首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review covers the background to discovery of the two key lipoxygenases (LOX) involved in epidermal barrier function, 12R-LOX and eLOX3, and our current views on their functioning. In the outer epidermis, their consecutive actions oxidize linoleic acid esterified in ω-hydroxy-ceramide to a hepoxilin-related derivative. The relevant background to hepoxilin and trioxilin biochemistry is briefly reviewed. We outline the evidence that linoleate in the ceramide is the natural substrate of the two LOX enzymes and our proposal for its importance in construction of the epidermal water barrier. Our hypothesis is that the oxidation promotes hydrolysis of the oxidized linoleate moiety from the ceramide. The resulting free ω-hydroxyl of the ω-hydroxyceramide is covalently bound to proteins on the surface of the corneocytes to form the corneocyte lipid envelope, a key barrier component. Understanding the role of the LOX enzymes and their hepoxilin products should provide rational approaches to ameliorative therapy for a number of the congenital ichthyoses involving compromised barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

2.
Non-bullous congenital ichthyosis erythroderma (NCIE) and lamellar ichthyosis (LI) are characterized by mutations in 12R-lipoxygenase (12R-LOX) and/or epidermal lipoxygenase 3 (eLOX3) enzymes. The eLOX3 lacks oxygenase activity, but is capable of forming hepoxilin-type products from arachidonic acid-derived hydroperoxide from 12R-LOX, termed 12R-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12R-HpETE). Mutations in either of two enzymes lead to NCIE or LI. Moreover, 12R-LOX-deficient mice exhibit severe phenotypic water barrier dysfunctions. Here, we demonstrate that 12R-HpETE can also be transformed to 8R-HXA(3) by hepoxilin A(3) (HXA(3)) synthase (12-lipoxygenase), which exhibits oxygenase activity. We also presented a novel form of ichthyosis in a patient, termed hepoxilin A(3) synthase-linked ichthyosis (HXALI), whose scales expressed high levels of 12R-LOX, but were deficient of HXA(3) synthase.  相似文献   

3.
Pancreatic islets of Langerhans were perifused with Krebs-bicarbonate solution containing glucose (5 and 10 mM). The perifusate was spiked with tetradeuterated hepoxilin A3 and was extracted and analysed by gas chromatography-mass spectrometry using NICI detection. Evidence is presented showing the presence of hepoxilin A3 as the hydrolysis product trioxilin A3. These results demonstrate for the first time that this pathway is active in intact cells; this finding, taken together with our previous evidence that hepoxilins possess insulin secretagogue properties further supports our hypothesis that these products could play a role as endogenous mediators of insulin release.  相似文献   

4.
Hepoxilins are biologically relevant eicosanoids formed via the 12-lipoxygenase pathway of the arachidonic acid cascade. Although these eicosanoids exhibit a myriad of biological activities, their biosynthetic mechanism has not been investigated in detail. We examined the arachidonic acid metabolism of RINm5F rat insulinoma cells and found that they constitutively express a leukocyte-type 12S-lipoxygenase. Moreover, we observed that RINm5F cells exhibit an active hepoxilin A(3) synthase that converts exogenous 12S-HpETE (12S-5Z,8-Z,10E,14Z-12-hydro(pero)xy-eicosa-5,8,10,14-tetraenoic acid) or arachidonic acid predominantly to hepoxilin A(3). 12S-lipoxygenase and hepoxilin A(3) synthase activities were co-localized in the cytosol; immunoprecipitation with an anti-12S-lipoxygenase antibody co-precipitated the two catalytic activities. These data suggested that hepoxilin A(3) synthase activity may be considered an intrinsic catalytic property of the leukocyte-type 12S-lipoxygenase. To test this hypothesis we cloned the leukocyte-type 12S-LOX from RINm5F cells, expressed it in Pichia pastoris, and found that the recombinant enzyme exhibited both 12S-lipoxygenase and hepoxilin A(3) synthase activities. The recombinant human platelet-type 12S-lipoxygenase and the porcine leukocyte-type 12S-lipoxygenase also exhibited hepoxilin A(3) synthase activity. In contrast, the native rabbit reticulocyte-type 15S-lipoxygenase did not convert 12S-HpETE to hepoxilin isomers. These data suggest that the positional specificity of lipoxygenases may be crucial for this catalytic function. This hypothesis was confirmed by site-directed mutagenesis studies that altered the positional specificity of the rat leukocyte-type 12S- and the rabbit reticulocyte-type 15-lipoxygenase. In summary, it may be concluded that naturally occurring 12S-lipoxygenases exhibit an intrinsic hepoxilin A(3) synthase activity that is minimal in lipoxygenase isoforms with different positional specificity.  相似文献   

