首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Female Amazon mollies, Poecilia formosa, are a unisexual species that reproduce by gynogenesis. They must coexist and mate with males of other species (usually the mollies Poecilia latipinna or Poecilia mexicana) to induce embryogenesis, but inheritance is strictly maternal. We examined the mating preference of the male sailfin molly, P. latipinna, for female sailfin mollies versus Amazon mollies, P. formosa. We compared the mating preferences of sympatric and allopatric populations collected throughout the Gulf Coast of North America. Male P. latipinna from six populations sympatric with Amazon mollies showed a significantly greater strength of preference for conspecific sailfin females than males from five populations that were allopatric with Amazon mollies. These results provide strong evidence for reproductive character displacement of male mate choice in sympatry. Furthermore, the large geographical range of populations that we tested revealed variation among populations within sympatry and allopatry, indicating that it is important to evaluate a large number of populations when examining reproductive character displacement.  相似文献   

2.
Male mate choice is critical for understanding the evolution and maintenance of sexual/asexual mating complexes involving sperm-dependent, gynogenetic species. Amazon mollies (Poecilia formosa) require sperm to trigger embryogenesis, but the males (e.g. Poecilia mexicana) do not contribute genes. Males benefit from mating with Amazon mollies, because such matings make males more attractive to conspecific females, but they might control the cost of such matings by providing less sperm to Amazon mollies. We examined this at the behavioural and sperm levels. P. mexicana males preferred to mate with, and transferred more sperm to conspecific females. However, if males mated with P. formosa, sperm was readily transferred. This underscores the importance of male choice in this system.  相似文献   

3.
Abstract.— The gynogenetic Amazon molly ( Poecilia formosa ) is a clonal, all-female lineage of livebearing fish that faces an unusual obstacle to evolutionary persistence. Sperm from heterospecific males (either sailfin, P. latipinna , or Atlantic, P. mexicana , mollies) is necessary to trigger embryogenesis. However, none of the male's genes are incorporated into the genome of the gynogenetic offspring. Some investigators have proposed that the evolution of male mate discrimination is a result of this cost, leading to a coevolutionary arms race between male avoidance of P. formosa and P. formosa attractiveness. Given that P. formosa successfully reproduces and has not yet gone extinct, it is clear there are mechanisms by which they attract the sexual attention of males. Although a Red Queen coevolutionary process in typical host/parasite systems has been shown to favor the persistence of sexual species, in this system an arms race has been invoked to explain the reverse. Here I present behavioral data supporting a more parsimonious scenario: that mechanisms of attraction in P. formosa are simply a consequence of its hybrid origin. Poecilia latipinna and P. mexicana males do not discriminate between gynogenetic P. formosa females and first generation sexual hybrid females, and females do not differ in agonistic behaviors associated with competition for mates. Both results contradict predictions from the Red Queen hypothesis. Therefore, coevolution is not necessary to explain the apparent evolutionary persistence of P. formosa.  相似文献   

4.
In sperm-dependent sexual/asexual mating systems, male mate choice is critical for understanding the mechanisms behind apparent stability observed in natural populations. The gynogenetic Amazon molly (Poecilia formosa) requires sperm from sexual males (e.g. Poecilia latipinna) to trigger embryogenesis, but inheritance is strictly maternal. Consequently, males should try to avoid or reduce the cost of mating with asexuals. We investigated male mate choice by documenting the presence of sperm in natural populations and found that a higher proportion of sexual females had sperm than asexuals. In addition, among those females that had sperm, sexuals had more sperm than asexuals. Our results hint at a role for male mate choice as a stabilizing factor in such systems.  相似文献   

5.
The Amazon molly, Poecilia formosa, is an all-female fish of hybrid origin which reproduces by gynogenesis, i.e. it depends on sperm of males of closely related species to trigger parthenogenetic development of the embryo. Therefore the offspring is clonal and identical to the mother. In rare cases the exclusion mechanism fails and paternal introgression occurs. This may result either in triploid offspring - if the whole haploid chromosome set of the sperm fuses with the diploid egg nucleus - or in siblings with microchromosomes - if only subgenomic amounts of paternal DNA are included. In one of our diploid, microchromosome-carrying laboratory stocks we observed eight triploid individuals which all developed into males. We investigated the mitotic and meiotic chromosomes, the synaptonemal complex (SC), and sperm production of these males, and compared them to males of the gonochoristic parental species (P. latipinna and P. mexicana) and their hybrids. This comparison revealed that P. formosa males are functional males with reduced effective fertility. They show a deviation from the typical 23 bivalents in the synaptonemal complexes as well as in diakinesis due to the triploid state. They produced offspring but only with gynogenetic Amazon molly females. This shows that the probably aneuploid sperm from P. formosa males can trigger parthenogenetic development of unreduced eggs.  相似文献   

