首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis is induced in immature thymocytes and T cell hybridomas upon stimulation via the TCR/CD3 complex. This phenomenon appears to be related to negative selection of T cell clones in the thymus. In T cell hybridomas, it has been shown that glucocorticoids inhibit TCR/CD3-mediated apoptosis, whereas glucocorticoids alone induce apoptosis. All-trans-retinoic acid (RA) at 0.1 to 10 microM also inhibited TCR/CD3-mediated apoptosis assessed by DNA fragmentation and cytolysis, but RA alone hardly induced apoptosis. RA enhanced the effects of glucocorticoids to induce apoptosis and to inhibit TCR/CD3-mediated apoptosis. TCR/CD3-mediated stimulation can be mimicked by the combination of ionomycin, a calcium ionophore, and PMA, an activator of protein kinase C, and the combination-induced DNA fragmentation was also inhibited by RA. RA, however, failed to inhibit the combination-induced increase in intracellular Ca2+ concentration or the combination-induced translocation of protein kinase C from the cytosolic fraction to the particulate fraction. Time course studies of RA addition into the culture indicated that a 3- to 6-h delay in the addition of RA did not reduce its inhibitory effect on anti-CD3-induced DNA fragmentation. These results suggest that RA interferes with the apoptotic process at some point after its initiation stage. It has been suggested that negative selection involves not only TCR/CD3-mediated signals but also LFA-1-mediated signals. RA at 0.01 to 1 microM significantly inhibited the induction of thymocyte apoptosis by co-immobilized mAb to CD3 and LFA-1 molecules. RA by itself hardly induced apoptosis, but enhanced glucocorticoid-induced apoptosis. The results suggest that thymic selection might be influenced by RA at near-physiologic concentrations. The receptors of glucocorticoids and RA belong to the erbA oncogene-related steroid hormone receptor superfamily. Thyroid hormones and 1 alpha,25-dihydroxy vitamin D3, whose receptors also belong to the superfamily, failed to modulate apoptosis in both T cell hybridomas and thymocytes.  相似文献   

2.
Signaling through the TCR as well as engagement of costimulatory molecules are required for efficient T cell activation and progression into differentiated effector cells. The beta2 integrin LFA-1 (CD11a/CD18) has been implicated in TCR costimulation as well as in cell-cell adhesion function, but its exact role is still ambiguous. The present study focuses on the requirement for LFA-1 in CD8+ T cell activation and effector function using LFA-1-deficient cells expressing the 2C transgenic TCR as a model system. The lack of LFA-1 expression in 2C T cells resulted in severely diminished proliferative response toward allogeneic BALB/c splenocytes. Increase in TCR signaling alone by pulsing stimulators with high affinity peptides, p2Ca or QL9, had minimal effects in restoring proliferation. Addition of exogenous IL-2, however, enhanced the effect of peptide pulsing on proliferation of LFA-1-deficient 2C T cells. LFA-1-deficient 2C CTLs generated from alloantigen stimulation exhibited a defective cytotoxic activity when tested on a variety of target cells. Cytolysis could be improved, but not fully rectified by peptide pulsing of target cells. Thus, in the 2C TCR model, LFA-1 has a requisite role for optimal CD8+ T cell activation and effector function, which cannot be overcome by increasing peptide/MHC density on either the APCs or target cells, respectively.  相似文献   