5.
Hepoxilins are lipid signaling molecules derived from arachidonic acid through the 12-lipoxygenase pathway. These trans-epoxy hydroxy eicosanoids play a role in a variety of physiological processes, including inflammation, neurotransmission, and formation of skin barrier function. Mammalian hepoxilin hydrolase, partly purified from rat liver, has earlier been reported to degrade hepoxilins to trioxilins. Here, we report that hepoxilin hydrolysis in liver is mainly catalyzed by soluble epoxide hydrolase (sEH): i) purified mammalian sEH hydrolyses hepoxilin A3 and B3 with a Vmax of 0.4–2.5 μmol/mg/min; ii) the highly selective sEH inhibitors N-adamantyl-N’-cyclohexyl urea and 12-(3-adamantan-1-yl-ureido) dodecanoic acid greatly reduced hepoxilin hydrolysis in mouse liver preparations; iii) hepoxilin hydrolase activity was abolished in liver preparations from sEH−/− mice; and iv) liver homogenates of sEH−/− mice show elevated basal levels of hepoxilins but lowered levels of trioxilins compared with wild-type animals. We conclude that sEH is identical to previously reported hepoxilin hydrolase. This is of particular physiological relevance because sEH is emerging as a novel drug target due to its major role in the hydrolysis of important lipid signaling molecules such as epoxyeicosatrienoic acids. sEH inhibitors might have undesired side effects on hepoxilin signaling.  相似文献   

6.
The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. Many of the eicosanoids are produced from one polyunsaturated fatty acid, arachidonic acid. The diversity of possible products that can be synthesized from arachidonic acid is due, in part to the variety of enzymes that can act on it. Over the past 15 years, studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of arachidonic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of arachidonic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. The objectives of this commentary are to review what is known about the metabolism of arachidonic acid to eicosanoids within the nucleus and to point to important areas for future discovery.  相似文献   

7.
The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.  相似文献   

8.
In this paper we describe the release of hepoxilin A3 (HxA3) by intact pieces of the rat thoracic aorta and its stimulation by exogenous arachidonic acid but not by the calcium ionophore A23187. Homogenates of the rat aorta metabolize HxA3 via two competing pathways; one involves hepoxilin epoxide hydrolase to form the trihydroxy metabolite, trioxilin A3 (TrXA3), and a second pathway involves conjugation of HxA3 with glutathione via glutathione S-transferase to form a glutathione conjugate, which we refer to as hepoxilin A3-C (HxA3-C), a name based upon the accepted nomenclature for the glutathione conjugate leukotriene C. The formation of HxA3-C was dependent on the presence of reduced glutathione in the incubation medium. HxA3-C formation was greatly enhanced in the presence of TCPO, an epoxide hydrolase inhibitor which blocks utilization of the substrate via hepoxilin epoxide hydrolase. Comparison of HxA3-C formation by several arteries and veins indicated that glutathione conjugation was more evident in veins than arteries. The aorta from spontaneously hypertensive rats was essentially similar in HxA3-C formation to aorta from local normotensive Wistar rats although the aorta from the normotensive Wistar Kyoto rats was much more active than aorta from either of the two other rat types. The biological activity of HxA3 and HxA3-C was investigated on isolated helicoidal strips of the rat aorta. While both compounds were inactive on their own, HxA3 and to a lesser extent HxA3-C potentiated the contractile response induced by norepinephrine. The present results provide evidence of the presence in rat aorta of a new pathway of arachidonic acid metabolism whose products may possess potential regulatory properties on vascular tissue.  相似文献   

