首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosylation is an important post-translational modification. Analysis of glycopeptides is difficult using collision-induced dissociation, as it typically yields only information about the glycan structure, without any peptide sequence information. We demonstrate here how a 3D-quadrupole ion trap, using the complementary techniques of collision induced dissociation (CID) and electron-transfer dissociation (ETD), can be used to elucidate the glycan structure and peptide sequence of the N-glycosylated peptide from a fractionated tryptic digest of the lectin from the coral tree, Erythina cristagalli. CID experiments on the multiply protonated glycopeptide ions yield, almost exclusively, cleavage at glycosidic bonds, with little peptide backbone fragmentation. ETD reactions of the triply charged glycopeptide cations with either sulfur dioxide or nitrobenzene anions yield cleavage of the peptide backbone with no loss of the glycan structure. These results show that a 3D-quadrupole ion trap can be used to provide glycopeptide amino acid sequence information as well as information about the glycan structure.  相似文献   

2.
Computer simulation of database searches of electron transfer dissociation (ETD) spectra using both "bottom up" and "top down" approaches was performed to evaluate the utility of knowing a priori which product ions contain the C-terminus (i.e., the z* ions). In this work, knowledge of the identities of the z* ions was used to exclude putative identifications that are based solely on the mass matching of undifferentiated product ions derived from an experiment with those derived from in silico fragmentation. The benefit from knowing which ions are z* ions was found to be heavily dependent on the quality of the ETD spectra, in terms of sequence coverage afforded by the product ions, the amount of noise in the spectra (i.e., extraneous peaks that do not directly reflect primary structure), and mass measurement accuracy. Under conditions in which the likelihood for misidentifications are high without a priori knowledge of ion types (e.g., b-, y-, c-, or z-ions), a knowledge of which product ions are z* ions allows discrimination against false-positive identifications. Relatively little benefit from knowing which ions are z* ions was noted when product spectra reflected relatively high sequence coverage and when a low fraction of the products ions were due to extraneous peaks (i.e., spectra with relatively little noise). In all cases, specificity is higher with higher mass measurement accuracy with the consequent reduction in benefit from knowledge of which ions are z* ions.  相似文献   

3.
Triply and doubly charged iTRAQ ( isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD and supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/ z 162 yielded the reporter ion at m/ z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents.  相似文献   

4.
A prototype linear octopole ion trap/ion mobility/tandem mass spectrometer has been coupled with a nanoflow liquid chromatography separation approach and used to separate and characterize a complicated peptide mixture from digestion of soluble proteins extracted from human urine. In this approach, two dimensions of separation (nanoflow liquid chromatography and ion mobility) are followed by collision induced dissociation (CID) and mass spectrometry (MS) analysis. From a preliminary analysis of the most intense CID-MS features in a part of the dataset, it is possible to assign 27 peptide ions which correspond to 13 proteins. The data contain many additional CID-MS features for less intense ions. A limited discussion of these features and their potential utility in identifying complicated peptide mixtures required for proteomics study is presented.  相似文献   

5.
We performed a large scale study of electron transfer dissociation (ETD) performance, as compared with ion trap collision-activated dissociation (CAD), for peptides ranging from approximately 1000 to 5000 Da (n approximately 4000). These data indicate relatively little overlap in peptide identifications between the two methods ( approximately 12%). ETD outperformed CAD for all charge states greater than 2; however, regardless of precursor charge a linear decrease in percent fragmentation, as a function of increasing precursor m/z, was observed with ETD fragmentation. We postulate that several precursor cation attributes, including peptide length, charge distribution, and total mass, could be relevant players. To examine these parameters unique ETD-identified peptides were sorted by length, and the ratio of amino acid residues per precursor charge (residues/charge) was calculated. We observed excellent correlation between the ratio of residues/charge and percent fragmentation. For peptides of a given residue/charge ratio, there is no correlation between peptide mass and percent fragmentation; instead we conclude that the ratio of residues/charge is the main factor in determining a successful ETD outcome. As charge density decreases so does the probability of non-covalent interactions that can bind a newly formed c/z-type ion pair. Recently we have described a supplemental activation approach (ETcaD) to convert these non-dissociative electron transfer product ions to useful c- and z-type ions. Automated implementation of such methods should remove this apparent precursor m/z ceiling. Finally, we evaluated the role of ion density (both anionic and cationic) and reaction duration for an ETD experiment. These data indicate that the best performance is achieved when the ion trap is filled to its space charge limit with anionic reagents. In this largest scale study of ETD to date, ETD continues to show great promise to propel the field of proteomics and, for small- to medium-sized peptides, is highly complementary to ion trap CAD.  相似文献   

