首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 12S-lipoxygenase (12S-LOX) pathway of arachidonic acid (AA) metabolism is bifurcated at 12(S)-hydroperoxy-5Z,8Z,10E (12S-HpETE) in the reduction route to form 12S-hydroxy-eicosatetraenoic acid (12S-HETE) and in 8(S/R)-hydroxy-11(S),12S-trans-epoxyeicosa-5Z,9E,14Z-trienoic acid (HXA3) synthase pathway, previously known as isomerization route, to form hepoxilins. Earlier we showed that the HXA3 formation is restricted to cellular systems devoid of hydroperoxide reducing enzymes, e.g. GPxs, thus causing a persistent oxidative stress situation. Here, we show that HXA3 at as low as 100 nM concentration upregulates phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA and protein expressions, whereas other metabolites of AA metabolism 12S-HpETE and 12S-HETE failed to stimulate the PHGPx. Moreover, the decrease in 12S-HpETE below a threshold value of the hydroperoxide tone causes both suppression of the overall 12S-LOX activity and a shift from HXA3 formation towards 12S-HETE formation. We therefore propose that under persistent oxidative stress the formation of HXA3 and the HXA3-induced upregulation of PHGPx constitute a compensatory defense response to protect the vitality and functionality of the cell.  相似文献   

2.
Hepoxilins constitute a group of 12S-hydroperoxyeicosatetraenoic acid (12S-HpETE)-derived epoxy-hydroxy fatty acids that have been detected in various cell types and tissues. Although hepoxilin A3 (HXA3) exhibits a myriad of biological activities, its biosynthetic mechanism was not investigated in detail. Here we review the isolation, cloning, and characterization of a leukocyte-type 12S-lipoxygenase (12S-LOX) from rat insulinoma cells RINm5F, which exhibits an intrinsic hepoxilin A3 synthase activity. Confirmation for this observation was achieved by coimmunoprecipitation of HXA3 synthase activity with an anti-leukocyte 12S-LOX antibody, preparation of recombinant rat 12S-LOX enzyme from RINm5F cells, and assay of HXA3 synthase activity therein. Site-directed mutagenesis studies performed on rat 12S-LOX showed that 12-lipoxygenating enzyme species exhibit a strong HXA3 synthase activity that is impaired when the positional specificity of arachidonic acid is altered in favor of 15-lipoxygenation. Inasmuch as cellular glutathione peroxidases (cGPx and PHGPx) and HXA3 synthase compete for the same substrate 12S-HpETE, it can be proposed that the overall activity of glutathione peroxidases, representing the overall peroxide tone, finely tunes the rate of HXA3 formation.  相似文献   

3.
Hepoxilins are biologically relevant eicosanoids formed via the 12-lipoxygenase pathway of the arachidonic acid cascade. Although these eicosanoids exhibit a myriad of biological activities, their biosynthetic mechanism has not been investigated in detail. We examined the arachidonic acid metabolism of RINm5F rat insulinoma cells and found that they constitutively express a leukocyte-type 12S-lipoxygenase. Moreover, we observed that RINm5F cells exhibit an active hepoxilin A(3) synthase that converts exogenous 12S-HpETE (12S-5Z,8-Z,10E,14Z-12-hydro(pero)xy-eicosa-5,8,10,14-tetraenoic acid) or arachidonic acid predominantly to hepoxilin A(3). 12S-lipoxygenase and hepoxilin A(3) synthase activities were co-localized in the cytosol; immunoprecipitation with an anti-12S-lipoxygenase antibody co-precipitated the two catalytic activities. These data suggested that hepoxilin A(3) synthase activity may be considered an intrinsic catalytic property of the leukocyte-type 12S-lipoxygenase. To test this hypothesis we cloned the leukocyte-type 12S-LOX from RINm5F cells, expressed it in Pichia pastoris, and found that the recombinant enzyme exhibited both 12S-lipoxygenase and hepoxilin A(3) synthase activities. The recombinant human platelet-type 12S-lipoxygenase and the porcine leukocyte-type 12S-lipoxygenase also exhibited hepoxilin A(3) synthase activity. In contrast, the native rabbit reticulocyte-type 15S-lipoxygenase did not convert 12S-HpETE to hepoxilin isomers. These data suggest that the positional specificity of lipoxygenases may be crucial for this catalytic function. This hypothesis was confirmed by site-directed mutagenesis studies that altered the positional specificity of the rat leukocyte-type 12S- and the rabbit reticulocyte-type 15-lipoxygenase. In summary, it may be concluded that naturally occurring 12S-lipoxygenases exhibit an intrinsic hepoxilin A(3) synthase activity that is minimal in lipoxygenase isoforms with different positional specificity.  相似文献   