3.
LFA-1 regulates T cell activation and signal transduction through the immunological synapse. T cell receptor (TCR) stimulation rapidly activates LFA-1, which provides unique LFA-1-dependent signals to promote T cell activation. However, the detailed molecular pathways that regulate these processes and the precise mechanism by which LFA-1 contributes to TCR activation remain unclear. We found LFA-1 directly participates in Erk1/2 signaling upon TCR stimulation in CD8+ T cells. The presence of LFA-1, not ligand binding, is required for the TCR-mediated Erk1/2 signal pathway. LFA-1-deficient T cells have defects in sustained Erk1/2 signaling and TCR/CD3 clustering, which subsequently prevents MTOC reorientation, cell cycle progression, and mitosis. LFA-1 regulates the TCR-mediated Erk1/2 signal pathway in the context of immunological synapse for recruitment and amplification of the Erk1/2 signal. In addition, LFA-1 ligation with ICAM-1 generates an additional Erk1/2 signal, which synergizes with the existing TCR-mediated Erk1/2 signal to enhance T cell activation. Thus, LFA-1 contributes to CD8+ T cell activation through two distinct signal pathways. We demonstrated that the function of LFA-1 is to enhance TCR signaling through the immunological synapse and deliver distinct signals in CD8+ T cell activation.Leukocyte function-associated antigen-1 (LFA-1)2 plays an important role in regulating leukocyte adhesion and T cell activation (1, 2). LFA-1 consists of the αL (CD11a) and β2 (CD18) subunits. The ligands for LFA-1 include intercellular adhesion molecular-1 (ICAM-1), ICAM-2, and ICAM-3 (3). LFA-1 participates in the formation of the immunological synapse, which regulates T cell activation synergistically with TCR engagement. The immunological synapse is a specialized structure that forms between the T cell and the APC or target cell (1, 2, 4). The function of the immunological synapse is to facilitate T cell activation and signal transduction. Mice deficient in LFA-1 (CD11a KO) have defects in leukocyte adhesion, lymphocyte proliferation, and tumor rejection (57).Upon TCR stimulation, the nascent immunological synapse is initiated with surface receptor clustering and cytoskeleton rearrangement, then followed by mature synapse formation after prolonged stimulation (8, 9). In the mature immunological synapse, LFA-1 forms a ring-like pattern at the peripheral supramolecular activation cluster (pSMAC), which surrounds the central supramolecular activation cluster (cSMAC) containing TCR/CD3/lipid rafts (10, 11). The structure of the mature synapse is stable for hours and thought to be important for sustained TCR signaling (1214). LFA-1 functions via pSMAC to stabilize the cSMAC and is associated with the induction of T cell proliferation, cytokine production, and lytic granule migration toward cSMAC (1, 15). Although LFA-1-containing pSMAC is self-evident in lipid bilayer systems and cell lines, whether it is required for T cell activation under physiological conditions remains controversial (15).TCR stimulation rapidly induces the functional activity of LFA-1, which then provides unique LFA-1-dependent signals to promote T cell activation (16). The process can be divided into two steps. First, the intracellular signaling from TCR regulating LFA-1 activation is known as “inside-out” signaling; second, activated LFA-1, as a signaling receptor, can feedback to transduce the intracellular signal, the “outside-in” signaling (1, 17). It is widely accepted that TCR stimulation activates LFA-1 through affinity and/or avidity regulation, as supported by increased adhesion to ICAM-1 and pSMAC formation (16, 17). The “inside-out” signal process has been investigated extensively (1821). The TCR proximal signal molecules, Lck, ZAP-70, and PI3K, are known to be important for TCR signaling to LFA-1 activation (2226). The molecular mechanisms of LFA-1 “outside-in” signaling have been explored only recently. Perez et al. (27) have demonstrated that LFA-1 and ICAM-1 ligation activates the downstream Erk1/2 MAPK signaling pathway upon TCR stimulation, which ultimately leads to the qualitative modulation of CD4+ T cell activation through distinct LFA-1-dependent signals. Another recent study provided compelling evidence that LFA-1 reshapes the Ras MAPK pathway downstream of TCR (28). However, the detailed molecular pathways that regulate these processes are poorly defined. Especially, the evidence in support of a distinctive role for LFA-1 in the T cell signaling pathway has lagged behind; whether the function of LFA-1 is to enhance TCR signaling through the immunological synapse and/or deliver distinct signal in T cell activation and whether LFA-1 is indispensable for or merely assists the existing TCR signal pathway. Furthermore, whether and how TCR proximal signal molecules regulate LFA-1 function remains unknown. Further studies are required to understand the LFA-1 and TCR signaling network.In this study, we found that LFA-1 directly participates in CD8+ T cell activation. Upon TCR stimulation, LFA-1 regulates both TCR-mediated and LFA-1-mediated Erk1/2 signal pathways. First, the presence of LFA-1, not ligand binding, is required for the sustained Erk1/2 signaling and TCR/CD3 clustering on the surface of CD8+ T cells, subsequently leading to MTOC reorientation, cell cycle progression, and mitosis. Second, LFA-1 ligation with ICAM-1 enhances Erk1/2 signaling, which promotes T cell activation with increased IL-2 production and cell proliferation. This LFA-1-mediated Erk1/2 signal pathway integrates with the existing TCR-mediated Erk1/2 signal pathway to enhance T cell activation.  相似文献   

