanced Kir2.1-dependent growth in yeast and Kir2.1-mediated (86)Rb(+) efflux in HEK293 cells. Quantitative microscopy and flow cytometry analysis of immunolabeled surface Kir2.1 channel showed that GRIF-1 significantly increased the number of Kir2.1 channels in the plasma membrane of COS and HEK293 cells. Physical interaction of Kir2.1 channel and GRIF-1 was demonstrated by co-immunoprecipitation from HEK293 lysates and yeast two-hybrid assay. In vivo association of Kir2.1 and GRIF-1 was demonstrated by co-immunoprecipitation from brain lysate. Yeast two-hybrid assays showed that an N-terminal region of GRIF-1 interacts with a C-terminal region of Kir2.1. These results indicate that GRIF-1 binds to Kir2.1 and facilitates trafficking of this channel to the cell surface.  相似文献   

5.
The SNARE protein syntaxin 1A (Syn1A) is known to inhibit delayed rectifier K(+) channels of the K(v)1 and K(v)2 families with heterogeneous effects on their gating properties. In this study, we explored whether Syn1A could directly modulate K(v)4.3, a rapidly inactivating K(v) channel with important roles in neuroendocrine cells and cardiac myocytes. Immunoprecipitation studies in HEK293 cells coexpressing Syn1A and K(v)4.3 revealed a direct interaction with increased trafficking to the plasma membrane without a change in channel synthesis. Paradoxically, Syn1A inhibited K(v)4.3 current density. In particular, Syn1A produced a left-shift in steady-state inactivation of K(v)4.3 without affecting either voltage dependence of activation or gating kinetics, a pattern distinct from other K(v) channels. Combined with our previous reports, our results further verify the notion that the mechanisms involved in Syn1A-K(v) interactions vary significantly between K(v) channels, thus providing a wide scope for Syn1A modulation of exocytosis and membrane excitability.  相似文献   

6.
Calcium-dependent facilitation of L-type calcium channels has been reported to depend on the function of calmodulin kinase II. In contrast, the mechanism for voltage-dependent facilitation is not clear. In HEK 293 cells expressing Ca(v)1.2, Ca(v)beta2a, and calmodulin kinase II, the calcium current measured at +30 mV was facilitated up to 1.5-fold by a 200-ms-long prepulse to +160 mV. This voltage-dependent facilitation was prevented by the calmodulin kinase II inhibitors KN93 and the autocamtide-2-related peptide. In cells expressing the Ca(v)1.2 mutation I1649E, a residue critical for the binding of Ca2+-bound calmodulin, facilitation was also abolished. Calmodulin kinase II was coimmunoprecipitated with the Ca(v)1.2 channel from murine heart and HEK 293 cells expressing Ca(v)1.2 and calmodulinkinase II. The precipitated Ca(v)1.2 channel was phosphorylated in the presence of calmodulin and Ca2+. Fifteen putative calmodulin kinase II phosphorylation sites were identified mostly in the carboxyl-terminal tail of Ca(v)1.2. Neither truncation at amino acid 1728 nor changing the II-III loop serines 808 and 888 to alanines affected facilitation of the calcium current. In contrast, facilitation was decreased by the single mutations S1512A and S1570A and abolished by the double mutation S1512A/S1570A. These serines flank the carboxyl-terminal EF-hand motif. Immunoprecipitation of calmodulin kinase II with the Ca(v)1.2 channel was not affected by the mutation S1512A/S1570A. The phosphorylation of the Ca(v)1.2 protein was strongly decreased in the S1512A/S1570A double mutant. These results suggest that voltage-dependent facilitation of the Ca(v)1.2 channel depends on the phosphorylation of Ser1512/Ser1570 by calmodulin kinase II.  相似文献   

7.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

8.
To provide a high-throughput screening method for human ether-a-go-go-gene-related gene (hERG) K(+) channel inhibition, a new recombinant cell line, in which single action potential (AP)-induced cell death was produced by gene transfection. Mutated human cardiac Na(+) channel Nav1.5 (IFM/Q3), which shows extremely slow inactivation, and wild-type inward rectifier K(+) channel, Kir2.1, were stably co-expressed in HEK293 cells (IFM/Q3+Kir2.1). In IFM/Q3+Kir2.1, application of single electrical stimulation (ES) elicited a long AP lasting more than 30 s and led cells to die by more than 70%, whereas HEK293 co-transfected with wild-type Nav1.5 and Kir2.1 fully survived. The additional expression of hERG K(+) channels in IFM/Q3+Kir2.1 shortened the duration of evoked AP and thereby markedly reduced the cell death. The treatment of the cells with hERG channel inhibitors such as nifekalant, E-4031, cisapride, terfenadine, and verapamil, recovered the prolonged AP and dose-dependently facilitated cell death upon ES. The EC(50) values to induce the cell death were 3 μM, 19 nM, 17 nM, 74 nM, and 3 μM, respectively, whereas 10 μM nifedipine did not induce cell death. Results indicate the high utility of this cell system for hERG K(+) channel safety assay.  相似文献   