4.
The 12(S)-lipoxygenase (12-LOX) pathway of arachidonic acid (AA) metabolism after dioxygenation to 12(S)-hydroperoxy-eicosatetraenoic acid is bifurcated in a reduction route to formation of 12(S)-hydroxy-eicosatetraenoic acid (12-HpETE) and an isomerization route to formation of hepoxilins. Interestingly, we found that the rat insulinoma RINm5F cells, which are devoid of cytoplasmic glutathione peroxidase (cGPx)/phospholipid hydroperoxide glutathione peroxidase (PHGPx), produce solely hepoxilin A(3) (HXA(3)). Since HXA(3) synthesis was abolished in heat-denatured or cGPx- or PHGPx-transfected cells, it was tempting to speculate that a HXA(3) synthase activity regulated by cGPx/PHGPx is present. To confirm this assumption we incubated AA with HeLa cells overexpressing the rat leukocyte-type 12-LOX. Neither HXA(3) nor 12(S)-HETE were detected due to abundance of cGPx/PHGPx. But, pretreatment of transfected cells with diethyl maleate, an inhibitor of glutathione and PHGPx, restored HXA(3) synthase and 12-LOX activities. Thus, we conclude, that cells containing rat leukocyte-type 12-LOX also possess an intrinsic HXA(3) synthase activity, which is activated by inhibition of cGPx/PHGPx. In normal cells HXA(3) is down-regulated by cGPx/PHGPx, but, it is persistently activated in oxidatively stressed cells deficient in cGPx/PHGPx, such as RINm5F.  相似文献   

5.
The ability of hemoproteins to catalyze epoxidation or hydroxylation reactions is usually associated with a cysteine as the proximal ligand to the heme, as in cytochrome P450 or nitric oxide synthase. Catalase-related allene oxide synthase (cAOS) from the coral Plexaura homomalla, like catalase itself, has tyrosine as the proximal heme ligand. Its natural reaction is to convert 8R-hydroperoxy-eicosatetraenoic acid (8R-HPETE) to an allene epoxide, a reaction activated by the ferric heme, forming product via the Fe(IV)-OH intermediate, Compound II. Here we oxidized cAOS to Compound I (Fe(V)=O) using the oxygen donor iodosylbenzene and investigated the catalytic competence of the enzyme. 8R-hydroxyeicosatetraenoic acid (8R-HETE), the hydroxy analog of the natural substrate, normally unreactive with cAOS, was thereby epoxidized stereospecifically on the 9,10 double bond to form 8R-hydroxy-9R,10R-trans-epoxy-eicosa-5Z,11Z,14Z-trienoic acid as the predominant product; the turnover was 1/s using 100 μm iodosylbenzene. The enantiomer, 8S-HETE, was epoxidized stereospecifically, although with less regiospecificity, and was hydroxylated on the 13- and 16-carbons. Arachidonic acid was converted to two major products, 8R-HETE and 8R,9S-eicosatrienoic acid (8R,9S-EET), plus other chiral monoepoxides and bis-allylic 10S-HETE. Linoleic acid was epoxidized, whereas stearic acid was not metabolized. We conclude that when cAOS is charged with an oxygen donor, it can act as a stereospecific monooxygenase. Our results indicate that in the tyrosine-liganded cAOS, a catalase-related hemoprotein in which a polyunsaturated fatty acid can enter the active site, the enzyme has the potential to mimic the activities of typical P450 epoxygenases and some capabilities of P450 hydroxylases.  相似文献   