6.
We have expanded our recent on-line LC-MS platform for large peptide analysis to combine collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced (CRCID) species derived from ETD to determine sites of phosphorylation and glycosylation modifications, as well as the sequence of large peptide fragments (i.e., 2000-10,000 Da) from complex proteins, such as beta-casein, epidermal growth factor receptor (EGFR), and tissue plasminogen activator (t-PA) at the low femtomol level. The incorporation of an additional CID activation step for a charge-reduced species, isolated from ETD fragment ions, improved ETD fragmentation when precursor ions with high m/z (approximately >1000) were automatically selected for fragmentation. Specifically, the identification of the exact phosphorylation sites was strengthened by the extensive coverage of the peptide sequence with a near-continuous product ion series. The identification of N-linked glycosylation sites in EGFR and an O-linked glycosylation site in t-PA were also improved through the enhanced identification of the peptide backbone sequence of the glycosylated precursors. The new strategy is a good starting survey scan to characterize enzymatic peptide mixtures over a broad range of masses using LC-MS with data-dependent acquisition, as the three activation steps can provide complementary information to each other. In general, large peptides can be extensively characterized by the ETD and CRCID steps, including sites of modification from the generated, near-continuous product ion series, supplemented by the CID-MS2 step. At the same time, small peptides (e.g., 相似文献   

7.
Infrared multiphoton dissociation (IRMPD) of deprotonated and protonated oligonucleotides ranging from 5 to 40 residues has been performed in a quadrupole ion trap mass spectrometer at normal operating pressure and temperature. Only moderate exposure times and laser powers were required to achieve efficient dissociation. In general, IRMPD and collisionally activated dissociation (CAD) produce comparable sequencing information, indicating that IRMPD is a viable alternative to CAD for oligonucleotide analysis in the quadrupole ion trap. Two major characteristics distinguish CAD and IRMPD spectra for a given parent ion. First, structurally uninformative M-B ions that dominate CAD spectra are generally only low-intensity species in IRMPD spectra because nonresonant activation causes these species to dissociate to backbone cleavage products. Second, phosphate and nucleobase ions can be observed directly in IRMPD experiments because the low-mass cutoff can be set to trap small fragment ions. For this reason IRMPD can sometimes facilitate analysis of sequences containing modified bases.  相似文献   

8.
Over the past decade peptide sequencing by collision induced dissociation (CID) has become the method of choice in mass spectrometry-based proteomics. The development of alternative fragmentation techniques such as electron transfer dissociation (ETD) has extended the possibilities within tandem mass spectrometry. Recent advances in instrumentation allow peptide fragment ions to be detected with high speed and sensitivity (e.g., in a 2D or 3D ion trap) or at high resolution and high mass accuracy (e.g., an Orbitrap or a ToF). Here, we describe a comprehensive experimental comparison of using ETD, ion-trap CID, and beam type CID (HCD) in combination with either linear ion trap or Orbitrap readout for the large-scale analysis of tryptic peptides. We investigate which combination of fragmentation technique and mass analyzer provides the best performance for the analysis of distinct peptide populations such as N-acetylated, phosphorylated, and tryptic peptides with up to two missed cleavages. We found that HCD provides more peptide identifications than CID and ETD for doubly charged peptides. In terms of Mascot score, ETD FT outperforms the other techniques for peptides with charge states higher than 2. Our data shows that there is a trade-off between spectral quality and speed when using the Orbitrap for fragment ion detection. We conclude that a decision-tree regulated combination of higher-energy collisional dissociation (HCD) and ETD can improve the average Mascot score.  相似文献   

