首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
The JmjC-domain-containing protein Hairless (HR) and the vitamin D receptor (VDR) play a critical role in the maintenance of hair growth. Mutations in HR or VDR cause alopecia in humans and mice. Here we show that HR interacts with VDR and induces VDR relocalization in the nuclei. HR associates and colocalizes with nuclear receptor co-repressor (N-CoR) which is localized to subnuclear structures termed matrix-associated deacetylase (MAD) bodies. It is found that the HR mutants (C622G, N970S, D1012N, V1136D), associated with alopecia universalis congenita (AUC) or atrichia with papular lesions (APL), exhibit an abnormal subcellular distribution in addition to the impaired co-repressor activity with VDR. Studies on deletion mutants of HR indicate that the JmjC domain contributes to the co-repressor activity of HR. Our work provides new clues and evidence for the understanding on the role of HR in hair growth.  相似文献   

3.
4.
5.
Missense mutations in the pore-forming human alpha(1A) subunit of neuronal P/Q-type Ca(2+) channels are associated with familial hemiplegic migraine. We studied the functional consequences on P/Q-type Ca(2+) channel function of three recently identified mutations, R583Q, D715E, and V1457L after introduction into rabbit alpha(1A) and expression in Xenopus laevis oocytes. The potential for half-maximal channel activation of Ba(2+) inward currents was shifted by > 9 mV to more negative potentials in all three mutants. The potential for half-maximal channel inactivation was shifted by > 7 mV in the same direction in R583Q and D715E. Biexponential current inactivation during 3-s test pulses was significantly faster in D715E and slower in V1457L than in wild type. Mutations R583Q and V1457L delayed the time course of recovery from channel inactivation. The decrease of peak current through R583Q (30.2%) and D715E (30. 1%) but not V1457L (18.7%) was more pronounced during 1-Hz trains of 15 100-ms pulses than in wild type (18.2%). Our data demonstrate that the mutations R583Q, D715E, and V1457L, like the previously reported mutations T666M, V714A, and I1819L, affect P/Q-type Ca(2+) channel gating. We therefore propose that altered channel gating represents a common pathophysiological mechanism in familial hemiplegic migraine.  相似文献   

6.
7.
8.
9.
Zhu W  Lin A  Banerjee R 《Biochemistry》2008,47(23):6226-6232
Human cystathionine-gamma-lyase (CGL) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme, which functions in the transsulfuration pathway that converts homocysteine to cysteine. In addition, CGL is one of two major enzymes that can catalyze the formation of hydrogen sulfide, an important gaseous signaling molecule. Recently, several mutations in CGL have been described in patients with cystathioninuria, a rare but poorly understood genetic disease. Moreover, a common single nucleotide polymorphism in CGL, c.1364G>T that converts serine at position 403 to isoleucine, has been linked to elevated plasma homocysteine levels. In this study, we have characterized the pathogenic T67I and Q240E missense mutations and the polymorphic variants at amino acid residues 403 using kinetic and spectrophotometric methods. We report that the polymorphism does not influence the cofactor content of the enzyme or its steady-state kinetic properties. In contrast, the T67I mutant exhibits a 3.5-fold decrease in V max compared to that of wild-type CGL, while the Q240E mutant exhibits a 70-fold decrease in V max. The K Ms for cystathionine for both pathogenic mutants are comparable to that of wild type CGL. The PLP content of the T67I and Q240E mutants were about 4-fold and 80-fold lower than that of wild-type enzyme, respectively. Preincubation of the T67I mutant with PLP restored activity to wild-type levels while the same treatment resulted in only partial restoration of activity of the Q240E mutant. These results reveal that both mutations weaken the affinity for PLP and suggest that cystathionuric patients with these mutations should be responsive to pyridoxine therapy.  相似文献   

10.

