共查询到20条相似文献,搜索用时 15 毫秒
1.
E.M.T. El-mansi 《FEMS microbiology letters》1998,166(2):333-339
The enzymic interconversion of Escherichia coli isocitrate dehydrogenase (ICDH) between the catalytically active and inactive forms is mediated through the activities of ICDH-kinase/phosphatase in response to changes in the metabolic environment. In this study, the use of mutant strains devoid of isocitrate lyase ( aceA:: Tn10 ) and pyruvate dehydrogenase activities revealed that the signal which triggers the reversible inactivation of ICDH in vivo is not directly related to acetate itself, but rather to the need to maintain high intracellular levels of isocitrate and free co-enzyme A. The use of these mutants also revealed, rather unexpectedly, that acetate grown cells contain more ICDH protein than those grown with other carbon sources and that the catalytic activity of ICDH kinase/phosphatase is in excess of cellular demands. Furthermore, this study also revealed the presence of a 50-kDa (±2 kDa) acetate-specific polypeptide, the identity of which has yet to be established. 相似文献
2.
Studies on acetate utilization by Rhodopseudomonas capsulata strain St. Louis indicated that the wild type grew poorly on acetate and made little if any of the glyoxylate cycle enzyme isocitrate lyase. A spontaneous mutant, Ac-l, capable of vigorous and immediate growth on acetate and exhibiting high levels of isocitrate lyase activity, was isolated in the course of those studies.Isocitrate lyase was not formed when the mutant was grown on malate. Addition of malate to cultures of Ac-l growing on acetate resulted in loss of the enzyme by dilution through growth.Starvation of acetate-grown Ac-l for acetate resulted in a rapid and complete loss of isocitrate lyase activity which was shown to be energy dependent. Readdition of acetate to a starved culture previously grown on acetate resulted in a rapid recovery of enzyme activity. The recovery required energy and was sensitive to chloramphenicol inhibition at any time during the recovery phase. 相似文献
3.
Rhodopseudomonas capsulata strain St. Louis can grow anaerobically in the light-with acetate as the carbon source. The organism is sensitive to acetate, however, initial concentrations exceeding 25 mM resulting in an extensive growth lag. Bicarbonate is not required for growth of this strain on acetate, but addition of bicarbonate shortens the lag phase in media with high initial acetate concentration. A spontaneous mutant which exhibited a minimal lag phase and rapid growth rates on acetate media was derived from strain St. Louis. This mutant possessed elevated levels of the glyoxylate cycle enzyme, isocitrate lyase. 相似文献
4.
Litchfield CD Irby A Kis-Papo T Oren A 《Extremophiles : life under extreme conditions》2000,4(5):259-265
The whole community pigments and lipids have been examined during a 5-year period in two commercial solar salterns located
in the United States and in Israel. There were significant differences in the complexity of the lipid and pigment patterns
within the California saltern system, and these differences were not consistent over the sampling period despite examination
of ponds with the same salinity. The solar saltern system in Eilat, Israel, showed greater consistency during this sampling
period and compared directly with previous studies. The complexity of the saltern in Newark, California, could be explained
on the basis of the prevailing weather conditions (cooler and more rainfall) and the nutrient-enriched source water. The Eilat
saltern, however, has an oligotrophic water source and has a considerably warmer and drier climate. This difference resulted
in more diverse and more complex pigment and lipid patterns and presumably microbial populations in the Newark, California,
plant than in the saltern in Eilat, Israel.
Received: December 10, 1999 / Accepted: April 6, 2000 相似文献
5.
6.
Pieternel A. M. Claassen Gerard J. J. Kortstee Johannes P. van Dijken Wim Harder 《Archives of microbiology》1986,145(2):148-152
An analysis was made of the specific enzyme activities of the TCA and glyoxylate cycle in Thiobacillus versutus cells grown in a thiosulphate- or acetate-limited chemostat. Activities of all enzymes of the TCA cycle were detected, irrespective of the growth substrate and they were invariably lower in the thiosulphate-grown cells. Of the glyoxylate cycle enzymes, isocitrate lyase was absent but malate synthase activity was increased from 15 nmol·min-1·mg-1 protein in thiosulphate-grown cells to 58 nmol·min-1·mg-1 protein in acetate-grown cells. Suspensions of cells grown on thiosulphate were able to oxidize acetate, although the rate was 3 times lower than that observed with acetate-grown cells. The respiration of acetate was completely inhibited by 10 mM fluoroacetate or 5 mM arsenite. Partially purified citrate synthase from both thiosulphate- and acetate-grown cells was completely inhibited by 0.5 mM NADH and was insensitive to inhibition by 1 mM 2-oxoglutarate or 1 mM ATP. The specific enzyme activities of the TCA and glyoxylate cycle in T. versutus were compared with those of Pseudomonas fluorescens, an isocitrate lyase positive organism, after growth in a chemostat limited by acetate, glutarate, succinate or glutamate. The response of the various enzyme activities to a change in substrate was similar in both organisms, with the exception of isocitrate lyase.Abbreviations TCA
tricarboxylic acid
- DNTB
2,2-dinitro-5,5-dithiobenzoic acid
- APAD
acetylpyridine adenine dinucleotide
- PMS
phenazine methosulphate
- DCPIP
2,6-dichlorophenol-indophenol
- DOC
dissolved organic carbon 相似文献
7.
