首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Weber J  Senior AE 《FEBS letters》2003,545(1):61-70
Topical questions in ATP synthase research are: (1) how do protons cause subunit rotation and how does rotation generate ATP synthesis from ADP+Pi? (2) How does hydrolysis of ATP generate subunit rotation and how does rotation bring about uphill transport of protons? The finding that ATP synthase is not just an enzyme but rather a unique nanomotor is attracting a diverse group of researchers keen to find answers. Here we review the most recent work on rapidly developing areas within the field and present proposals for enzymatic and mechanoenzymatic mechanisms.  相似文献   

2.
A stepwise increasing membrane potential was generated in chromatophores of the phototrophic bacterium Rhodobacter capsulatus by illumination with short flashes of light. Proton transfer through ATP-synthase (measured by electrochromic carotenoid bandshift and by pH-indicators) and ATP release (measured by luminescence of luciferin-luciferase) were monitored. The ratio between the amount of protons translocated by F0F1 and the ATP yield decreased with the flash number from an apparent value of 13 after the first flash to about 5 when averaged over three flashes. In the absence of ADP, protons slipped through F0F1. The proton transfer through F0F1 after the first flash contained two kinetic components, of about 6 ms and 20 ms both under the ATP synthesis conditions and under slip. The slower component of proton transfer was substantially suppressed in the absence of ADP. We attribute our observations to the mechanism of energy storage in the ATP-synthase needed to couple the transfer of four protons with the synthesis of one molecule of ATP. Most probably, the transfer of initial protons of each tetrad creates a strain in the enzyme that slows the translocation of the following protons.  相似文献   

3.
The molecular mechanism of ATP synthesis by F1F0-ATP synthase   总被引:4,自引:0,他引:4  
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

4.
ATP synthase is a unique rotary machine that uses the transmembrane electrochemical potential difference of proton (Delta(H(+))) to synthesize ATP from ADP and inorganic phosphate. Charge translocation by the enzyme can be most conveniently followed in chromatophores of phototrophic bacteria (vesicles derived from invaginations of the cytoplasmic membrane). Excitation of chromatophores by a short flash of light generates a step of the proton-motive force, and the charge transfer, which is coupled to ATP synthesis, can be spectrophotometrically monitored by electrochromic absorption transients of intrinsic carotenoids in the coupling membrane. We assessed the average number of functional enzyme molecules per chromatophore vesicle. Kinetic analysis of the electrochromic transients plus/minus specific ATP synthase inhibitors (efrapeptin and venturicidin) showed that the extent of the enzyme-related proton transfer dropped as a function of the inhibitor concentration, whereas the time constant of the proton transfer changed only marginally. Statistical analysis of the kinetic data revealed that the average number of proton-conducting F(O)F(1)-molecules per chromatophore was approximately one. Thereby chromatophores of Rhodobacter capsulatus provide a system where the coupling of proton transfer to ATP synthesis can be studied in a single enzyme/single vesicle mode.  相似文献   

5.
The atpHAGDC operon of Rhodobacter capsulatus, containing the five genes coding for the F1 sector of the ATP synthase, has been cloned and sequenced. The promoter region has been defined by primer extension analysis. It was not possible to obtain viable cells carrying atp deletions in the R. capsulatus chromosome, indicating that genes coding for ATP synthase are essential, at least under the growth conditions tested. We were able to circumvent this problem by combining gene transfer agent transduction with conjugation. This method represents an easy way to construct strains carrying mutations in indispensable genes.  相似文献   

6.
H(+)-F(O)F(1)-ATP synthase couples proton flow through its membrane portion, F(O), to the synthesis of ATP in its headpiece, F(1). Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the epsilon subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the gamma subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced gammaLys23 with the DELSEED region of subunit beta stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit gamma rotation which is necessary for the activation.  相似文献   

7.
Halobacterium saccharovorum synthesized ATP in response to a pH shift from 8 to 6.2. Synthesis was inhibited by carbonyl cyanide m-chloro-phenylhydrazone, dicyclohexylcarbodiimide, and azide. Nitrate, an inhibitor of the membrane-bound ATPase previously isolated from this organism, did not inhibit ATP synthesis. N-Ethymaleimide, which also inhibited this ATPase, stimulated the production of ATP. These observations suggested that H. saccharovorum synthesized and hydrolysed ATP using different enzymes and that the vacuolar-like ATPase activity previously described in H. saccharovorum was an ATPase whose function is yet to be identified.  相似文献   