4.
Complete T cell activation requires not only a first signal via TCR/CD3 engagement but also a costimulatory signal through accessory receptors such as CD2, CD28, or integrins. Focal adhesion kinase, pp125(FAK) (FAK), was previously shown to be localized in focal adhesions in fibroblasts and to be involved in integrin-mediated cellular activation. Although signaling through beta1- or beta3-integrins induces tyrosine phosphorylation of FAK, there has been no evidence that activation of T cells through the beta2-integrin, LFA-1, involves FAK. We report here that crosslinking of LFA-1 induces tyrosine phosphorylation of FAK in PHA-activated T cells. Moreover, cocrosslinking with anti-LFA-1 mAb and suboptimal concentration of anti-CD3 mAb markedly increases tyrosine phosphorylation of FAK in an antibody-concentration-dependent and time-kinetics-dependent manner compared with stimulation through CD3 alone, which correlates well with enhanced proliferation of PHA-activated T cells. Furthermore, LFA-1beta costimulation with CD3 induces tyrosine phosphorylation of Syk associated with FAK. These results indicate, for the first time, that signals mediated by LFA-1 can regulate FAK, suggesting that LFA-1-mediated T cell costimulation may be involved in T cell activation at least partially through FAK.  相似文献   

5.
The staphylococcal enterotoxins and related microbial T cell mitogens stimulate T cells by cross-linking variable parts of the T cell receptor (TCR) with MHC class II molecules on accessory or target cells. We have used cloned human T cells and defined tumor cells as accessory cells (AC) to study the requirements for T cell activation by these toxins. On AC expressing high levels of CD54 (intercellular adhesion molecule-1, ICAM-1) and CD58 (lymphocyte function-associated antigen-3, LFA-3), mAb to CD2 were relatively ineffective in inhibiting the response to the toxins and antibodies to the lymphocyte function-associated antigen-1 (LFA-1) did not inhibit at all. If added together, however, these mAb inhibited the response completely. Similar results were obtained using antibodies to the target structures of CD2 and LFA-1. In contrast, on cells expressing low levels of LFA-3, mAb to LFA-1 but not to CD2 were strongly inhibitory. The same pattern of inhibition was found when these same cells were used as presenters of specific antigen to the T cells. These data show that adhesions via CD2 or LFA-1 are alternatively required for the stimulation of the T cells by superantigenic toxins and demonstrate another similarity between T cell stimulation by superantigens and by specific antigen recognition.  相似文献   

6.
Activation of resting human CD4+ T cells mediated by mAb ligation of the TCR/CD3 complex requires costimulatory signals to result in proliferation; these can be provided by intercellular cell adhesion molecule-1 (ICAM-1, CD54) a natural ligand of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18). We analyzed early signaling events involved in T cell activation to determine the contribution by the LFA-1/ICAM-1 interaction. We studied in detail the hydrolysis of phosphatidylinositol(4,5)bisphosphate and intracellular levels of free Ca2+ during stimulation with beads coated with the CD3 mAb OKT3 alone or in combination with purified ICAM-1 protein. Our investigations show no response to LFA-1/ICAM-1 alone, but that costimulation by LFA-1/CAM-1 interaction induces prolonged inositol phospholipid hydrolysis (up to 4 h), resulting in generation of both inositol(1,4,5)phosphate3 and inositol(1,3,4,5)phosphate4 and their derivatives. Based on studies with cycloheximide, this costimulatory effect of prolonged inositol phospholipid hydrolysis appears dependent in part on de novo protein synthesis. A sustained increase in intracellular levels of free Ca2+ level is also observed after LFA-1/ICAM-1 costimulation, which is at least partly dependent on extracellular sources of Ca2+. Kinetic studies indicate that costimulation requires a minimal period of 4 h of LFA-1/ICAM-1 interaction to provide maximal costimulation for OKT3-mediated T cell proliferation. Thus, the necessary costimulation required for OKT3-mediated proliferation in this model system may be provided by an extended LFA-1/ICAM-1 interaction that in combination with OKT3 mAb leads to signal-transducing events, resulting in prolonged phospholipase C activation and phosphatidylinositol(4,5)bisphosphate hydrolysis, and a sustained increase in intracellular levels of free Ca2+.  相似文献   