6.
Pancreatic β-cells have a deficit of scavenging enzymes such as catalase (Cat) and glutathione peroxidase (GPx) and therefore are susceptible to oxidative stress and apoptosis. Our previous work showed that, in the absence of cytosolic GPx in insulinoma RINm5F cells, an intrinsic activity of 12 lipoxygenase (12(S)-LOX) converts 12S-hydroperoxyeicosatetraenoic acid (12(S)-HpETE) to the bioactive epoxide hepoxilin A(3) (HXA(3)). The aim of the present study was to investigate the effect of HXA(3) on apoptosis as compared to its precursor 12(S)-HpETE and shed light upon the underlying pathways. In contrast to 12(S)-HpETE, which induced apoptosis via the extrinsic pathway, we found HXA(3) not only to prevent it but also to promote cell proliferation. In particular, HXA(3) suppressed the pro-apoptotic BAX and upregulated the anti-apoptotic Bcl-2. Moreover, HXA(3) induced the anti-apoptotic 12(S)-LOX by recruiting heat shock protein 90 (HSP90), another anti-apoptotic protein. Finally, a co-chaperone protein of HSP90, protein phosphatase 5 (PP5), was upregulated by HXA(3), which counteracted oxidative stress-induced apoptosis by dephosphorylating and thus inactivating apoptosis signal-regulating kinase 1 (ASK1). Taken together, these findings suggest that HXA(3) protects insulinoma cells from oxidative stress and, via multiple signaling pathways, prevents them from undergoing apoptosis.  相似文献   

7.
The present study was conducted to determine regional differences in the biosynthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs) in the rat stomach tissue (fundus, corpus and pyloric antrum) from radioactive arachidonic acid (AA). The radioactive metabolites were validated by RP-HPLC using non-radioactive AA as substrate. PGE(2) was the major prostanoid in the tissue(.) The relative ratio of PGE(2):PGF(2)alpha:PGD(2) in the whole stomach was 1:0.5:0.1. Regionally, the fundus biosynthesized the largest amount of all three cyclo-oxygenase products. Among the lipoxygenase metabolites, 15S-HETE was the predominant product, while 12S-HETE was found to be the lowest. The relative ratio of 15S-HETE:5S-HETE:12S-HETE in the whole stomach was 1:0.6:0.4. Interestingly, the generation of lipoxygenase products was the highest in the pyloric antrum when compared to fundus or corpus. Thus, the regional differences in the biosyntheses of gastric PGs and monohydroxy fatty acids may be relevant to our understanding of corresponding differences in mucosal resistance or susceptibility to gastric disease.  相似文献   

8.
Using a partially purified 12-lipoxygenase from porcine leukocytes, (5Z,8Z,10E,14Z)-12-hydroperoxy-5,8,10,14-icosate traenoic acid was synthesized from arachidonic acid with a yield of over 35%. The absolute configuration of C-12 was determined as S by chiral-phase column chromatography. It was chemically converted to at least three epoxides with the conjugated triene structure. Two were identified by proton NMR and mass spectrometry to be (5Z,7E,9E,14Z)-(11S,12S)-11,12-oxido-5,7,9,14-ic osatetraenoic acid (11,12-leukotriene A4) and (5Z,7Z,9E,14Z)-(11S,12S)-11,12-oxido-5,7,9,14-ic osatetraenoic acid (7-cis-11,12-leukotriene A4). 11,12-Leukotriene A4 underwent acid hydrolysis to yield two diastereomers of (6E,8E,10E,14Z)-(12S)-5,12-dihydroxy-6,8,10,14-i cosatetraenoic acid and two isomers of (14Z)-(12S)-11,12-dihydroxy-5,7,9,14-icosatetraenoic acid. Upon incubation with rat liver glutathione S-transferase, 11,12-leukotriene A4 was converted to 11,12-leukotriene C4, a spasmogenic compound.  相似文献   

