首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CCK mediates the effects of nutrients on gastrointestinal motility and appetite. Intravenously administered CCK stimulates pyloric pressures, increases plasma PYY, and suppresses ghrelin, all of which may be important in the regulation of appetite and energy intake. The dose-related effects of exogenous CCK on gastrointestinal motility and gut hormone release, and the relationships between these effects and those on energy intake, are uncertain. We hypothesized that 1) intravenous CCK-8 would have dose-dependent effects on antropyloroduodenal (APD) pressures, plasma PYY and ghrelin concentrations, appetite, and energy intake and 2) the suppression of energy intake by CCK-8 would be related to the stimulation of pyloric motility. Ten healthy men (age 26 +/- 2 yr) were studied on four separate occasions in double-blind, randomized fashion. APD pressures, plasma PYY and ghrelin, and appetite were measured during 120-min intravenous infusions of 1) saline (control) or 2) CCK-8 at 0.33 (CCK0.33), 3) 0.66 (CCK0.66), or 4) 2.0 (CCK2.0) ng.kg(-1).min(-1). After 90 min, energy intake at a buffet meal was quantified. CCK-8 dose-dependently stimulated phasic and tonic pyloric pressures and plasma PYY concentrations (r > 0.70, P < 0.05) and reduced desire to eat and energy intake (r > -0.60, P < 0.05) without inducing nausea. There were relationships between basal pyloric pressure and isolated pyloric pressure waves (IPPW) with plasma CCK (r > 0.50, P < 0.01) and between energy intake with IPPW (r = -0.70, P < 0.05). Therefore, our study demonstrates that exogenous CCK-8 has dose-related effects on APD motility, plasma PYY, desire to eat, and energy intake and suggests that the suppression of energy intake is related to the stimulation of IPPW.  相似文献   

2.
We recently reported that intraduodenal infusion of lauric acid (C12) (0.375 kcal/min, 106 mM) stimulates isolated pyloric pressure waves (IPPWs), inhibits antral and duodenal pressure waves (PWs), stimulates release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), and suppresses energy intake and that these effects are much greater than those seen in response to isocaloric decanoic acid (C10) infusion. Administration of C12 was, however, associated with nausea, confounding interpretation of the results. The aim of this study was to evaluate the effects of different intraduodenal doses of C12 on antropyloroduodenal (APD) motility, plasma CCK and GLP-1 concentrations, appetite, and energy intake. Thirteen healthy males were studied on 4 days in double-blind, randomized fashion. APD pressures, plasma CCK and GLP-1 concentrations, and appetite perceptions were measured during 90-min ID infusion of C12 at 0.1 (14 mM), 0.2 (28 mM), or 0.4 (56 mM) kcal/min or saline (control; rate 4 ml/min). Energy intake was determined at a buffet meal immediately following infusion. C12 dose-dependently stimulated IPPWs, decreased antral and duodenal motility, and stimulated secretion of CCK and GLP-1 (r > 0.4, P < 0.05 for all). C12 (0.4 kcal/min) suppressed energy intake compared with control, C12 (0.1 kcal/min), and C12 (0.2 kcal/min) (P < 0.05). These effects were observed in the absence of nausea. In conclusion, intraduodenal C12 dose-dependently modulated APD motility and gastrointestinal hormone release in healthy male subjects, whereas effects on energy intake were only apparent with the highest dose infused (0.4 kcal/min), possibly because only at this dose was modulation of APD motility and gastrointestinal hormone secretion sufficient for a suppressant effect on energy intake.  相似文献   