9.
Non-bullous congenital ichthyosiform erythroderma (NCIE) is one of the main clinical forms of ichthyosis. Genetic studies indicated that 12R-lipoxygenase (12R-LOX) or epidermal lipoxygenase-3 (eLOX3) was mutated in six families affected by NCIE [F. Jobard, C. Lefevre, A. Karaduman, C. Blanchet-Bardon, S. Emre, J. Weissenbach, M. Ozguc, M. Lathrop, J.F. Prud'homme, J. Fischer, Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1, Hum. Mol. Genet. 11 (2002) 107-113.], but the impact of these mutations on LOX function has not been defined. To explore this, we overexpressed the wild-type or mutated enzymes in E. coli and COS7 cells and then analyzed the essential catalytic properties. We showed recently that human eLOX3 is a hydroperoxide isomerase (hepoxilin synthase) that converts the product of 12R-LOX, 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE) to a specific epoxyalcohol. Using incubations with [(14)C]-labeled substrates and HPLC analyses, we found that the naturally occurring mutations totally eliminate the lipoxygenase activity of 12R-LOX and the hydroperoxide isomerase activity of eLOX3. We further demonstrate that the 12R-LOX/eLOX3-derived 8R-hydroxy-11R,12R-epoxide is converted by an epoxide hydrolase in COS7 cells and in human keratinocytes to a single isomer of 8,11,12-trihydroxyeicosa-5,9,14-trienoic acid. Taken together, the results support the hypothesis that 12R-LOX, eLOX3, and perhaps an epoxide hydrolase function together in the normal process of skin differentiation, and that the loss of function mutations are the basis of the LOX-dependent form of NCIE.  相似文献   

10.
Epoxide hydrolases: their roles and interactions with lipid metabolism   总被引:12,自引:0,他引:12  
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.  相似文献   

11.
The temporal in vivo expression of the eicosanoids (products of the cyclooxygenase pathway and one product of the 12-lipoxygenase pathway, hepoxilin A3) was investigated after bolus intravenous injection of arachidonic acid in the normal rat and in the genetic rat model of type I insulin-dependent diabetes, the diabetic BB rat. The temporal relationship between the expression of these products and plasma insulin concentrations was also investigated to determine whether any correlation existed between the rise in plasma insulin levels and any of the newly formed eicosanoids. Measurements of the eicosanoids present in whole blood were carried out using the deuterium isotope dilution technique involving separation of pentafluorobenzyl esters, O-methyl oximes, and trimethylsilyl ether derivatives by high-resolution gas chromatography and specific detection by negative ion chemical ionisation mass spectrometry in the selected ion mode. Injection of arachidonic acid resulted in large and statistically significant increases in the blood concentrations of all products within 1 min, with thromboxane B2 (the stable product of thromboxane A2) and trioxilin A3 (the stable product of hepoxilin A3) being the highest (4.5-12 ng/mL). The mean concentrations of thromboxane B2 and trioxilin A3 in blood appeared greater in the diabetic BB rat than in the normal rat, while the opposite was found for 6-keto PGF1 alpha (the stable product of prostacyclin). The apparent greater ratio of thromboxane B2 to 6-keto PGF1 alpha in the diabetic BB rat than in the normal rat supports a prothrombotic nature of platelets associated with diabetes.  相似文献   

12.
The effect of hepoxilin A, a newly isolated hydroxyepoxide metabolite of arachidonic acid, on calcium transport across the visceral yolk sac membrane of the guinea pig was investigated in vitro in Ussing chambers. While 1-14C-labelled hepoxilin A itself was not transported across the membrane, it increased the rate of transport of calcium toward the side to which hepoxilin A was added. The degree of increase in calcium transport was similar whether hepoxilin A was added to the maternal side or to the fetal side of the membrane. The observed effect was dependent on the concentration of hepoxilin A over a narrow range (0.5-1.0 X 10(-6) M). It was also dependent on the time of incubation reaching maximal effect by 25 min. We have recently observed that hepoxilin A is formed from platelet-derived 12-hydroperoxyeicosatetraenoic acid (12-HPETE) through hemin and hemoglobin catalysis as well as during perifusion of 12-HPETE through isolated pancreatic islets. The present study suggests that hepoxilin A, if formed in vivo, could play a role in the mobilization of calcium.  相似文献   