9.
We have characterized the native voltage-dependent K(+) (K(v)) current in rabbit urethral smooth muscle cells (RUSMC) and compared its pharmacological and biophysical properties with K(v)2.1 and K(v)2.2 channels cloned from the rabbit urethra and stably expressed in human embryonic kidney (HEK)-293 cells (HEK(Kv2.1) and HEK(Kv2.2)). RUSMC were perfused with Hanks' solution at 37°C and studied using the patch-clamp technique with K(+)-rich pipette solutions. Cells were bathed in 100 nM Penitrem A (Pen A) to block large-conductance Ca(2+)-activated K(+) (BK) currents and depolarized to +40 mV for 500 ms to evoke K(v) currents. These were unaffected by margatoxin, κ-dendrotoxin, or α-dendrotoxin (100 nM, n = 3-5) but were blocked by stromatoxin-1 (ScTx, IC(50) ~130 nM), consistent with the idea that the currents were carried through K(v)2 channels. RNA was detected for K(v)2.1, K(v)2.2, and the silent subunit K(v)9.3 in urethral smooth muscle. Immunocytochemistry showed membrane staining for both K(v)2 subtypes and K(v)9.3 in isolated RUSMC. HEK(Kv2.1) and HEK(Kv2.2) currents were blocked in a concentration-dependent manner by ScTx, with estimated IC(50) values of ~150 nM (K(v)2.1, n = 5) and 70 nM (K(v)2.2, n = 6). The mean half-maximal voltage (V(1/2)) of inactivation of the USMC K(v) current was -56 ± 3 mV (n = 9). This was similar to the HEK(Kv2.1) current (-55 ± 3 mV, n = 13) but significantly different from the HEK(Kv2.2) currents (-30 ± 3 mV, n = 11). Action potentials (AP) evoked from RUSMC studied under current-clamp mode were unaffected by ScTx. However, when ScTx was applied in the presence of Pen A, the AP duration was significantly prolonged. Similarly, ScTx increased the amplitude of spontaneous contractions threefold, but only after Pen A application. These data suggest that K(v)2.1 channels contribute significantly to the K(v) current in RUSMC.  相似文献   

10.
Although arsenic toxicity is well known, little is known of how it exerts its effects at the proteome level. Protein phosphorylation is an important post-translational modification in the regulation of cell signaling. Despite the importance of protein phosphorylation, the identification and characterization of phosphorylated proteins, as influenced by interaction between arsenic and selenium species have not been fully studied. The aim of this study is to identify phosphorylation in arsenic toxified cells, with and without selenium present. Here, we identify the phosphorylated proteins related to post translational modifications (PTMs) after inorganic arsenic (iAs) and selenomethionine (SeMet) were inoculated together with HEK293 human kidney cells. In this study, using TiO(2)-based nanoLC-phosphochip? coupled to ESI-MS we observed phosphorylated peptide enrichment and significant reduction in sample complexity. The identification of phosphorylated proteins in highly complex digests of cell lysate were markedly different with As toxification only, or when in the presence of SeMet. Several phosphorylation sites and proteins are identified using Spectrum Mill and Mascot protein data base search engines. Cytotoxicity studies showed that SeMet significantly reduces the cytotoxic effect of iAs in HEK293 cells, while inorganic selenium did not.  相似文献   

11.
12.
Bousquet SM  Monet M  Boulay G 《PloS one》2011,6(3):e18121
TRPC are nonselective cation channels involved in calcium entry. Their regulation by phosphorylation has been shown to modulate their routing and activity. TRPC6 activity increases following phosphorylation by Fyn, and is inhibited by protein kinase G and protein kinase C. A previous study by our group showed that TRPC6 is phosphorylated under unstimulated conditions in a human embryonic kidney cells line (HEK293). To investigate the mechanism responsible for this phosphorylation, we used a MS/MS approach combined with metabolic labeling and showed that the serine at position 814 is phosphorylated in unstimulated cells. The mutation of Ser(814) into Ala decreased basal phosphorylation but did not modify TRPC6 activity. Even though Ser(814) is within a consensus site for casein kinase II (CK2), we showed that CK2 is not involved in the phosphorylation of TRPC6 and does not modify its activity. In summary, we identified a new basal phosphorylation site (Ser(814)) on TRPC6 and showed that CK2 is not responsible for the phosphorylation of this site.  相似文献   