Background  

The functional relevance of many of the recently detected JAK2 mutations, except V617F and exon 12 mutants, in patients with chronic myeloproliferative neoplasia (MPN) has been significantly overlooked. To explore atomic-level explanations of the possible mutational effects from those overlooked mutants, we performed a set of molecular dynamics simulations on clinically observed mutants, including newly discovered mutations (K539L, R564L, L579F, H587N, S591L, H606Q, V617I, V617F, C618R, L624P, whole exon 14-deletion) and control mutants (V617C, V617Y, K603Q/N667K).  相似文献   

11.
We have simultaneously improved the activity, reaction specificity, and thermal stability of p-hydroxybenzoate hydroxylase by means of systematic and comprehensive combinatorial mutagenesis starting from available single mutations. Introduction of random mutations at the positions of four cysteine and eight methionine residues provided 216 single mutants as stably expressed forms in Escherichia coli host cells. Four characteristics, hydroxylase activity toward p-hydroxybenzoate (main activity), protocatechuate-dependent NADPH oxidase activity (sub-activity), ratio of sub-activity to main activity (reaction specificity), and thermal stability, of the purified mutants were determined. To improve the above characteristics for diagnostic use of the enzyme, 11 single mutations (C152V, C211I, C332A, M52V, M52Q, M110L, M110I, M213G, M213L, M276Q, and M349A) were selected for further combinatorial mutagenesis. All possible combinations of the mutations provided 18 variants with double mutations and further combinatorial mutagenesis provided 6 variants with triple mutations and 9 variants with quadruple mutations with the simultaneously improved four properties.  相似文献   

12.
Yong-Biao J  Islam MN  Sueda S  Kondo H 《Biochemistry》2004,43(19):5912-5920
To clarify the mechanism of carboxyl transfer from carboxylbiotin to pyruvate, the following conserved amino acid residues present in the carboxyl transferase domain of Bacillus thermodenitrificans pyruvate carboxylase were converted to homologous amino acids: Asp543, Glu576, Glu592, Asp649, Lys712, Asp713, and Asp762. The carboxylase activity of the resulting mutants, D543E, E576D, E576Q, E592Q, D649N, K712R, K712Q, D713E, D713N, D762E, and D762N, was generally less than that of the wild type from mutation, but it decreased the most to 5% or even less than that of the wild type with D543E, D576Q, D649N, K712R, and K712Q. The decrease in activity observed for Asp543, Asp649, and Lys712 mutants was not for structural reasons because their structures seemed to remain intact as assessed by gel filtration and circular dichroism. On the basis of these data, a mechanism is proposed where Lys712 and Asp543 serve as the key acid and base catalyst, respectively.  相似文献   

13.
Protein misfolding due to missense mutations is a common pathogenic mechanism in cystathionine β-synthase (CBS) deficiency. In our previous studies, we successfully expressed, purified, and characterized nine CBS mutant enzymes containing the following patient mutations: P49L, P78R, A114V, R125Q, E176K, R266K, P422L, I435T, and S466L. These purified mutants exhibited full heme saturation, normal tetrameric assembly, and high catalytic activity. In this work, we used several spectroscopic and proteolytic techniques to provide a more thorough insight into the conformation of these mutant enzymes. Far-UV circular dichroism, fluorescence, and second-derivative UV spectroscopy revealed that the spatial arrangement of these CBS mutants is similar to that of the wild type, although the microenvironment of the chromophores may be slightly altered. Using proteolysis with thermolysin under native conditions, we found that the majority of the studied mutants is more susceptible to cleavage, suggesting their increased local flexibility or propensity for local unfolding. Interestingly, the presence of the CBS allosteric activator, S-adenosylmethionine (AdoMet), increased the rate of cleavage of the wild type and the AdoMet-responsive mutants, while the proteolytic rate of the AdoMet-unresponsive mutants was not significantly changed. Pulse proteolysis analysis suggested that the protein structure of the R125Q and E176K mutants is significantly less stable than that of the wild type and the other mutants. Taken together, the proteolytic data shows that the conformation of the pathogenic mutants is altered despite retained catalytic activity and normal tetrameric assembly. This study demonstrates that the proteolytic techniques are useful tools for the assessment of the biochemical penalty of missense mutations in CBS.  相似文献   