9.
Mouse 8S-lipoxygenase (8-LOX) metabolizes arachidonic acid (AA) specifically to 8S-hydroperoxyeicosatetraenoic acid (8S-HPETE), which will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor alpha (PPAR alpha). Here, we investigated whether 8-LOX could further oxygenate AA and whether the products could activate PPARs. The purified recombinant 8-LOX converted AA exclusively to 8S-HPETE and then to (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicosatetraenoic acid (8S,15S-diHPETE). The kcat/Km values for 8S-HPETE and AA were 3.3x10(3) and 2.7x10(4) M(-1) s(-1), respectively. 8-LOX also dioxygenated 8S-HETE and 15S-H(P)ETE specifically to the corresponding 8S,15S-disubstituted derivatives. By contrast, 15-LOX-2, a human homologue of 8-LOX, produced 8S,15S-diH(P)ETE from 8S-H(P)ETE but not from AA nor 15S-H(P)ETE. 8S,15S-diHETE activated PPAR alpha more strongly than 8S-HETE did. The present results suggest that 8S,15S-diH(P)ETE as well as 8S-H(P)ETE would contribute to the physiological function of 8-LOX and also that 8-LOX can function as a potential 15-LOX.  相似文献   

10.
Glucose metabolism and insulin release were studied in isolated rat islets and in an insulin-producing rat cell-line (RINm5F). Intact islets displayed two components of glucose utilization, with glucose stimulation of insulin release being associated with the high-Km component (reflecting glucokinase-like activity). Glucose failed to stimulate insulin release from RINm5F cells, which only displayed a single low-Km component of glucose utilization. Only low-Km (hexokinase-like) glucose-phosphorylating activity was found for disrupted RINm5F cells. These changes in glucose metabolism may contribute towards the failure of glucose to stimulate insulin release from RINm5F cells.  相似文献   

11.
12.
Proinflammatory cytokine induction of NO synthesis may contribute to the destruction of pancreatic beta cells leading to type 1 diabetes. The NO synthase substrate arginine can also be metabolized to ornithine and urea in a reaction catalyzed by cytosolic (AI) or mitochondrial (AII) isoforms of arginase. Recent evidence suggests that the rate of NO generation is dependent on the relative activities of NO synthase and arginase. The objectives of this study were (i) to identify the arginase isoforms expressed in rat and human islets of Langerhans and a rat beta cell line, RINm5F and (ii) to investigate the competition for arginine between NO synthase and arginase in IL-1β-treated rat islets. Arginase activity was detected in rat islets (fresh tissue, 346 mU/mg protein; cultured, 587 mU/mg), cultured human islets (56 mU/mg), RINm5F cells (376 mU/mg), rat kidney (238 mU/mg), and rat liver (6119 mU/mg). Using Western blots, AI was shown to be the predominant isoform expressed in rat islets and in RINm5F cells while human islets expressed far more AII than AI. Rat islets were cultured in medium containing 1.14, 0.1, and 0.01 mM arginine and treated with IL-1β and the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH). IL-1β-induced NO generation was unaffected by ABH at 1.14 mM arginine, but significantly increased at 0.1 and 0.01 mM arginine. These findings suggest that the level of islet arginase activity can regulate the rate of induced NO generation and this may be relevant to the insulitis process leading to beta cell destruction in type 1 diabetes.  相似文献   

13.
We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 microM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose-response curve of the AA effect on ENaC shows that 2 microM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because neither 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized analogue of AA, nor 11,14,17-eicosatrienoic acid mimicked the inhibitory effect of AA on ENaC. Moreover, inhibition of either cyclooxygenase (COX) with indomethacin or cytochrome P450 (CYP) omega-hydroxylation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) failed to abolish the effect of AA on ENaC. In contrast, the inhibitory effect of AA on ENaC was absent in the presence of N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH), an agent that inhibits CYP-epoxygenase activity. The notion that the inhibitory effect of AA is mediated by CYP-epoxygenase-dependent metabolites is also supported by the observation that application of 200 nM 11,12-epoxyeicosatrienoic acid (EET) inhibited ENaC in the CCD. In contrast, addition of 5,6-, 8,9-, or 14,15-EET failed to decrease ENaC activity. Also, application of 11,12-EET can still reduce ENaC activity in the presence of MS-PPOH, suggesting that 11,12-EET is a mediator for the AA-induced inhibition of ENaC. Furthermore, gas chromatography mass spectrometry analysis detected the presence of 11,12-EET in the CCD and CYP2C23 is expressed in the principal cells of the CCD. We conclude that AA inhibits ENaC activity in the CCD and that the effect of AA is mediated by a CYP-epoxygenase-dependent metabolite, 11,12-EET.  相似文献   