13.
HEK 293 cells stably expressing human melanocortin-3 receptor (MC3R) were exposed to melanocortin receptor agonist, NDP-MSH (10(-)(10)-10(-)(6) M). ERK1/2 was phosphorylated in a dose-dependent manner with an EC(50) of 3.3+/-1.5 x 10(-)(9) M, similar to the IC(50) of NDP-MSH binding to the MC3R. ERK1/2 phosphorylation was blocked by the melanocortin receptor antagonists SHU9119. NDP-MSH-induced ERK1/2 phosphorylation was sensitive to pertussis toxin and the PI3K inhibitor, wortmannin. Rp-cAMPS, BAPTA-AM and Myr-PKC did not inhibit the NDP-MSH-induced ERK1/2 phosphorylation. NDP-MSH stimulated cellular proliferation in a dose-dependent manner with a similar EC(50) to ERK1/2 phosphorylation, 2.1+/-0.6 x 10(-)(9) M. Cellular proliferation was blocked by AGRP (86-132) and by the MEK inhibitor, PD98059. The NDP-MSH did not inhibit serum deprivation-induced apoptosis. MC3R activation induces ERK1/2 phosphorylation via PI3K and this pathway is involved in cellular proliferation in HEK cells expressing MC3R.  相似文献   

14.
Stimulation of the angiotensin II (Ang II) type 1 receptor (AT1-R) causes phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) via epidermal growth factor receptor (EGF-R) transactivation-dependent or -independent pathways in Ang II target cells. Here we examined the mechanisms involved in agonist-induced EGF-R transactivation and subsequent ERK1/2 phosphorylation in clone 9 (C9) hepatocytes, which express endogenous AT1-R, and COS-7 and human embryonic kidney (HEK) 293 cells transfected with the AT1-R. Ang II-induced ERK1/2 activation was attenuated by inhibition of Src kinase and of matrix metalloproteinases (MMPs) in C9 and COS-7 cells, but not in HEK 293 cells. Agonist-mediated MMP activation in C9 cells led to shedding of heparin-binding EGF (HB-EGF) and stimulation of ERK1/2 phosphorylation. Blockade of HB-EGF action by neutralizing antibody or its selective inhibitor, CRM197, attenuated ERK1/2 activation by Ang II. Consistent with its agonist action, HB-EGF stimulation of these cells caused marked phosphorylation of the EGF-R and its adapter molecule, Shc, as well as ERK1/2 and its dependent protein, p90 ribosomal S6 kinase, in a manner similar to that elicited by Ang II or EGF. Although the Tyr319 residue of the AT1-R has been proposed to be an essential regulator of EGF-R transactivation, stimulation of wild-type and mutant (Y319F) AT1-R expressed in COS-7 cells caused EGF-R transactivation and subsequent ERK1/2 phosphorylation through release of HB-EGF in a Src-dependent manner. In contrast, the noninvolvement of MMPs in HEK 293 cells, which may reflect the absence of Src activation by Ang II, was associated with lack of transactivation of the EGF-R. These data demonstrate that the individual actions of Ang II on EGF-R transactivation in specific cell types are related to differential involvement of MMP-dependent HB-EGF release.  相似文献   

15.
Chen QH  Liao XM  Wang SH 《生理学报》2011,63(6):511-516
为了研究聚ADP-核糖聚合酶-1 fpoly(ADP-ribose)polymerase-1,PARP-1]对微管相关蛋白tau磷酸化水平的影响,本实验分别用不同剂量(0.5,1,2,4 mmol/L)的PARP-1的抑制剂3-氨基苯甲酰胺(3-aminobenzamide,3-AB)处理稳定表达tau441蛋白的HE...  相似文献   