3.
Enterally administered lipid modulates antropyloroduodenal motility, gut hormone release, appetite, and energy intake. We hypothesized that these effects would be dependent on both the load, and duration, of small intestinal exposure to lipid. Eleven healthy men were studied on four occasions in a double-blind, randomized, fashion. Antropyloroduodenal motility, plasma CCK and peptide YY (PYY) concentrations, and appetite perceptions were measured during intraduodenal infusion of lipid (Intralipid) at 1) 1.33 kcal/min for 50 min, 2) 4 kcal/min for 50 min, and 3) 1.33 kcal/min for 150 min, or 4) saline for 150 min. Immediately after the infusions, energy intake was quantified. Pressure wave sequences (PWSs) were suppressed, and basal pyloric pressure, isolated pyloric pressure waves (IPPWs), plasma CCK and PYY stimulated (all P < 0.05), during the first 50 min of lipid infusion, in a load-dependent fashion. The effect of the 4 kcal/min infusion was sustained so that the suppression of antral pressure waves (PWs) and PWSs and increase in PYY remained evident after cessation of the infusion (all P < 0.05). The prolonged lipid infusion (1.33 kcal/min for 150 min) suppressed antral PWs, stimulated CCK and PYY and basal pyloric pressure (all P < 0.05), and tended to stimulate IPPWs when compared with saline throughout the entire infusion period. There was no significant effect of any of the lipid infusions on appetite or energy intake, although nausea was slightly higher (P < 0.05) with the 4 kcal/min infusion. In conclusion, both the load, and duration, of small intestinal lipid influence antropyloroduodenal motility and patterns of CCK and PYY release.  相似文献   

4.
There is evidence that gastrointestinal function adapts in response to a high-fat (HF) diet. This study investigated the hypothesis that an HF diet modifies the acute effects of duodenal lipid on appetite, antropyloroduodenal pressures, plasma CCK and plasma glucagon-like peptide-1 (GLP-1) levels in humans. Twelve healthy men were studied twice in randomized, crossover fashion. The effects of a 90-min duodenal lipid infusion (6.3 kJ/min) on the above parameters were assessed immediately following 14-day periods on either an HF or a low-fat (LF) diet. After the HF diet, pyloric tonic and phasic pressures were attenuated, and the number of antropyloroduodenal pressure-wave sequences was increased when compared with the LF diet. Plasma CCK and GLP-1 levels did not differ between the two diets. Hunger was greater during the lipid infusion following the HF diet, but there was no difference in food intake. Therefore, exposure to an HF diet for 14 days attenuates the effects of duodenal lipid on antropyloroduodenal pressures and hunger without affecting food intake or plasma hormone levels.  相似文献   

5.
Postprandial hypotension is an important clinical problem, particularly in the elderly. 5-Hydroxytryptamine3 (5-HT3) mechanisms may be important in the regulation of splanchnic blood flow and blood pressure (BP), and in mediating the effects of small intestinal nutrients on gastrointestinal motility. The aims of this study were to evaluate the effects of the 5-HT3 antagonist granisetron on the BP, heart rate (HR), and antropyloroduodenal (APD) motility responses to intraduodenal glucose in healthy older subjects. Ten subjects (5 male, 5 female, aged 65-76 yr) received an intraduodenal glucose infusion (3 kcal/min) for 60 min (t = 0-60 min), followed by intraduodenal saline for a further 60 min (t = 60-120 min) on 2 days. Granisetron (10 microg/kg) or control (saline) was given intravenously at t = -25 min. BP (systolic and diastolic), HR, and APD pressures were measured. Pressure waves in the duodenal channel closest ("local") to the infusion site were quantified separately. During intraduodenal glucose, there were falls in systolic and diastolic BP and a rise in HR (P < 0.0001 for all); granisetron had no effect on these responses. Granisetron suppressed the number and amplitude (P < 0.05 for both) of local duodenal pressures during intraduodenal glucose. Otherwise, the effects of intraduodenal glucose on APD motility did not differ between study days. We conclude that in healthy older subjects, 5-HT3 mechanisms modulate the local duodenal motor effects of, but not the cardiovascular responses to, small intestinal glucose.  相似文献   

6.
7.
Exendin-4 is a long-acting potent agonist of the glucagon-like peptide 1 (GLP-1) receptor and may be useful in the treatment of type 2 diabetes and obesity. We examined the effects of an intravenous infusion of exendin-4 (0.05 pmol. kg(-1). min(-1)) compared with a control saline infusion in healthy volunteers. Exendin-4 reduced fasting plasma glucose levels and reduced the peak change of postprandial glucose from baseline (exendin-4, 1.5 +/- 0.3 vs. saline, 2.2 +/- 0.3 mmol/l, P < 0.05). Gastric emptying was delayed, as measured by the paracetamol absorption method. Volunteers consumed 19% fewer calories at a free-choice buffet lunch with exendin-4 (exendin-4, 867 +/- 79 vs. saline 1,075 +/- 93 kcal, P = 0.012), without reported side effects. Thus our results are in accord with the possibility that exendin-4 may be a potential treatment for type 2 diabetes, particularly for obese patients, because it acts to reduce plasma glucose at least partly by a delay in gastric emptying, as well as by reducing calorie intake.  相似文献   