14.
Schwarz K  Gerth C  Anton M  Kuhn H 《Biochemistry》2000,39(47):14515-14521
The positional specificity of arachidonic acid oxygenation is currently the decisive parameter for classification of lipoxygenases. Although the mechanistic basis of lipoxygenase specificity is not completely understood, sequence determinants for the positional specificity have been identified for various isoenzymes. In this study we altered the positional specificity of the human 5-lipoxygenase by multiple site-directed mutagenesis and assayed the leukotriene A(4) synthase activity of the mutant enzyme species with (5S,6E,8Z,11Z,14Z)-5-hydroperoxy-6,8,11,14-eicos atetraenoic acid (5S-HpETE) as substrate. The wild-type 5-lipoxygenase converts 5S-HpETE almost exclusively to leukotriene A(4) as indicated by the dominant formation of leukotriene A(4) hydrolysis products. Since leukotriene synthesis involves a hydrogen abstraction from C(10), it was anticipated that the 15-lipoxygenating quadruple mutant F359W + A424I + N425M + A603I might not exhibit a major leukotriene A(4) synthase activity. Surprisingly, we found that this quadruple mutant exhibited a similar leukotriene synthase activity as the wild-type enzyme in addition to its double oxygenation activity. The leukotriene synthase activity of the 8-lipoxygenating double mutant F359W + A424I was almost twice as high, and similar amounts of leukotriene A(4) hydrolysis products and double oxygenation derivatives were detected with this enzyme species. These data indicate that site-directed mutagenesis of the human 5-lipoxygenase that leads to alterations in the positional specificity favoring arachidonic acid 15-lipoxygenation does not suppress the leukotriene synthase activity of the enzyme. The residual 8-lipoxygease activity of the mutant enzyme and its augmented rate of 5-HpETE conversion may be discussed as major reasons for this unexpected result.  相似文献   

15.
Epoxyeicosatrienoic acids (EETs) are considered to be endothelium-derived hyperpolarizing factors, and are potent activators of the large-conductance, Ca(2+)-activated K(+) (BK(Ca)) channel in vascular smooth muscle. Here, we investigate the signal transduction pathway involved in the activation of BK(Ca) channels by 11,12-EET and 11,12-EET stable analogs in rat mesenteric vascular smooth muscle cells. 11,12-EET and the 11,12-EET analogs, 11-nonyloxy-undec-8(Z)-enoic acid (11,12-ether-EET-8-ZE), 11-(9-hydroxy-nonyloxy)-undec-8(Z)-enoic acid (11,12-ether-EET-8-ZE-OH) and 11,12-trans-oxidoeicosa-8(Z)-enoic acid (11,12-tetra-EET-8-ZE), caused vasorelaxation of mesenteric resistance arteries. Mesenteric myocyte whole-cell (perforated-patch) currents were substantially (approximately 150%) increased by 11,12-EET and 11,12-EET analogs. Single-channel recordings were conducted to identify the target for 11,12-EET. 11,12-EET and 11,12-EET analogs also increased mesenteric myocyte BK(Ca) channel activity in cell-attached patches. Similar results were obtained in cell-free patches. Baseline mesenteric myocyte BK(Ca) channel activity (NPo) in cell-free patches averaged less than 0.001 at +50 mV and 11,12-EET (1 micromol/L) increased NPo to 0.03+/-0.02 and 11,12-EET analogs (1 micromol/L) increased NPo to 0.09+/-0.006. Inhibition of protein phosphatase 2A (PP2A) activity with okadaic acid (10 nmol/L) completely reversed 11,12-EET stimulated BK(Ca) channel activity and greatly attenuated 11,12-ether-EET-8-ZE mesenteric resistance artery vasorelaxation. 11,12-EET and 11,12-EET analogs increased mesenteric myocyte PP2A activity by 3.5-fold. Okadaic acid and the EET inhibitor, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) inhibited the 11,12-EET mediated increase in PP2A activity. These findings provide initial evidence that PP2A activity contributes to 11,12-EET and 11,12-EET analog activation of mesenteric resistant artery BK(Ca) channels and vasorelaxation.  相似文献   