8.
《Bioorganic & medicinal chemistry letters》2014,24(17):4291-4293
Bahamaolide A, a new macrocyclic lactone isolated from the culture of marine actinomycete Streptomyces sp. CNQ343, was evaluated for its inhibitory activity toward isocitrate lyase (ICL) from Candida albicans. These studies led to the identification of bahamaolide A as a potent ICL inhibitor with IC50 value of 11.82 μM. The growth phenotype of ICL deletion mutants and quantitative RT-PCR analyses indicated that this compound inhibits the ICL mRNA expression in C. albicans under C2-carbon-utilizing conditions. The present data highlight the potential for bahamaolide A treatment of C. albicans infections via inhibition of ICL activity. 相似文献
9.
10.
11.
B. Solow K. M. Bischoff M. J. Zylka P. J. Kennelly 《Protein science : a publication of the Protein Society》1998,7(1):105-111
When soluble extracts from the extreme acidophilic archaeon Sulfolobus solfataricus were incubated with [gamma-32P]ATP, several radiolabeled polypeptides were observed following SDS-PAGE. The most prominent of these migrated with apparent molecular masses of 14, 18, 35, 42, 46, 50, and 79 kDa. Phosphoamino acid analysis revealed that all of the proteins contained phosphoserine, with the exception of the 35-kDa one, whose protein-phosphate linkage proved labile to strong acid. The observed pattern of phosphorylation was influenced by the identity of the divalent metal ion cofactor used, Mg2+ versus Mn2+, and the choice of incubation temperature. The 35- and 50-kDa phosphoproteins were purified and their amino-terminal sequences determined. The former polypeptide's amino-terminal sequence closely matched a conserved portion of the alpha-subunit of succinyl-CoA synthetase, which forms an acid-labile phosphohistidyl enzyme intermediate during its catalytic cycle. This identification was confirmed by the ability of succinate or ADP to specifically remove the radiolabel. The 50-kDa polypeptide's sequence contained a heptapeptide motif, Phe/Pro-Gly-Thr-Asp/Ser-Gly-Val/Leu-Arg, found in a similar position in several hexosephosphate mutases. The catalytic mechanism of these mutases involves formation of a phosphoseryl enzyme intermediate. The identity of p50 as a hexosephosphate mutase was confirmed by (1) the ability of sugars and sugar phosphates to induce removal of the labeled phosphoryl group from the protein, and (2) the ability of [32P]glucose 6-phosphate to donate its phosphoryl group to the protein. 相似文献
12.
Archaea have recombination proteins similar to those of eukaryote, but many have not been characterized. Here, the characterization
of a Rad55 homologue from Sulfolobus tokodaii (stRad55A) was reported. StRad55A protein preferred binding to ssDNA and had ssDNA-dependent ATPase activity. In addition,
UV light could induce the expression of this protein, which was different from RadB, a RadA paralog found in euryarchaeota.
Most importantly, stRad55A could release the suppression of excessive stSSB (single strand DNA binding protein from S. tokodaii) on the strand exchange catalyzed by stRadA (RadA homologue from S. tokodaii), by interacting directly with both stRadA and stSSB. StRad55A may function as a mediator to accelerate the displacement
of stSSB by stRadA.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
13.
Methanococcus maripaludis possesses two sets of F420-non-reducing hydrogenases which are differentially expressed in response to the selenium content of the medium. One of the subunits of the selenium-containing hydrogenase, VhuD, contains two selenocysteine residues, whereas the homologue of M. voltae possesses cysteine residues in the equivalent positions. Analysis of the 3 non-translated region of the M. voltae vhuD mRNA revealed the existence of a structure resembling the consensus of archaeal SECIS elements but with deviations rendering it non-functional in determining selenocysteine insertion. The presence of a pseudo-SECIS element in the 3 non-translated region of the vhuD mRNA from M. voltae suggests that VhuD from this organism has developed from a selenocysteine-containing ancestor. The 3 non-translated region from the VhcD homologues neither contained a SECIS nor a pseudo SECIS element. 相似文献
14.
Snijders AP Walther J Peter S Kinnman I de Vos MG van de Werken HJ Brouns SJ van der Oost J Wright PC 《Proteomics》2006,6(5):1518-1529
15.