8.
The purified F0 part of the ATP synthase complex from Escherichia coli was incorporated into liposomes and chemically modified by various reagents. The modified F0-liposomes were assayed for H+ uptake and, after reconstitution with F1, for total and dicyclohexylcarbodiimide-sensitive ATPase activity. The water-soluble carbodiimide, 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide methiodide, (1.2 mM), inhibited H+ uptake to a great extent. Binding of F1 was almost unaffected, but the hydrolysis of ATP was uncoupled from H+ transport. This is reflected by the inhibition of dicyclohexylcarbodiimide-sensitive ATPase activity. Woodward's reagent K, N-ethyl-5-phenylisoxazolium-3'-sulfonate, inhibited both H+ uptake and total ATPase activity. Modification of arginine residues by phenylglyoxal (20 mM) was followed by inhibition of the F1 binding activity by 80% of the control. H+ translocation was reduced to 70%. Diethylpyrocarbonate (3 mM) exhibited a strong inhibiting effect on H+ uptake but not on F1 binding. Modification of tyrosine (by tetranitromethane) as well as lysine residues (by succinic anhydride) did not affect F0 functions. From the data presented we conclude that carboxyl-groups, different from the dicyclohexylcarbodiimide-binding site, are involved in H+ translocation through F0 and, in part, in the functional binding of F1. Furthermore, for the latter function, also arginine residues seem to be important. The role of histidine residues remains unclear at present.  相似文献   

9.
The regulation of the membrane-bound H(+)-ATPase from the photosynthetic bacterium Rhodobacter capsulatus was investigated. In the presence of uncouplers the rate of ATP hydrolysis was about 40 mM ATP/M bacteriochlorophyll (Bchl)/s. Without uncouplers this rate increased and if, additionally, the chromatophores were illuminated, it was almost doubled. If uncouplers were added shortly after illumination, the rate increased to 300-350 mM ATP/M Bchl/s. Obviously, energization of the membrane leads to the formation of a metastable, active state of the H(+)-ATPase. The maximal rate of ATP hydrolysis can be measured only when first all H(+)-ATPases are activated by delta mu H+ and when the delta mu H+ is abolished in order to release its back pressure on the hydrolysis rate. The half-life time of the metastable state in the absence of delta mu H+ is about 30 s. It is increased by 3 mM Pi to about 80 s and it is decreased by 1 mM ADP to about 15 s. Quantitatively, the fraction of active H(+)-ATPases shows a sigmoidal dependence on pHin (at constant pHout) and the magnitude of delta psi determines the maximal fraction of enzymes which can be activated: delta pH and delta psi are not equivalent for the activation process.  相似文献   

10.
The amphiphylic alkyl cation cetyltrimethylammonium inhibits the catalytic activity of soluble and membrane-bound F1 in a noncompetitive fashion. In sonic submitochondrial particles the Dixon plot showed a peculiar pattern with upward deviation at cetyltrimethylammonium concentration higher than 80µM. In membrane-bound F1 the inhibition by cetyltrimethylammonium was potentiated by the F0 inhibitor ologomycin. Cetyltrimethylammonium also inhibited the oligomycin-sensitive proton conductivity in F1-containing particles but was without any effect in F1-depleted particles. Also this inhibitory effect was potentiated by oligomycin. These results indicate functional cooperative interactions between F0 and F1.  相似文献   

11.
The arrangement of the b-subunits in the holo-enzyme F(0)F(1)-ATP synthase from E. coli is investigated by site-directed mutagenesis spin-label EPR. F(0)F(1)-ATP synthases couple proton translocation with the synthesis of ATP from ADP and phosphate. The hydrophilic F(1)-part and the hydrophobic membrane-integrated F(0)-part are connected by a central and a peripheral stalk. The peripheral stalk consists of two b-subunits. Cysteine mutations are introduced in the tether domain of the b-subunit at b-40, b-51, b-53, b-62 or b-64 and labeled with a nitroxide spin label. Conventional (9 GHz), high-field (95 GHz) and pulsed EPR spectroscopy reveal: All residues are in a relatively polar environment, with mobilities consistent with helix sites. The distance between the spin labels at each b-subunit is 2.9 nm in each mutant, revealing a parallel arrangement of the two helices. They can be in-register but separated by a large distance (1.9 nm), or at close contact and displaced along the helix axes by maximally 2.7 nm, which excludes an in-register coiled-coil model suggested previously for the b-subunit. Binding of the non-hydrolysable nucleotide AMPPNP to the spin-labeled enzyme had no significant influence on the distances compared to that in the absence of nucleotides.  相似文献   

12.
13.
14.
In order to identify the subunits constituting the rat liver F0F1-ATP synthase, the complex prepared by selective extraction from the mitochondrial membranes with a detergent followed by purification on a sucrose gradient has been compared to that obtained by immunoprecipitation with an anti-F1 serum. The subunits present in both preparations that are assumed to be authentic components of the complex have been identified. The results show that the total rat liver F0F1-ATP synthase contains at least 13 different proteins, seven of which can be attributed to F0. The following F0 subunits have been identified: the subunit b (migrating as a 24 kDa band in SDS-PAGE), the oligomycin-sensitivity-conferring protein (20 kDa), and F6 (9 kDa) that have N-terminal sequences homologous to the beef-heart ones; the mtDNA encoded subunits 6 (20 kDa) and 8 (less than 7 kDa) that can be synthesized in isolated mitochondria; an additional 20 kDa protein that could be equivalent to the beef heart subunit d.  相似文献   