8.
9.
The precise impact of age-related changes in hormone levels on cognition in men is still unclear due to differing study designs and contradictory findings. This study was undertaken to examine the relationship between endogenous sex hormone levels and cognitive functioning in healthy older men using a comprehensive battery of neuropsychological tests and measurement of serum sex hormone levels. Verbal learning and memory, visual-motor processing, spatial abilities, working memory and attention, and levels of testosterone and estradiol were evaluated in 54 healthy older men. Regression analyses revealed significant curvilinear associations between working memory function and both free and bioavailable testosterone levels, suggesting that an optimal hormone level may exist for maximal performance on tasks of executive/frontal lobe functioning. However, no other relationships were evident between either estradiol or testosterone levels and any of the other cognitive functions evaluated. Hormone assays performed at the end of the study revealed that a considerable portion of the healthy elderly men in our sample met criteria for hypogonadism and suggests that their low hormone levels may have mitigated against discovering other significant hormone-cognition relationships.  相似文献   

10.
11.
Upper gastrointestinal motor function and incretin hormone secretion are major determinants of postprandial glycemia and insulinemia. However, the impact of small intestinal flow events on glucose absorption and incretin release is poorly defined. Intraluminal impedance monitoring is a novel technique that allows flow events to be quantified. Eight healthy volunteers were studied twice, in random order. A catheter incorporating six pairs of electrodes at 3-cm intervals, and six corresponding manometry sideholes, was positioned in the duodenum. Hyoscine butylbromide (20 mg) or saline was given as an intravenous bolus, followed by a continuous intravenous infusion of either hyoscine (20 mg/h) or saline over 60 min. Concurrently, glucose and 3-O-methylglucose (3-OMG) were infused into the proximal duodenum (3 kcal/min), with frequent blood sampling to measure glucose, 3-OMG, insulin, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The frequency of duodenal pressure waves and propagated pressure wave sequences was reduced by hyoscine in the first 10 min (P<0.01 for both), but not after that time. In contrast, there were markedly fewer duodenal flow events throughout 60 min with hyoscine (P<0.005). Overall, blood glucose (P<0.01) and plasma 3-OMG concentrations (P<0.05) were lower during hyoscine than saline, whereas plasma insulin, GLP-1, and GIP concentrations were initially (t=20 min) lower during hyoscine (P<0.05). In conclusion, intraluminal impedance measurement may be more sensitive than manometry in demonstrating alterations in duodenal motor function. A reduction in the frequency of duodenal flow events is associated with a decreased rate of glucose absorption and incretin release in healthy subjects.  相似文献   

12.
Negative-feedback (inhibitory) and positive-feedforward (stimulatory) processes regulate physiological systems. Whether such processes are themselves rhythmic is not known. Here, we apply cross-approximate entropy (cross-ApEn), a noninvasive measurement of joint (pairwise) signal synchrony, to inferentially assess hypothesized circadian and ultradian variations in feedback coupling. The data comprised simultaneous measurements of three pituitary and one peripheral hormone (LH, FSH, prolactin, and testosterone) in 12 healthy men each sampled every 10 min for 4 days (5,760 min). Ergodicity, due to the time series stationarity of the measurements over the 4 days, allows for effective estimation of parameters based upon the 12 subjects. Cross-ApEn changes were quantified via moving-window estimates applied to 4-day time series pairs. The resultant ordered windowed cross-ApEn series (in time) were subjected to power spectrum analysis. Rhythmicity was assessed against the null hypothesis of randomness using 1,000 simulated periodograms derived by shuffling the interpulse-interval hormone-concentration segments and redoing cross-ApEn windows and spectral analysis. By forward cross-ApEn analysis, paired LH-testosterone, LH-prolactin, and LH-FSH synchrony maintained dominant rhythms with periodicities of 18-22.5, 18, and 22.5 h, respectively (each P < 0.001). By reverse (feedback) cross-ApEn analysis, testosterone-LH, testosterone-prolactin, and testosterone-FSH synchrony cycles were 30, 18, and 30-45 h, respectively (each P ≤ 0.001). Significant 8- or 24-h rhythms were also detected in most linkages, and maximal bihormonal synchrony occurred consistently at ~0400-0500. Collectively, these analyses demonstrate significant ultradian (<24 h), circadian (~24 h), and infradian (>24 h) oscillations in pituitary-testis synchrony, wherein maximal biglandular coordination is strongly constrained to the early morning hours.  相似文献   