Biotin carboxyl carrier protein (BCCP) is one subunit or domain of biotin-dependent enzymes. BCCP becomes an active substrate for carboxylation and carboxyl transfer, after biotinylation of its canonical lysine residue by biotin protein ligase (BPL). BCCP carries a characteristic local sequence surrounding the canonical lysine residue, typically -M-K-M-. Archaeon Sulfolobus tokodaii is unique in that its BCCP has serine replaced for the methionine C-terminal to the lysine. This BCCP is biotinylated by its own BPL, but not by Escherichia coli BPL. Likewise, E. coli BCCP is not biotinylated by S. tokodaii BPL, indicating that the substrate specificity is different between the two organisms. 相似文献
16.
A thioredoxin reductase (TrxR) has been identified in the hyperthermophilic archaeon Sulfolobus solfataricus (Ss). This enzyme is a homodimeric flavoprotein that was previously identified as NADH oxidase in the same micro-organism ('Biotechnol. Appl. Biochem. 23 (1996) 47'). The primary structure of SsTrxR is made of 323 amino acid residues and contains two putative betaalphabeta regions for the binding of FAD, and a NADP(H) binding consensus sequence in the proximity of a CXXC motif. These findings indicate that SsTrxR is structurally related to the class II of the pyridine nucleotide-disulphide oxidoreductases family. Moreover, the enzyme exhibits a NADP(H) dependent thioredoxin reductase activity requiring the presence of FAD. Surprisingly, the reductase activity of SsTrxR is reduced in the presence of a specific inhibitor of mammalian TrxR. This finding demonstrates that the archaeal enzyme, although structurally related to eubacterial TrxR, is functionally closer to eukaryal enzymes. Experimental evidences indicate that a disulphide bridge is required for the reductase but also for the NADH oxidase activity of the enzyme. These results are further supported by the significantly reduced activities exerted by the C147A mutant. The integrity of the CXXC motif is also involved in the stability of the enzyme. 相似文献
17.
Local populations of Sulfolobus islandicus diverge genetically with geographical separation, and this has been attributed to restricted transfer of propagules imposed by the unfavorable spatial distribution of acidic geothermal habitat. We tested the generality of genetic divergence with distance in Sulfolobus species by analyzing genomes of Sulfolobus acidocaldarius drawn from three populations separated by more than 8000 km. In sharp contrast to S. islandicus, the geographically diverse S. acidocaldarius genomes proved to be nearly identical. We could not link the difference in genome conservation between the two species to a corresponding difference in genome stability or ecological factors affecting propagule dispersal. The results provide the first evidence that genetic isolation of local populations does not result primarily from properties intrinsic to Sulfolobus and the severe discontinuity of its geothermal habitat, but varies with species, and thus may reflect biotic interactions that act after propagule dispersal. 相似文献
18.
A novel thermoacidophilic strain, designated RT8-4, was isolated from an acidic hot spring in Tengchong, Yunnan, China, and characterized phenotypically and phylogenetically. Cells of strain RT8-4 are irregular cocci with peritrechous flagella. The strain grows aerobically in either a lithotrophic or a heterotrophic mode. No anaerobic growth is apparent. Growth on elemental sulfur occurs through the oxidation of sulfur. Strain RT8-4 is capable of utilizing tryptone, d-xylose, d-arabinose, d-galactose, maltose, sucrose, d-fructose, or l-glutamic acid as the sole source of carbon. d-Glucose and d-mannose are not utilized. RT8-4 grows optimally at 85 °C and pH 3.5. The G+C content of the genome of RT8-4 is 34.4 mol%. Phylogenetic analysis based on 16S rDNA sequence as well as DNA–DNA hybridization and phenotypic characterization identifies strain RT8-4 as a novel species in the genus Sulfolobus. It is proposed that strain RT8-4 be designated as Sulfolobus tengchongensis sp. nov. The type strain is RT8-4T.Communicated by K. Horikoshi 相似文献
19.
20.
A thermo-alkaline pectate lyase (BliPelA) gene from an alkaliphilic Bacillus licheniformis strain was cloned and overexpressed in Escherichia coli. Mature BliPelA exhibited maximum activity at pH 11 and 70 °C, and demonstrated cleavage capability on a broad range of substrates such as polygalacturonic acid, pectins, and methylated pectins. The highest specific activity, of 320 U mg−1, was towards polygalacturonic acid. Significant ramie (Boehmeria nivea) fiber weight loss (21.5%) was obtained following enzyme treatment and combined enzyme-chemical treatment (29.3%), indicating a high ramie degumming efficiency of BliPelA. The total activity of recombinant BliPelA reached 1450.1 U ml−1 with a productivity of 48.3 U ml−1 h−1 under high-cell-density cultivation with a glycerol exponential feeding strategy for 30 h in 1-l fed-batch fermenter, and 1380.1 U ml−1 with a productivity of 57.5 U ml−1 h−1 after 24 h under constant glucose feeding in a 20-l fermenter using E. coli as the host. The enzyme yields reached 4.5 and 4.3 g l−1 in 1-l and 20-l fed-batch fermenters, respectively, which are higher than those of most reported alkaline Pels. Based on these promising properties and high-level production, BliPelA shows great potential for application in ramie degumming in textile industry. 相似文献