13.
Formation and metabolism of hepoxilin A3 by the rat brain   总被引:2,自引:0,他引:2  
Incubation of homogenates of the rat cerebral cortex with arachidonic acid led to the appearance of hepoxilin A3, analysed as its stable trihydroxy derivative, trioxilin A3, by high resolution gas chromatography/electron impact mass spectrometry. Using the stable deuterium isotope dilution technique, it is estimated that the cerebral cortex generates 5.0 +/- 0.2 ng/mg protein of hepoxilin A3. The formation of this product was stimulated by the addition of exogenous arachidonic acid (12.9 +/- 1.5 ng/mg protein) and blocked by boiling of the tissue. Addition of the dual cyclooxygenase/lipoxygenase inhibitor BW 755C at a concentration of 75 microM did not result in a blockade of hepoxilin formation. Three other regions were also tested for their ability to form hepoxilin A3 upon stimulation with exogenous arachidonic acid, i.e. median eminence, 11.7 +/- 1.6 ng/mg protein, pituitary, 12.3 +/- 0.7 ng/mg protein; pons, 26.6 +/- 0.2 ng/mg protein. In a separate study, 14C-labelled hepoxilin A3 was transformed into 14C-labelled trioxilin A3 by homogenates of the rat whole brain, demonstrating the presence of epoxide hydrolases in the CNS which utilise the hepoxilins as substrates. This is the first demonstration of the occurrence of the hepoxilin pathway in the central nervous system.  相似文献   

14.
Airway neutrophil infiltration is a pathological hallmark observed in multiple lung diseases including pneumonia and cystic fibrosis. Bacterial pathogens such as Pseudomonas aeruginosa instigate neutrophil recruitment to the air space. Excessive accumulation of neutrophils in the lung often contributes to tissue destruction. Previous studies have unveiled hepoxilin A(3) as the key molecular signal driving neutrophils across epithelial barriers. The eicosanoid hepoxilin A(3) is a potent neutrophil chemoattractant produced by epithelial cells in response to infection with P. aeruginosa. The enzyme phospholipase A(2) liberates arachidonic acid from membrane phospholipids, the rate-limiting step in the synthesis of all eicosanoids, including hepoxilin A(3). Once generated, aracidonic acid is acted upon by multiple cyclooxygenases and lipoxygenases producing an array of functionally diverse eicosanoids. Although there are numerous phospholipase A(2) isoforms capable of generating arachidonic acid, the isoform most often associated with eicosanoid generation is cytoplasmic phospholipase A(2)α. In the current study, we observed that the cytoplasmic phospholipase A(2)α isoform is required for mediating P. aeruginosa-induced production of certain eicosanoids such as prostaglandin E(2). However, we found that neutrophil transepithelial migration induced by P. aeruginosa does not require cytoplasmic phospholipase A(2)α. Furthermore, P. aeruginosa-induced hepoxilin A(3) production persists despite cytoplasmic phospholipase A(2)α suppression and generation of the 12-lipoxygenase metabolite 12-HETE is actually enhanced in this context. These results suggest that alterative phospholipase A(2) isoforms are utilized to synthesize 12-lipoxygenase metabolites. The therapeutic implications of these findings are significant when considering anti-inflammatory therapies based on targeting eicosanoid synthesis pathways.  相似文献   

15.
Macrophage-activating factor (MAF) activates macrophages so that their cytotoxic capacity is enhanced. This effect of MAF is inhibited by removing fucose from the macrophage cell surface by incubation with fucosidase, or by removing sialic acid by treatment with neuraminidase. After incubation with fucosidase or neuraminidase the average inhibition of cytotoxicity was 92 and 73%, respectively. β-Galactosidase had no effect. Addition of the specific products, fucose or sialic acid, to the incubation mixture of macrophages and enzyme blocked the effect of the enzymes. Taken together these observations indicate that macrophage surface fucose and sialic acid are essential for the interaction of MAF with macrophages which results in enhanced cytotoxicity for tumor cells.  相似文献   

16.
High plasma levels of linoleic acid (18:2) may injure endothelial cells, resulting in decreased barrier function of the vascular endothelium. The effects of linoleic acid on endothelial barrier function (transendothelial movement of albumin), membrane-bound enzyme activities, and possible autooxidation of linoleic acid under experimental conditions were studied. The exposure of endothelial monolayers to 18:2 for 24 hr at 60, 90, and 120 microM fatty acid concentrations caused a significant increase in transendothelial movement of albumin, with maximum albumin transfer at 90 microM. Fatty acid treatment resulted in the increased appearance of cytosolic lipid droplets. Activities of the membrane-bound enzymes, angiotensin-converting enzyme (ACE), and Ca(2+)-ATPase increased steadily with increasing time of cell exposure to 90 microM 18:2, reaching significance at 24 hr. Treatment of endothelial cultures with up to 120 microM 18:2 did not cause cytotoxicity, as evidenced by a nonsignificant change in cellular release of [3H]-adenine. Incubation of 18:2-supplemented serum-containing culture media with 1000 microM 18:2 at 37 degrees C for up to 48 hr did not result in formation of autooxidation products. These results suggest that 18:2 itself, and not its oxidation products, plays a major role in disrupting endothelial barrier function.  相似文献   