13.
14.
The influence of short-term energy intake and cycle exercise on oxygen consumption in response to a 1.5 MJ test meal was investigated in ten young, adult men. On the morning after a previous day's "low-energy" intake (LE regimen) of 4.5 MJ, the mean resting oxygen consumption increased by 0.7 ml X kg-1 X min-1 after the test meal (P less than 0.025). After a "high-energy" intake (HE regimen) of 18.1 MJ, the resting measurement was unchanged (+0.4 ml X kg-1 X min-1) after the meal (n.s.). These trends are the reverse of what would be expected if oxygen consumption in response to feeding is a factor in the acute control of body weight. The mean fasting oxygen consumption during cycle exercise at 56% of VO2max (constant work) for both LE and HE prior intakes was not different at 31.1 ml X kg-1 X min-1. Oxygen consumption during exercise increased after feeding by 0.5 ml X kg-1 X min-1 on the LE regimen (n.s.) and decreased by 1.2 ml X kg-1 X min-1 on the HE regimen (n.s.). These results are also the reverse of what would be expected if oxygen consumption in response to exercise is related to short-term energy intake.  相似文献   

15.
Postprandial hypotension is an important problem, particularly in the elderly. The fall in blood pressure is dependent on small intestinal glucose delivery and, possibly, changes in splanchnic blood flow, the release of glucagon-like peptide-1 (GLP-1), and sympathetic nerve activity. We aimed to determine in healthy older subjects, the effects of variations in small intestinal glucose load on blood pressure, superior mesenteric artery flow, GLP-1, and noradrenaline. Twelve subjects (6 male, 6 female; ages 65-76 yr) were studied on four separate occasions, in double-blind, randomized order. On each day, subjects were intubated via an anesthetized nostril, with a nasoduodenal catheter, and received an intraduodenal infusion of either saline (0.9%) or glucose at a rate of 1, 2, or 3 kcal/min (G1, G2, G3, respectively), for 60 min (t = 0-60 min). Between t = 0 and 60 min, there were falls in systolic and diastolic blood pressure following G2 and G3 (P = 0.003 and P < 0.001, respectively), but no change during saline or G1. Superior mesenteric artery flow increased slightly during G1 (P = 0.01) and substantially during G2 (P < 0.001) and G3 (P < 0.001), but not during saline. The GLP-1 response to G3 was much greater (P < 0.001) than to G2 and G1. Noradrenaline increased (P < 0.05) only during G3. In conclusion, in healthy older subjects the duodenal glucose load needs to be > 1 kcal/min to elicit a significant fall in blood pressure, while the response may be maximal when the rate is 2 kcal/min. These observations have implications for the therapeutic strategies to manage postprandial hypotension by modulating gastric emptying.  相似文献   

16.
Long term effects of differences in energy intake on thyroid hormone metabolism and the rate of oxygen consumption were studied in two groups of young pigs. The pigs were kept at 25 degrees C and fed either a high (H) or low (L) energy intake such that H = 2L for six weeks. The rate of oxygen consumption, the plasma levels of thyroxine (T4) and 3,5,3'-triiodothyronine (T3) and the fractional rate of disappearance of T4 and T3 were measured each week. The metabolic rate at thermal neutrality was lowest in the animals on the L intake and the critical temperature was lowest in the pigs on the H intake. These differences tended to increase with time. The fractional disappearance rate (K) for T4 began by being greater in the animals on the H intake, but after four weeks the difference reversed. The catabolic rate of T4 in nmol.kg-1h-1 showed similar changes. The k values for T3 were not significantly different between treatments. It is tentatively suggested that the different energy intakes lead to a change in the tissue sensitivity to thyroid hormone.  相似文献   