6.
Male sailfin mollies Poecilia latipinna were tested in five different treatments that varied in the relative frequency of heterospecific gynogens (Amazon molly Poecilia formosa) to conspecific females to determine whether social interactions among males within a population causes some males to mate with heterospecific females. Male P. latipinna inseminated a significantly higher proportion of conspecific females and fertilized a significantly higher number of conspecific eggs regardless of the treatment. Nonetheless, preference for conspecific females was not exclusive as a range of 20 to 50% of heterospecific females were fertilized. Social interactions among males may best explain the results and may therefore play an important role in the maintenance of unisexual--bisexual mating complexes.  相似文献   

7.
Synopsis We analyzed variation in allozymes and mating preferences in 12 populations across much of the range of the sailfin molly, Poecilia latipinna. Sailfin mollies can be sympatric with its sexual parasite Amazon mollies, P. formosa. Amazon mollies must co-exist and mate with bisexual males of closely related species (including sailfin mollies) to induce embryogenesis but inheritance is strictly maternal. Where sailfin and Amazon mollies are sympatric there is evidence of reproductive character displacement as males show a significantly stronger mating preference for sailfin molly females over Amazon mollies compared to preferences of males from allopatric populations. From the allozyme data we found a moderate amount of genetic variation across all populations but this variation did not reveal significant partitioning between sympatric and allopatric populations. Additionally, we found no evidence for isolation by distance as genetic distance was not significantly correlated with geographic distance. While allozyme variation also did not significantly correlate with male mating preferences, there was a significant correlation between male mating preferences and geographic distance. This correlation between mating preferences and geographic distance may have arisen from coevolution with Amazon mollies resulting in reproductive character displacement. Taken together, the distribution of genetic and behavioral variation among sympatric and allopatric populations suggests that behavioral evolution has outpaced evolution at the allozyme loci we examined in P. latipinna.  相似文献   

8.
Male association preferences in a bisexual‐unisexual species complex were studied in clear and turbid environments. In south and central Texas, where the gynogenetic sexual‐parasite Poecilia formosa lives syntopically with Poecilia latipinna as its sexual host species, association times of P. latipinna males with conspecific sexual and heterospecific asexual females in clear and turbid water were measured sequentially. Turbidity had an influence on male mate association behaviour. Males spent less time with any kind of female stimulus in turbid water. There was no preference for conspecific sexual females, either in turbid water or under clear conditions. Also, origin of males and acclimatization to turbid water had no effect. How turbidity as a source of visual noise might affect communication among individuals and how this environmental factor might contribute to the stability of this sexual‐asexual mating complex in nature are discussed.  相似文献   

9.
The visual pigments of cones and rods in three species of mollies, Poecilia mexicana , Poecilia latipinna and their asexual hybrid Poecilia formosa , were examined using microspectrophotometry. In P. mexicana , populations from extreme photic habitats were used: one population originated from a clear water habitat, one from a milky water habitat and another from a completely dark cave. Ultraviolet-sensitive cones were found in all species. Differences in the λmax values of the visual pigments were small between species and among the three P. mexicana populations, but dark-reared cave fishes showed appreciably higher variance. The hybrid species P. formosa showed a highly variable long wavelength cone absorbance, ranging from 528·9 to 598·5 nm, suggesting multiple opsin expression or chromophore mixing.  相似文献   

10.
Gynogenetic species rely on sperm from heterospecifics for reproduction but do not receive genetic benefits from mating because none of the paternal genome is incorporated into offspring. The gynogenetic Amazon molly (Poecilia formosa) is a species of hybrid origins that are sympatric with one of the two parent species that provide sperm for reproduction, P. latipinna or P. mexicana. Amazons should not prefer to mate with one species over the other because sperm from both species will trigger embryogenesis, but mating preferences may be present in Amazons through other mechanisms. Amazons may prefer the more familiar species (males found in sympatry), or Amazons may prefer males with the greatest lateral projection area (LPA), a preference that is present in the parent species and may be retained within the Amazon hybrid genome. We tested association preferences of two populations of Amazons sympatric with either P. mexicana or P. latipinna. We first performed live trials to test whether Amazons preferred one host species over the other and found that neither population of Amazons showed a preference. We then tested whether Amazons preferred sympatric male (familiar) host or the male with the greatest lateral projection area (LPA) using four animated male models that varied in host species and manipulation of LPA. We found Amazons from a population sympatric with P. latipinna showed no variation in their association preference across the different models. In contrast, Amazons from a population sympatric with P. mexicana (naturally small LPA) spent more time associating with the male models that had smaller LPA, which is more familiar to this population of Amazons. We suggest that Amazons may have population differences in mating preferences, where Amazons sympatric with P. latipinna may not show mating preference for host species, but Amazons sympatric with P. mexicana may show preferences for more familiar‐shaped males.  相似文献   