14.
15.
Fabry disease is a lysosomal storage disorder caused by the deficiency of alpha-Gal A (alpha-galactosidase A) activity. In order to understand the molecular mechanism underlying alpha-Gal A deficiency in Fabry disease patients with residual enzyme activity, enzymes with different missense mutations were purified from transfected COS-7 cells and the biochemical properties were characterized. The mutant enzymes detected in variant patients (A20P, E66Q, M72V, I91T, R112H, F113L, N215S, Q279E, M296I, M296V and R301Q), and those found mostly in mild classic patients (A97V, A156V, L166V and R356W) appeared to have normal K(m) and V(max) values. The degradation of all mutants (except E59K) was partially inhibited by treatment with kifunensine, a selective inhibitor of ER (endoplasmic reticulum) alpha-mannosidase I. Metabolic labelling and subcellular fractionation studies in COS-7 cells expressing the L166V and R301Q alpha-Gal A mutants indicated that the mutant protein was retained in the ER and degraded without processing. Addition of DGJ (1-deoxygalactonojirimycin) to the culture medium of COS-7 cells transfected with a large set of missense mutant alpha-Gal A cDNAs effectively increased both enzyme activity and protein yield. DGJ was capable of normalizing intracellular processing of mutant alpha-Gal A found in both classic (L166V) and variant (R301Q) Fabry disease patients. In addition, the residual enzyme activity in fibroblasts or lymphoblasts from both classic and variant hemizygous Fabry disease patients carrying a variety of missense mutations could be substantially increased by cultivation of the cells with DGJ. These results indicate that a large proportion of mutant enzymes in patients with residual enzyme activity are kinetically active. Excessive degradation in the ER could be responsible for the deficiency of enzyme activity in vivo, and the DGJ approach may be broadly applicable to Fabry disease patients with missense mutations.  相似文献   

16.
Bartish G  Nygård O 《Biochimie》2008,90(5):736-748
Elongation factor 2 (eEF2) is a member of the G-protein super family. G-proteins undergo conformational changes associated with binding of the guanosine nucleotide and hydrolysis of the bound GTP. These structural rearrangements affects the Switch I region (also known as the Effector loop). We have studied the role of individual amino acids in the Switch I region (amino acids 25-73) of S. cerevisiae eEF2 using functional complementation in yeast. 21 point mutations in the Switch I region were created by site-directed mutagenesis. Mutants K49R, E52Q, A53G, F55Y, K60R, Q63A, T68S, I69M and A73G were functional while mutants R54H, F55N, D57A, D57E, D57S, R59K, R59M, Q63E, R65A, R65N, T68A and T68M were inactive. Expression of mutants K49R, A53G, Q63A, I69M and A73G was associated with markedly decreased growth rates and yeast cells expressing mutants A53G and I69M became temperature sensitive. The functional capacity of eEF2 in which the major part Switch I (amino acids T56 to I69) was converted into the homologous sequence found in EF-G from E. coli was also studied. This protein chimera could functionally replace yeast eEF2 in vivo. Yeast cells expressing this mutant grew extremely slowly, showed increased cell death and became temperature sensitive. The ability of the mutant to replace authentic eEF2 in vivo indicates that the structural rearrangement of Switch I necessary for eEF2 function is similar in eukaryotes and bacteria. The effect of two point mutations in the P-loop was also studied. Mutant A25G but not A25V could functionally replace yeast eEF2 even if cells expressing the mutant grew slowly. The A25G mutation converted the consensus sequences AXXXXGK[T/S] in eEF2 to the corresponding motif GXXXXGK[T/S] found in all other G-proteins, suggesting that the alanine found in the P-loop of peptidyltranslocases are not essential for function.  相似文献   