17.
Postprandial ghrelin suppression arises from the interaction of meal contents with the small intestine and may relate to elevations in blood glucose and/or plasma insulin. We sought to determine whether the suppression of ghrelin by small intestinal glucose is dependent on the glucose load and can be accounted for by changes in blood glucose and/or plasma insulin. Blood glucose, plasma insulin, and plasma ghrelin levels were measured in 10 healthy males (aged 32+/-4 yr; body mass index: 25.1+/-0.4 kg/m2) during intraduodenal glucose infusions at 1 kcal/min (G1), 2 kcal/min (G2), and 4 kcal/min (G4), as well as intraduodenal hypertonic saline (control) for 120 min. There was a progressive decrease in ghrelin with all treatments, control at 45 min and between 90 and 120 min (P<0.05) and G1 (P<0.05), G2 (P<0.0001), and G4 (P<0.0001) between 30 and 120 min to reach a plateau at approximately 90 min. There was no difference in plasma ghrelin between G1, G2, or G4. Control suppressed ghrelin to a lesser extent than intraduodenal glucose (P<0.05). The suppression of ghrelin was not related to rises in blood glucose or plasma insulin. Suppression of ghrelin by intraduodenal glucose in healthy males is apparently independent of the glucose load and unrelated to blood glucose or insulin levels.  相似文献   

18.
19.
Hormonal regulation of key gluconeogenic enzymes and glucose release by glucagon, dexamethasone, secretin and somatostatin was evaluated in maintenance cultured rat hepatocytes. (i) Phosphoenolpyruvate (PEP)-carboxykinase activity declined rapidly during the first 24 h in serum- and hormone-free culture with a further slight decay during the following 2 days. Dexamethasone and glucagon independently increased PEP-carboxykinase and acted synergistically when added in combination. Glucose-6-phosphatase activity declining linearly during hormone-free culture was stimulated by glucagon. Dexamethasone itself was without significant effects but completely abolished glucagon action. Fructose-1,6-diphosphatase was maintained at its initial level during the first day under control conditions and declined thereafter. Neither glucagon nor dexamethasone affected total activity or substrate (fructose-1,6-diphosphate) affinity of this enzyme. In short-term experiments on cells cultured under control conditions, protein synthesis-dependent stimulation of PEP-carboxykinase by glucagon and the permissive action of dexamethasone was demonstrated. Glucose-6-phosphatase and fructose-1,6-diphosphatase were not altered by hormones within this period. (ii) Stimulation by glucagon of gluconeogenesis was independent of its action on PEP-carboxykinase. Dexamethasone inhibited glycogenolysis but maintained glucose release at control levels probably by stimulation of gluconeogenesis. When added in combination, the glycogen-preserving action of dexamethasone acutely reduced the glucose release in response to glucagon. Glucagon sensitivity remained unchanged. (iii) The gastrointestinal hormones secretin and somatostatin were ineffective in modulating basal or glucagon-stimulated glucose release and gluconeogenic key enzymes. They are therefore unlikely to play a physiological role in hepatic glucose metabolism.  相似文献   

20.
Six healthy male subjects were treated with 0 g, 1 g, 3 g, and 0 g of chitosan for the first, second, third, and fourth of four weeks, respectively. They were administered chitosan before breakfast on the second, third, and fourth days of the week, and fecal specimens were collected corresponding to the prescribed diet consumed for breakfast on the second day to breakfast on the fourth day. Fecal excretion of dioxins and polychlorinated biphenyls (PCBs) was promoted by intake of 3 g of chitosan (p=0.0589 and p<0.05 respectively), and was positively correlated with that of fat (p<0.01 for both). We found that chitosan intake increased the fecal excretion of dioxins and PCBs, as well as that of fat, suggesting that it might be useful for reducing the adverse effects of lipophilic endocrine-disrupting chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号