16.
Cyclo(His-Pro) (CHP) is a naturally occurring, cyclic dipeptide structurally related to thyrotropin-releasing hormone (TRH). CHP was efficiently obtained from soybean meal by hydrolysis with flavourzyme and alcalase. In this study, the effects of CHP on streptozotocin (STZ)-induced beta-cell dysfunction and apoptosis were investigated in rat insulinoma cells (RINm5F) secreting insulin. When the RINm5F cells were treated with 2mM STZ, insulin secretion decreased to approximately 54% that of control cells. However, CHP treatment restored the insulin-secreting activity of RINm5F cells to approximately 71% that of the untreated control cells. Moreover, CHP significantly protected the cells from STZ-mediated cytotoxicity via reduction of nitric oxide (NO) production (2.3-fold) and lipid peroxidation (1.9-fold), which were induced by STZ. Moreover, CHP treatment also attenuated STZ-induced apoptotic events, such as activation of caspase-3, poly(ADP-ribose) polymerase (PARP) cleavage, and DNA fragmentation in RINm5F cells, indicating that CHP could protect the cells from apoptotic cell death induced by oxidative stress of STZ by increasing the expression of an anti-apoptotic protein, Bcl-2. These results suggest that CHP could be a candidate material for a protective and therapeutic agent against STZ-mediated cytotoxicity and apoptosis.  相似文献   

17.
Nitric oxide (NO) is an inhibitor of hemoproteins including cytochrome P-450 enzymes. This study tested the hypothesis that NO inhibits cytochrome P-450 epoxygenase-dependent vascular responses in kidneys. In rat renal pressurized microvessels, arachidonic acid (AA, 0.03-1 microM) or bradykinin (BK, 0.1-3 microM) elicited NO- and prostanoid-independent vasodilation. Miconazole (1.5 microM) or 6-(2-propargyloxyphenyl)hexanoic acid (30 microM), both of which are inhibitors of epoxygenase enzymes, or the fixing of epoxide levels with 11,12-epoxyeicosatrienoic acid (11,12-EET; 1 and 3 microM) inhibited these responses. Apamin (1 microM), which is a large-conductance Ca2+-activated K+ (BKCa) channel inhibitor, or 18alpha-glycyrrhetinic acid (30 microM), which is an inhibitor of myoendothelial gap junctional electromechanical coupling, also inhibited these responses. NO donors spermine NONOate (1 and 3 microM) or sodium nitroprusside (0.3 and 3 microM) but not 8-bromo-cGMP (100 microM), which is an analog of cGMP (the second messenger of NO), blunted the dilation produced by AA or BK in a reversible manner without affecting that produced by hydralazine. However, the non-NO donor hydralazine did not affect the dilatory effect of AA or BK. Spermine NONOate did not affect the dilation produced by 11,12-EET, NS-1619 (a BKCa channel opener), or cromakalim (an ATP-sensitive K+ channel opener). AA and BK stimulated EET production, whereas hydralazine had no effect. On the other hand, spermine NONOate (3 microM) attenuated basal (19 +/- 7%; P < 0.05) and AA stimulation (1 microM, 29 +/- 9%; P < 0.05) of renal preglomerular vascular production of all regioisomeric EETs: 5,6-; 8,9-; 11,12-; and 14,15-EET. These results suggest that NO directly and reversibly inhibits epoxygenase-dependent dilation of rat renal microvessels without affecting the actions of epoxides on K+ channels.  相似文献   