11.
Aspects of the mating behaviour of male mollies (Poecilia spp.)   总被引:1,自引:0,他引:1  
The unisexual fish Poecilia formosa (the Amazon molly) reproduces by gynogenesis, a process in which sperm from the males of the host bisexual species activates development of its eggs. Unisexuals live with one of the host species in nature and compete with bisexual females for the males. It was long thought that male discrimination and mate selection established a balance between the unisexual and bisexual populations. Thus, hierarchies of males were set up in which dominant males mated with their conspecific females and subordinates mated with the Amazon molly. Recent evidence suggested, however, that male fish do not discriminate between their own females and the Amazon molly, and that there always are more males available than sexually receptive females of both species.
Our findings indicate that male behaviour may be more complex than suggested by either hypothesis. Mate discrimination and courtship behaviour appear to increase with age, so that large males show almost complete preference for their conspecific females, but smaller males will mate with the Amazon molly. In complex groups, small males often dart in and mate with their own females whilst the large males are engaged in courtship activities and defence of territory.  相似文献   

12.
This study reports significant differences between the gynogenetic Amazon molly Poecilia formosa and one of its sperm hosts, and the sexual sailfin molly Poecilia latipinna in the critical temperatures at which individual fishes lost motion control. Based on these measurements, it is suggested that cold snaps occurring in winter, but not summer temperatures, can significantly change population composition of these closely related fishes by inflicting higher mortality on P. formosa .  相似文献   

13.
A fundamental question in animal communication is whether the information provided is honest or deceptive [1, 2]. This problem has received much attention, both in theoretical [1, 3] and experimental [4] work. Here we show that male Atlantic mollies (Poecilia mexicana), when observed during mate choice by another male, reduce their mating activity and no longer prefer mating with one of two females presented, which can be interpreted as an attempt to avoid unintended interception of information by the rival male. Most importantly, focal males directed their first sexual interaction (after they were presented with the rival male) toward the initially nonpreferred female, suggesting that males deceive other males about their mating preferences. Deception by the choosing male may be an adaptation to avoid sperm competition, because surrounding males may use public information and copy the focal male's mate choice.  相似文献   

14.
When making mating decisions, individuals may rely on multiple cues from either the same or multiple sensory modalities. Although the use of visual cues in sexual selection is well studied, fewer studies have examined the role of chemical cues in mate choice. In addition, few studies have examined how visual and/or chemical cues affect male mating decisions. Male mate choice is important in systems where males must avoid mating with heterospecific females, as is found in a mating complex of Poecilia. Male sailfin mollies, Poecilia latipinna, are sexually parasitized by gynogenetic Amazon mollies, P. formosa. Little is known about the mechanism by which male sailfin mollies base their mating decisions. Here we tested the hypothesis that male sailfin mollies from an allopatric and a sympatric population with Amazon mollies use multiple cues to distinguish between conspecific and heterospecific females. We found that male sailfin mollies recognized the chemical cues of conspecific females, but we found no support for the hypothesis that chemical cues are by themselves sufficient for species discrimination. Lack of discrimination based on chemical cues alone may be due to the close evolutionary history between P. latipinna and P. formosa. Males from populations sympatric with Amazon mollies did not differentially associate with females of either of the two species when given access to both visual and chemical cues of the females, yet males from the allopatric population did associate more with conspecific females than with heterospecific females in the presence of both chemical and visual cues. The lack of discrimination by males from the sympatric population between conspecific and heterospecific females based on both chemical and visual cues suggests that these males require more complex combinations of cues to distinguish species, possibly due to the close relatedness of these species.  相似文献   

15.
The social environment offers fish complex information about the quality, performance, personality and other cues of potential mates and competitors simultaneously. It is likely, therefore, that the environmental information regarding the context of mate choice is perceived and processed differently in species and sexes in respect to lateralisation. The present study comparatively assessed visual lateralisation behaviour in response to different social or sexual stimuli in three closely related poeciliid species (P. latipinna, P. mexicana, P. formosa) in comparison to a more distantly related species (P. reticulata). Individuals were presented with four different social or sexual stimuli that were tested against a control stimulus; (a) a conspecific male, (b) a conspecific female, (c) a heterosexual conspecific pair, (d) three conspecific females (shoal). In order to approach a target stimulus, focal fish had to perform detours to the right or left of a vertically straight-shaped barrier. The three closely related poeciliid species, P. latipinna, P. mexicana, P. formosa, appeared to have a general tendency to turn right (i.e., left-eye preference), whereas the more distantly related P. reticulata males and females showed an overall bias to the left (i.e., right-eye preference) in response to various social–sexual incitements. Moreover, body size seemed to significantly influence especially the males’ detour behaviour, with smaller males acting in opposition to their larger conspecifics in response to certain social stimuli. In this case, smaller and larger Poecilia spp. males responded in the same way as smaller and larger males of the other three poeciliid species. Therefore, results possibly point to differences in the degree of general social behaviour between closely and more distantly related species and mating motivation amongst larger and smaller individuals when placed in a novel social environment. Hence, present results possibly suggest a sex-specific functional lateralisation for the analysis of visual information and seem to support the closer ancestral relationships between the Poecilia spp. tested in this study and the more distantly related guppies in terms of their left–right lateralisation. Generally, present results suggest that functional asymmetries in behaviour could be widespread among vertebrates, thus supporting the hypothesis of an early evolution of lateralisation in brain and behaviour.  相似文献   