9.
Peptide and protein sequence analysis using a combination of gas-phase ion-ion chemistry and tandem MS is described. Samples are converted to multiply charged ions by ESI and then allowed to react with fluoranthene radical anions in a quadrupole linear ion trap mass spectrometer. Electron transfer from the radical anion to the multiply charged peptide or protein promotes random fragmentation along the amide backbone that is independent of peptide or protein size, sequence, or the presence of post-translational modifications. Examples are provided that demonstrate the utility of electron-transfer dissociation for characterizing post-translational modifications and for identifying proteins in mixtures on a chromatographic timescale (500 ms/protein).  相似文献   

10.
Isobaric stable isotope tagging reagents such as tandem mass tags or isobaric tags for relative and absolute quantification enable multiplexed quantification of peptides via reporter ion signals in the low mass range of tandem mass spectra. Until recently, the poor recovery of low mass fragments observed in tandem mass spectra acquired on ion trap mass spectrometers precluded the use of these reagents on this widely available instrument platform. The Pulsed Q Dissociation (PQD) technique allows negotiating this limitation but suffers from poor fragmentation efficiency, which has raised doubts in the community as to its practical utility. Here we show that by carefully optimizing instrument parameters such as collision energy, activation Q, delay time, ion isolation width, number of microscans, and number of trapped ions, low m/z fragment ion intensities can be generated that enable accurate peptide quantification at the 100 amol level. Side by side comparison of PQD on an LTQ Orbitrap with CID on a five-year old Q-Tof Ultima using complex protein digests shows that whereas precision of quantification of 10-15% can be achieved by both approaches, PQD quantifies twice as many proteins. PQD on an LTQ Orbitrap also outperforms "higher energy collision induced dissociation" on the same instrument using the recently introduced octapole collision cell in terms of lower limit of quantification. Finally, we demonstrate the significant analytical potential of iTRAQ quantification using PQD on an LTQ Orbitrap by quantitatively measuring the kinase interaction profile of the small molecule drug imatinib in K-562 cells. This article gives practical guidance for the implementation of PQD, discusses its merits, and for the first time, compares its performance to higher energy collision-induced dissociation.  相似文献   

11.
Various arabino-xylo-oligosaccharides with known substitution patterns were assessed by negative ESI-Q-TOFMS and ESI-ITMS. The CID spectra of linear xylo-oligosaccharides and of nine isomeric mono- and disubstituted arabino-xylo-oligosaccharides established that structures differing in their substitution pattern can be differentiated by this approach. The negative-ion fragmentation spectra of the deprotonated quasi-molecular ions are mainly characterized by glycosidic cleavage ions from the C-series, which provide sequence informations, and by cross-ring cleavage (0,2)A(i) ions, which provide partial linkage information. When the collision energy increased, the cross-ring cleavage (0,2)A(i) ions underwent consecutive loss of water to produce (0,2)A(i)-18 fragment ions and glycosidic cleavage ions of the B-series are also produced besides the C(i) ions. Contrary to linear xylo-oligosaccharides, C(i) ions, which originate from C-3 monosubstituted xylosyl residues never produce the related cross-ring cleavage (0,2)A(i) ions. Disubstitution at O-2 and O-3 of xylosyl residues appears to enhance the production of the (0,2)A(i) ions compared to monosubstitution. For the differentiation of the mono- and disubstitution patterns of the penultimate xylosyl residue, the relative abundance of the glycosidic cleavage ions at m/z 263 and 299 found on Q-TOF CID spectra plays a relevant role and appears to be more informative than MS(n) spectra obtained on a ion trap instrument.  相似文献   