18.
Non-bullous congenital ichthyosis erythroderma (NCIE) and lamellar ichthyosis (LI) are characterized by mutations in 12R-lipoxygenase (12R-LOX) and/or epidermal lipoxygenase 3 (eLOX3) enzymes. The eLOX3 lacks oxygenase activity, but is capable of forming hepoxilin-type products from arachidonic acid-derived hydroperoxide from 12R-LOX, termed 12R-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12R-HpETE). Mutations in either of two enzymes lead to NCIE or LI. Moreover, 12R-LOX-deficient mice exhibit severe phenotypic water barrier dysfunctions. Here, we demonstrate that 12R-HpETE can also be transformed to 8R-HXA(3) by hepoxilin A(3) (HXA(3)) synthase (12-lipoxygenase), which exhibits oxygenase activity. We also presented a novel form of ichthyosis in a patient, termed hepoxilin A(3) synthase-linked ichthyosis (HXALI), whose scales expressed high levels of 12R-LOX, but were deficient of HXA(3) synthase.  相似文献   

19.
Arachidonic acid (AA) causes endothelium-dependent smooth muscle hyperpolarizations and relaxations that are mediated by a 15-lipoxygenase-I (15-LO-I) metabolite, 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA). We propose that AA is metabolized sequentially by 15-LO-I and hydroperoxide isomerase to an unidentified hydroxyepoxyeicosatrienoic acid (HEETA), which is hydrolyzed by a soluble epoxide hydrolase (sEH) to 11,12,15-THETA. After incubation of aorta with 14C-labeled AA, metabolites were extracted and the HEETAs were resolved by performing HPLC. Mass spectrometric analyses identified 15-Hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). Incubation of aortic incubates with methanol and acetic acid trapped the acid-sensitive 15-H-11,12-EETA as methoxydihydroxyeicosatrienoic acids (MDHEs) (367 m/z, M-H). Pretreatment of the aortic tissue with the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA; 10(-6) M) increased the formation of 15-H-11,12-EETA, measured as MDHEs. Thus 15-H-11,12-EETA is an acid- and sEH-sensitive precursor of 11,12,15-THETA. Aortic homogenates and endothelial cells contain a 57-kDa protein corresponding to the rabbit sEH. In preconstricted aortic rings, AA (10(-7)-10(-4) M) and acetylcholine (10(-9)-10(-6) M) caused concentration-related relaxations that were enhanced by pretreatment with AUDA. These enhanced relaxations were inhibited by increasing extracellular [K(+)] from 4.8 to 20 mM. AA (3 x 10(-6) M) induced cell membrane hyperpolarization (from -31.0 +/- 1 to -46.8 +/- 2 mV) in aortic strips with an intact endothelium, which was enhanced by AUDA. These results indicate that 15-H-11,12-EETA is produced by the aorta, hydrolyzed by sEH to 11,12,15-THETA, and mediates relaxations by membrane hyperpolarization. 15-H-11,12-EETA represents an endothelium-derived hyperpolarizing factor.  相似文献   

20.
Generation of low levels of nitric oxide (NO) contributes to beta cell survival in vitro. The purpose of this study was to explore the link between NO and the survival pathway triggered by insulin-like growth factor-1 (IGF-1) and insulin in insulin producing RINm5F cells and in pancreatic islets. Results show that exposure of cells to IGF-1/insulin protects against serum deprivation-induced apoptosis. This action is prevented with inhibitors of NO generation, PI3K and Akt. Moreover, transfection with the negative dominant form of the tyrosine kinase c-Src abrogates the effect of IGF-1 and insulin on DNA fragmentation. An increase in the expression level of NOS3 protein and in the enzyme activity is observed following exposure of serum-deprived RINm5F cells to IGF-1 and insulin. Phosphorylation of IRS-1, IRS-2 and to less extent IRS-3 takes place when serum-deprived RINm5F cells and rat pancreatic islets are exposed to either IGF-1, insulin, or diethylenetriamine nitric oxide adduct (DETA/NO). In human islets, IRS-1 and IRS-2 proteins are present and tyrosine phosphorylated upon exposure to IGF-1, insulin and DETA/NO. Both rat and human pancreatic islets undergo DNA fragmentation when cultured in serum-free medium and IGF-1, insulin and DETA/NO protect efficiently from this damage. We then conclude that generation of NO participates in the activation of survival pathways by IGF-1 and insulin in beta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号