16.
Chromosomes of the Amazon molly, Poecilia formosa, a unisexual species of hybrid origin, were investigated by C-banding, silver staining, and fluorescent staining with DAPI, quinacrine dihydrochloride, and chromomycin A3. Analysis of heterochromatin distribution indicates that chromosomes similar to the W chromosome of P. latipinna are not present in the unisexual species. Therefore, morphologically differentiated sex chromosomes do not form the basis of the unisexuality in P. formosa. The number and location of nucleolar organizer regions vary in P. formosa and do not correlate well with those of the parental species.  相似文献   

17.
Individuals providing misleading information to conspecifics may benefit from deception at the receiver's expense. A recent study (Plath et al., Curr Biol 18:1138–1141, 2008c) suggested that male Atlantic mollies (Poecilia mexicana) deceive rival males about their preferred mate. Here, we contrasted potentially deceptive behavior in surface-dwelling P. mexicana males to males of the cave form of that species (the cave molly). Unlike many other cavefishes, cave mollies have retained functional eyes and readily respond to visual stimuli. Males could interact freely with two females (large and small), and an audience male was visually presented during the second part of the tests. When observed during mate choice, males reduced their mating activity, but this reduction was significantly weaker in cave mollies. Overall, the expression of mating preferences (determined through frequencies of nipping and thrusting) declined in front of an audience; again, this effect was significantly weaker in the cave form. Reduced sexual activity and reduced expression of mating preferences can be interpreted as an attempt of the focal male to avoid unintended interception of information by the rival male. Surface but not cave molly males directed their first sexual interaction (when being observed by the rival male) towards the initially non-preferred female, suggesting that surface-dwelling males deceive rival males about their mating preferences. Deception by the focal males may be an adaptation to avoid sperm competition, since other males in their social environment may use public information and copy the focal male's mate choice. It seems that sending deceptive signals is evolutionarily regressed in the cave molly, since mate choice copying is unlikely to occur under naturally dark conditions, and also the potential to deceive rivals about mating preferences is probably very limited.  相似文献   

18.
We examined both female and male mate choice in the sailfín molly, Poecilia latipinna. Female mollies preferred larger males over smaller ones when comparing males from their own populations. Although the expression of this preference depends on a female's receptive state, the level of female preference does not appear to be associated with any other attribute of the female or of the males. When presented with males of the same size from different populations, females preferred native over foreign males in some but not all population combinations. These results cannot be explained by a bias for higher size-specific rates of courtship displays that is shared by all females. Males preferred larger over smaller females; larger males exhibited stronger preferences, and preference for the larger female also increased as the disparity in size between the two object females increased. We found no evidence that males preferred native over foreign females when encountered singly or in size-matched combinations. These results indicate that discrimination among populations arises because females exercise divergent directional preferences for size-specific trait values that are associated with differences among males in these values. This result implies an active role for sexual selection in contributing to the maintenance of the behavioral or morphological distinctions among males observed within and among populations.  相似文献   

19.
The present study investigated the spatiotemporal patterns in trophic resource use in a system of a gynogenetic poeciliid fish, the Amazon molly Poecilia formosa, and its sexual congeners the sailfin molly Poecilia latipinna and the Atlantic molly Poecilia mexicana using gut contents analysis. No statistically significant differences in trophic resource use were found between sexual and gynogenetic species, but gut contents varied significantly across sites and over time. In addition, variation in trophic morphology (i.e. gut length) was significant across sites but not species, and laboratory experiments indicated that gut length is phenotypically plastic. Overall, trophic differentiation between coexisting asexual and sexual Poecilia appears to be minimal, and it is unlikely that niche differentiation contributes to a stable coexistence of the two reproductive forms.  相似文献   

20.
In a microchromosome-carrying laboratory stock of the normally all-female Amazon molly Poecilia formosa triploid individuals were obtained, all of which spontaneously developed into males. A comparison of morphology of the external and internal insemination apparatus and the gonads, sperm ploidy and behaviour, to laboratory-bred F(1) hybrids revealed that the triploid P. formosa males, though producing mostly aneuploid sperm, are partly functional males that differ mainly in sperm maturation and sexual motivation from gonochoristic P. formosa males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号