12.
Large scale mass spectrometry analysis of N-linked glycopeptides is complicated by the inherent complexity of the glycan structures. Here, we evaluate a mass spectrometry approach for the targeted analysis of N-linked glycopeptides in complex mixtures that does not require prior knowledge of the glycan structures or pre-enrichment of the glycopeptides. Despite the complexity of N-glycans, the core of the glycan remains constant, comprising two N-acetylglucosamine and three mannose units. Collision-induced dissociation (CID) mass spectrometry of N-glycopeptides results in the formation of the N-acetylglucosamine (GlcNAc) oxonium ion and a [mannose+GlcNAc] fragment (in addition to other fragments resulting from cleavage within the glycan). In ion-trap CID, those ions are not detected due to the low m/z cutoff; however, they are detected following the beam-type CID known as higher energy collision dissociation (HCD) on the orbitrap mass spectrometer. The presence of these product ions following HCD can be used as triggers for subsequent electron transfer dissociation (ETD) mass spectrometry analysis of the precursor ion. The ETD mass spectrum provides peptide sequence information, which is unobtainable from HCD. A Lys-C digest of ribonuclease B and trypsin digest of immunoglobulin G were separated by ZIC-HILIC liquid chromatography and analyzed by HCD product ion-triggered ETD. The data were analyzed both manually and by search against protein databases by commonly used algorithms. The results show that the product ion-triggered approach shows promise for the field of glycoproteomics and highlight the requirement for more sophisticated data mining tools.  相似文献   

13.
Stable isotope-based dimethyl labeling that produces a dimethyl labeled terminal amine or a monomethylated proline N-terminus by reductive methylation (Anal. Chem. 2003, 75, 6843-6852) was reported as a promising strategy for global quantitative proteomics because of the simplicity of the process and its fast and complete reaction. This labeling strategy provides a signal enhancement for the produced a1 ions, which are usually hard to detect among most of the nonderivatized fragments. To assist peptide sequencing, in this study, the enhanced a1 ion produced under either collision induced dissociation (CID) or post source decay (PSD) modes was further characterized and applied as a mass tag for fingerprinting the identity of N-terminal amino acid. On the basis of the analysis of standard peptides, tryptic digests of hemoglobin and cell lysates, it was proved that such signal enhancement occurred to a1 ions derived from all 20 of the amino acids residues and this phenomenon was explained based the formation of stable quaternary immoniun ions. Accurate determination of a1 ions was shown to increase the chance for peptide de novo sequencing and also provided higher confidence in the scores obtained when identifying a protein through database searching. In addition, the a1 ion was further demonstrated to be used as a universal tag for precursor ion scan in a Q-TOF instrument, leading to a greater number of peptide ions sequenced. Combined with the capability for differential quantitation, the stable isotope-based dimethyl labeling increases the usefulness of the labeling method for MS-based proteomics.  相似文献   

14.
Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss.  相似文献   

15.
An ion trap is a powerful analyzer because of its high resolution, high sensitivity, and multistage mass analysis (MSn) capabilities. Multiple fragmentation analysis provides useful information regarding peptide sequence and biomolecular structure; however, this approach is limited by an inherent low mass cutoff (LMCO) derived from collision-induced dissociation (CID). To avoid the LMCO for application of an ion trap to iTRAQ, we optimized the qz value, which is a parameter that is proportional to the applied fundamental AC radio frequency voltage of a tandem mass spectrometry (MS/MS) event. Considering that many ion trap MS analyses employ CID as the MS/MS method, this method can be a practical one without any instrumental changes.  相似文献   

16.
The nonenzymatic digestion of proteins by microwave D-cleavage is an effective technique for site-specific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well-documented that highly charged peptide ions generated by ESI are well-suited for electron transfer dissociation (ETD), which produces c- and z-type fragment ions via gas-phase ion/ion reactions. In this paper, we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the nonenzymatic microwave D-cleavage technique is a rapid (<6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.  相似文献   