17.
Hereditary vitamin D resistant rickets (HVDRR) is caused by mutations in the vitamin D receptor (VDR). Here we describe a patient with HVDRR who also exhibited some hypotrichosis of the scalp but otherwise had normal hair and skin. A 102 bp insertion/duplication was found in the VDR gene that introduced a premature stop (Y401X). The patient's fibroblasts expressed the truncated VDR, but were resistant to 1,25(OH)2D3. The truncated VDR weakly bound [3H]-1,25(OH)2D3 but was able to heterodimerize with RXR, bind to DNA and interact with the corepressor hairless (HR). However, the truncated VDR failed to bind coactivators and was transactivation defective. Since the patient did not have alopecia or papular lesions of the skin generally found in patients with premature stop mutations this suggests that this distally truncated VDR can still regulate the hair cycle and epidermal differentiation possibly through its interactions with RXR and HR to suppress gene transactivation.  相似文献   

18.
We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve kcat 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis can rapidly destabilise critical networks of co-evolved residues, whereas beneficial single mutants can be retained and improved upon by randomly recombining them with natural variants at other positions in the network.  相似文献   

19.
Hereditary enzymopenic methemoglobinemia is a rare disease that predominantly results from defects in either the erythrocytic (type I) or microsomal (type II) forms of the enzyme NADH:cytochrome b5 reductase (EC 1.6.2.2). All 25 currently identified type I and type II methemoglobinemia mutants have been expressed in Escherichia coli using a novel six histidine-tagged rat cytochrome b5/cytochrome b5 reductase fusion protein designated NADH:cytochrome c reductase (H6NCR). All 25 H6NCR variants were isolated and demonstrated to result in two groups of expression products. The first group of 16 mutants, which included the majority of the type I mutants, included K116Q, P131L, L139P, T183S, M193V, S194P, P211L, L215P, A245T, A245V, C270Y, E279K, V305R, V319M, M340-, and F365-, and yielded full-length fusion proteins that retained variable levels of NADH:cytochrome c reductase (NADH:CR) activity, ranging from approximately 2% (M340-) to 92% (K116Q) of that of the wild-type fusion protein. In contrast, the remaining nine mutants that represented the majority of the type II variants, comprised a second group that included Y109*, R124Q, Q143*, R150*, P162H, V172M, R226*, C270R, and R285*, and resulted in truncated H6NCR variants that retained the amino-terminal cytochrome b5 domain but were devoid of NADH:CR activity due to the absence of the cytochrome b5 reductase flavin domain. Kinetic analyses of the first group of full-length mutant fusion proteins indicated that values for both kcat and Km(NADH) were decreased and increased, respectively, indicating that the various mutations affected both substrate affinity and/or turnover. However, for the second group, the truncated products were the result of incomplete production of the carboxyl-terminal flavin-containing domain or instability of the expression products due to improper folding and/or lack of flavin incorporation.  相似文献   

20.
Hereditary inclusion body myopathy (HIBM), a neuromuscular disorder, is caused by mutations in UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. To date, more than 40 different mutations in the GNE gene have been reported to cause the disease. Ten of them, representing mutations in both functional domains of GNE, were recombinantly expressed in insect cells (Sf9). Each of the mutants that was analyzed displayed a reduction in the two known GNE activities, thus revealing that mutations may also influence the function of the domain not harboring them. The extent of reduction strongly differs among the point mutants, ranging from only 20% reduction found for A631T and A631V to almost 80% reduction of at least one activity in D378Y and N519S mutants and more than 80% reduction of both activities of G576E, underlined by structural changes of N519S and G576E, as observed in CD spectroscopy and gel filtration analysis, respectively. We therefore generated models of the three-dimensional structures of the epimerase and the kinase domains of GNE, based on Escherichia coli UDP-N-acetylglucosamine 2-epimerase and glucokinase, respectively, and determined the localization of the HIBM mutations within these proteins. Whereas in the kinase domain most of the mutations are localized inside the enzyme, mutations in the epimerase domain are mostly located at the protein surface. Otherwise, the different mutations result in different enzymatic activities but not in different disease phenotypes and, therefore, do not suggest a direct role of the enzymatic function of GNE in the disease mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号