17.
We have previously shown that the methyl ester of hepoxilin A3 causes a receptor-induced rise in intracellular calcium through the release from intracellular stores in suspended human neutrophils. The corresponding free acid was devoid of activity. We now report that the action of the free acid form of hepoxilin A3 is dependent on the type of vehicle used, i.e. it is active in releasing calcium when used in an ethanol vehicle but not in DMSO. The methyl ester is equally active in either vehicle. The pattern of calcium release between the free acid and the methyl ester is qualitatively different. Both compounds show a biphasic pattern, i.e. an initial rapid phase followed by a slow decline in calcium levels but never reaching pre-hepoxilin A3 baseline levels. The methyl ester appears slightly more potent in the initial phase of calcium release than the free acid (methyl = 188+/-14 S.D., free acid = 135+/-11 S.D. nM, P < 0.0005). Both compounds appear to reach the same calcium levels at the plateau of the second prolonged phase (methyl = 88+/-8 S.D., free acid = 107+/-15 S.D. nM, not significant). Lanthanum chloride (an inhibitor of calcium influx) interfered with the second phase of the curve causing calcium levels to return to normal pre-hepoxilin levels for both compounds. Addition of lanthanum chloride prior to the hepoxilin addition or carrying out the experiments in calcium-free medium, eliminated the second phase completely, with the calcium peak returning rapidly to normal baseline levels, suggesting that the second phase is due to calcium influx. Again the methyl ester is more active than the free acid (methyl, 189+/-12; free acid, 145+/-6 S.D. nM, P<0.005). Additional experiments with tritium-labelled methyl ester of hepoxilin A3 demonstrated that the compound is hydrolyzed into the free acid intracellularly. These experiments demonstrate that DMSO interacts with hepoxilin free acid, interfering with its entry into the cell while ethanol does not. Once inside the cell, hepoxilin interacts with its own receptor to release calcium rapidly from stores, but it also causes a more prolonged influx of calcium from the extracellular milieu.  相似文献   

18.
We have previously shown that hepoxilin A3 increases the intracellular concentration of Ca+2 in human neutrophils. Herein we address the initial events of hepoxilin action on the neutrophil which precede the rise in intracellular calcium. We show that hepoxilin A3 at 10-1000 nM concentrations releases from [1-14C]-arachidonic acid labeled neutrophils diacylglycerol and unesterified arachidonic acid in a time and concentration dependent fashion. The release of arachidonic acid and diacyglycerol are receptor-mediated events which are blocked by pertussis toxin. This data shows that hepoxilin A3 stimulates phospholipases C and A2 in the cell which may be involved in the rise in cytosolic calcium. Thus, hepoxilins may represent a hitherto unrecognised class of cellular mediators.  相似文献   

19.
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.  相似文献   

20.
Purification of hepoxilin epoxide hydrolase from rat liver   总被引:3,自引:0,他引:3  
Hepoxilin epoxide hydrolase activity was demonstrated in rat liver cytosol using as substrate [1-14C] hepoxilin A3, a recently described hydroxy epoxide derivative of arachidonic acid. The enzyme was isolated and purified to apparent homogeneity using conventional chromatographic procedures resulting in 41-fold purification. The protein eluted during isoelectric focusing at a pI in the 5.3-5.4 range. The specific activity of the purified protein was 1.2 ng/microgram protein/20 min at 37 degrees C. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under denaturing conditions, a molecular mass value of 53 kDa was observed. Using native polyacrylamide gel electrophoresis, enzyme activity corresponded to the main protein band. The purified protein used hepoxilin A3 as preferred substrate converting it to trioxilin A3. The enzyme was marginally active toward other epoxides such as leukotriene A4 and styrene oxide. The Mr, pI, and substrate specificity of the hepoxilin epoxide hydrolase indicate that this enzyme is different from the recently reported leukotriene A4 hydrolase from human erythrocytes and rat and human neutrophils and constitutes a hitherto undescribed form of epoxide hydrolase with specificity toward hepoxilin A3. Tissue screening for enzyme activity revealed that this enzyme is ubiquitous in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号