17.
Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(?) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Δm = 43 Da) or ethyl radicals (Δm = 29 Da), through collisional activation of z radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific z(?) ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MS(n)) method has been successfully implemented in a liquid chromatography-MS(n) platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.  相似文献   

18.
This study investigates the use of immonium ion scanning for the discovery of methylated and acetylated peptides. Tandem mass spectrometry of modified and unmodified versions of identical peptides revealed ions of 98, 112 and 126 m/ z specifically in association with mono-, dimethylated and acetylated lysine, respectively. Ions of 143 m/ z were seen to be associated with monomethylated arginine, although were not unique to this amino acid. Use of immonium ion scanning with differing collision energies (35, 55, 75, 95, 115 eV) showed that where immonium ions are strong and unique for a modified amino acid, the discovery rate of modified peptides can be improved up to 4-fold over control analyses. The position of an amino acid in a peptide, being terminal or internal, also affected the efficiency of identification of modified peptides. Higher collision energy scanning was required for the most effective identification of peptides with internal modified residues. We conclude that immonium ion scanning, particularly with a range of collision energies, can improve the discovery efficiency of post-translational modifications in peptides.  相似文献   

19.
Although genome databases have become the key for proteomic analyses, de novo sequencing remains essential for the study of organisms whose genomes have not been completed. In addition, post-translational modifications present a challenge in database searching. Recognition of the b or y-ion series in a peptide MS/MS spectrum as well as identification of the b1 - and yn-1 -ions can facilitate de novo analyses. Therefore, it is valuable to identify either amino-acid terminus. In previous work, we have demonstrated that peptides modified at the epsilon-amino group of lysine as a t-butyl peroxycarbamate derivative undergo free radical promoted peptide backbone fragmentation under low-energy collision-induced dissociation (CID) conditions. Here we explore the chemistry of the N-terminal amino group modified as a t-butyl peroxycarbamate. The conversion of N-terminal amines to peroxycarbamates of simple amino acids and peptides was studied with aryl t-butyl peroxycarbonates. ESI-MS/MS analysis of the peroxycarbamate adducts gave evidence of a product ion corresponding to the neutral loss of the N-terminal side chain (R), thus identifying this residue. Further fragmentation (MS3) of product ions formed by N-terminal residue side-chain loss (-R) exhibited an m/z shift of the b-ions equal to the neutral loss of R, therefore labeling the b-ion series. The study was extended to the analysis of a protein tryptic digest where the SALSA algorithm was used to identify spectra containing these neutral losses. The method for N-terminus identification presented here has the potential for improvement of de novo analyses as well as in constraining peptide mass mapping database searches.  相似文献   

20.
Phosphorylation has been the most studied of all the posttranslational modifications of proteins. Mass spectrometry has emerged as a powerful tool for phosphomapping on proteins/peptides. Collision-induced dissociation (CID) of phosphopeptides leads to the loss of phosphoric or metaphosphoric acid as a neutral molecule, giving an intense neutral loss product ion in the mass spectrum. Dissociation of the neutral loss product ion identifies peptide sequence. This method of data-dependent constant neutral loss (DDNL) scanning analysis has been commonly used for mapping phosphopeptides. However, preferential losses of groups other than phosphate are frequently observed during CID of phosphopeptides. Ions that result from such losses are not identified during DDNL analysis due to predetermined scanning for phosphate loss. In this study, we describe an alternative approach for improved identification of phosphopeptides by sequential abundant ion fragmentation analysis (SAIFA). In this approach, there is no predetermined neutral loss molecule, thereby undergoing sequential fragmentation of abundant peak, irrespective of the moiety lost during CID. In addition to improved phosphomapping, the method increases the sequence coverage of the proteins identified, thereby increasing the confidence of protein identification. To the best of our knowledge, this is the first report to use SAIFA for phosphopeptide identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号