16.
The intermediate-conductance calcium-activated potassium channel (IK1) promotes cell proliferation of numerous cell types including endothelial cells, T lymphocytes, and several cancer cell lines. The mechanism underlying IK1-mediated cell proliferation was examined in human embryonic kidney 293 (HEK293) cells expressing recombinant human IK1 (hIK1) channels. Inhibition of hIK1 with TRAM-34 reduced cell proliferation, while expression of hIK1 in HEK293 cells increased proliferation. When HEK293 cells were transfected with a mutant (GYG/AAA) hIK1 channel, which neither conducts K(+) ions nor promotes Ca(2+) entry, proliferation was increased relative to mock-transfected cells. Furthermore, when HEK293 cells were transfected with a trafficking mutant (L18A/L25A) hIK1 channel, proliferation was also increased relative to control cells. The lack of functional activity of hIK1 mutants at the cell membrane was confirmed by a combination of whole cell patch-clamp electrophysiology and fura-2 imaging to assess store-operated Ca(2+) entry and cell surface immunoprecipitation assays. Moreover, in cells expressing hIK1, inhibition of ERK1/2 and JNK kinases, but not of p38 MAP kinase, reduced cell proliferation. We conclude that functional K(+) efflux at the plasma membrane and the consequent hyperpolarization and enhanced Ca(2+) entry are not necessary for hIK1-induced HEK293 cell proliferation. Rather, our data suggest that hIK1-induced proliferation occurs by a direct interaction with ERK1/2 and JNK signaling pathways.  相似文献   

17.
Meshki J  Douglas SD  Hu M  Leeman SE  Tuluc F 《PloS one》2011,6(9):e25332
U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R). Substance P (SP), the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK) signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK) is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.  相似文献   

18.
Various members of the canonical family of transient receptor potential channels (TRPCs) exhibit increased cation influx following receptor stimulation or Ca(2+) store depletion. Tyrosine phosphorylation of TRP family members also results in increased channel activity; however, the link between the two events is unclear. We report that two tyrosine residues in the C terminus of human TRPC4 (hTRPC4), Tyr-959 and Tyr-972, are phosphorylated following epidermal growth factor (EGF) receptor stimulation of COS-7 cells. This phosphorylation was mediated by Src family tyrosine kinases (STKs), with Fyn appearing to be the dominant kinase. In addition, EGF receptor stimulation induced the exocytotic insertion of hTRPC4 into the plasma membrane dependent on the activity of STKs and was accompanied by a phosphorylation-dependent increase in the association of hTRPC4 with Na(+)/H(+) exchanger regulatory factor. Furthermore, this translocation and association was defective upon mutation of Tyr-959 and Tyr-972 to phenylalanine. Significantly, inhibition of STKs was concomitant with a reduction in Ca(2+) influx in both native COS-7 cells and hTRPC4-expressing HEK293 cells, with cells expressing the Y959F/Y972F mutant exhibiting a reduced EGF response. These findings represent the first demonstration of a mechanism for phosphorylation to modulate TRPC channel function.  相似文献   

19.
SNARE proteins, syntaxin-1A (Syn-1A) and SNAP-25, inhibit delayed rectifier K(+) channels, K(v)1.1 and K(v)2.1, in secretory cells. We showed previously that the mutant open conformation of Syn-1A (Syn-1A L165A/E166A) inhibits K(v)2.1 channels more optimally than wild-type Syn-1A. In this report we examined whether Syn-1A in its wild-type and open conformations would exhibit similar differential actions on the gating of K(v)1.2, a major delayed rectifier K(+) channel in nonsecretory smooth muscle cells and some neuronal tissues. In coexpression and acute dialysis studies, wild-type Syn-1A inhibited K(v)1.2 current magnitude. Of interest, wild-type Syn-1A caused a right shift in the activation curves of K(v)1.2 without affecting its steady-state availability, an inhibition profile opposite to its effects on K(v)2.1 (steady-state availability reduction without changes in voltage dependence of activation). Also, although both wild-type and open-form Syn-1A bound equally well to K(v)1.2 in an expression system, open-form Syn-1A failed to reduce K(v)1.2 current magnitude or affect its gating. This is in contrast to the reported more potent effect of open-form Syn-1A on K(v)2.1 channels in secretory cells. This finding together with the absence of Munc18 and/or 13-1 in smooth muscles suggested that a change to an open conformation Syn-1A, normally facilitated by Munc18/13-1, is not required in nonsecretory smooth muscle cells. Taken together with previous reports, our results demonstrate the multiplicity of gating inhibition of different K(v) channels by Syn-1A and is compatible with versatility of Syn-1A modulation of repolarization in various secretory and nonsecretory (smooth muscle) cell types.  相似文献   

20.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号