15.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

16.
We have earlier shown that extraction of Rhodospirillum rubrum chromatophores with LiCl removed completely the beta-subunit of their coupling factor ATPase complex leaving the other four subunits attached to the membrane (Philosoph, S., Binder, A., and Gromet-Elhanan, Z. (1977) J. Biol. Chem. 252, 8747-8752). Further treatment of these beta-less chromatophores with LiBr, under the described optimal conditions, resulted in specific removal of one additional subunit, the gamma-subunit, and both subunits were purified to homogeneity. The beta, gamma-less chromatophores as well as the beta-less ones lost their ATP-linked activities, but retained their light-induced proton uptake, resulting in the formation of an electrochemical gradient of protons composed of both a pH gradient and a membrane potential. These results indicate that the removed beta and gamma subunits cannot be an integral part of an H+ gate in the R. rubrum chromatophore membrane. Each of the removed subunits could bind to the beta, gamma-less chromatophores, but such separate reconstitution of either beta or gamma alone did not lead to restoration of any ATP-linked activity. ATP synthesis and hydrolysis could be restored to the same extent to these chromatophores by their reconstitution with both beta and gamma. It is thus concluded that the presence of both subunits is required for ATP synthesis as well as hydrolysis by the R. rubrum F0.F1 complex. The identical degree of elimination and restoration of ATP synthesis and hydrolysis upon removal and reconstitution of beta and gamma indicates that in R. rubrum at least, there seems to be no reason for suggesting the operation of different catalytic sites for the two activities.  相似文献   

17.
Coupling of proton flow and rotation in the F(0) motor of ATP synthase was investigated using the thermophilic Bacillus PS3 enzyme expressed functionally in Escherichia coli cells. Cysteine residues introduced into the N-terminal regions of subunits b and c of ATP synthase (bL2C/cS2C) were readily oxidized by treating the expressing cells with CuCl(2) to form predominantly a b-c cross-link with b-b and c-c cross-links being minor products. The oxidized ATP synthases, either in the inverted membrane vesicles or in the reconstituted proteoliposomes, showed drastically decreased proton pumping and ATPase activities compared with the reduced ones. Also, the oxidized F(0), either in the F(1)-stripped inverted vesicles or in the reconstituted F(0)-proteoliposomes, hardly mediated passive proton translocation through F(0). Careful analysis using single mutants (bL2C or cS2C) as controls indicated that the b-c cross-link was responsible for these defects. Thus, rotation of the c-oligomer ring relative to subunit b is obligatory for proton translocation; if there is no rotation of the c-ring there is no proton flow through F(0).  相似文献   

18.
FOF1-ATP synthase converts two energetic "currencies" of the cell (ATP and protonmotive force, pmf) by coupling two rotary motors/generators. Their coupling efficiency is usually very high. Uncoupled proton leakage (slip) has only been observed in chloroplast enzyme at unphysiologically low nucleotide concentration. We investigated the properties of proton slip in chromatophores (sub-bacterial vesicles) from Rhodobacter capsulatus in the single-enzyme-per-vesicle mode. The membrane was energized by excitation with flashing light and the relaxation of the transmembrane voltage and pH difference was photometrically detected. We found that: (1) Proton slip occurred only at low nucleotide concentration (<1 microM) and after pre-illumination over several seconds. (2) Slip induction by pmf was accompanied by the release of approximately 0.25 mol ADP per mole of enzyme. There was no detectable detachment of F1 from FO. (3) The transmembrane voltage and the pH difference were both efficient in slip induction. Once induced, slip persisted for hours, and was only partially reverted by the addition of ADP or ATP (>1 microM). (4) There was no pmf threshold for the proton transfer through the slipping enzyme; slip could be driven both by voltage and pH difference. (5) The conduction was ohmic and weakly pH-dependent in the range from 5.5 to 9.5. The rate constant of proton transfer under slip conditions was 185 s(-1) at pH 8. Proton slip probably presents the free-wheeling of the central rotary shaft, subunit gamma, in an open structure of the (alphabeta)3 hexagon with no nucleotides in the catalytic sites.  相似文献   

19.
The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.  相似文献   

20.
The effect of increased expression or reconstitution of the mitochondrial inhibitor protein (IF1) on the dimer/monomer ratio (D/M) of the rat liver and bovine heart F1F0-ATP synthase was studied. The 2-fold increased expression of IF1 in AS-30D hepatoma mitochondria correlated with a 1.4-fold increase in the D/M ratio of the ATP synthase extracted with digitonin as determined by blue native electrophoresis and averaged densitometry analyses. Removal of IF1 from rat liver or bovine heart submitochondrial particles increased the F1F0-ATPase activity and decreased the D/M ratio of the ATP synthase. Reconstitution of recombinant IF1 into submitochondrial particles devoid of IF1 inhibited the F1F0-ATPase activity by 90% and restored partially the D/M ratio of the whole F1F0 complex as revealed by blue native electrophoresis and subsequent SDS-PAGE or glycerol density gradient centrifugation. Thus, the inhibitor protein promotes or stabilizes the dimeric form of the intact F1F0-ATP synthase. A possible location of the IF1 protein in the dimeric structure of the rat liver F1F0 complex is proposed. According to crystallographic and electron microscopy analyses, dimeric IF1 could bridge the F1-F1 part of the dimeric F1F0-ATP synthase in the inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号