7.
Ab stimulation of the TCR rapidly enhances the functional activity of the LFA-1 integrin. Although TCR-mediated changes in LFA-1 activity are thought to promote T cell-APC interactions, the Ag specificity and sensitivity of TCR-mediated triggering of LFA-1 is not clear. We demonstrate that peptide/MHC (pMHC) tetramers rapidly enhance LFA-1-dependent adhesion of OT-I TCR transgenic CD8(+) T cells to purified ICAM-1. Inhibition of src family tyrosine kinase or PI3K activity blocked pMHC tetramer- and anti-CD3-stimulated adhesion. These effects are highly specific because partial agonist and antagonist pMHC tetramers are unable to stimulate OT-I T cell adhesion to ICAM-1. The Ag thresholds required for T cell adhesion to ICAM-1 resemble those of early T cell activation events, because optimal LFA-1 activation occurs at tetramer concentrations that fail to induce maximal T cell proliferation. Thus, TCR signaling to LFA-1 is highly Ag specific and sensitive to low concentrations of Ag.  相似文献   

8.
We previously reported that co-stimulation with LFA-1 triggered apoptosis in γδ T cells but not in αβ T cells after TCR engagement. We extended our earlier study on TCR/LFA-1 triggered apoptosis to two autoreactive TCR γδ and TCR αβ T cell clones, which were derived from syngeneic mixed lymphocyte culture of BALB/c mice. A γδ T cell clone, KM1, expressed the Vγ4 and Vδ5 genes and CD4-CD8-CD45RB+ phenotype; and an αβ T cell clone, BASL1.1, expressed Vβ6 and CD4+CD8-CD45RB+. Both clones produced Th-1-type cytokines in response to syngeneic BALB/c stimulator cells. KM1 underwent apoptosis upon stimulation with immobilized anti-CD3/LFA-1 mAbs, whereas BASL1.1 could proliferate successfully in response to stimulation with the immobilized mAbs. BASL1.1 was able to down-regulate the increased cytosolic Ca2+ after the simultaneous stimulation, but KM1 exhibited a sustained increase of cytosolic Ca2+ after stimulation via CD3 and LFA-1. Similar results with respect to the kinetics of cytosolic Ca2+ were obtained with normal heterogeneous γδ and αβ T cell populations after co-stimulation via CD3 and LFA-1. Our results suggested that persistently high levels of cytosolic Ca2+ might be related to apoptosis in γδ T cell clone triggered by costimulation via CD3 and LFA-1.  相似文献   

9.
The leukocyte-specific integrin, LFA-1, can enhance T cell activation. However, it is unclear whether the binding of LFA-1 to its ligand, ICAM-1, functions through intercellular adhesion alone, resulting in an augmentation of the TCR signal, or involves an additional LFA-1-mediated cellular signal transduction pathway. We have previously shown that naive CD4+ lymph node T cells, isolated from DO11.10 TCR transgenic mice, are activated by increasing doses of exogenous OVA peptide presented by transfectants expressing both class II and ICAM-1, but not by cells expressing class II alone. To determine whether LFA-1/ICAM-1 interactions were simply enhancing the presentation of low concentrations of specific MHC/peptide complexes generated from exogenously added peptide, we transfected cells with class II that is covalently coupled to peptide, alone or in combination with ICAM-1. These cells express 100-fold more specific class II/peptide complexes than can be loaded onto class II-positive cells at maximum concentrations of exogenous peptide. Despite this high density of TCR ligand, activation of naive CD4+ T cells still requires the coexpression of ICAM-1. LFA-1/ICAM-1 interactions are not required for effective conjugate formation and TCR engagement because presentation of class II/peptide complexes in the absence of ICAM-1 does induce up-regulation of CD25 and CD69. Thus, high numbers of engaged TCR cannot compensate for the lack of LFA-1/ICAM-1 interactions in the activation of naive CD4+ T cells.  相似文献   

10.
Cbl proteins have been implicated in ligand-induced TCR/CD3 down-modulation, but underlying mechanisms are unclear. We analyzed the effect of mutation of a cbl-binding site on ZAP-70 (ZAP-Y292F) on dynamics, internalization, and degradation of the TCR/CD3 complex in response to distinct stimuli. Naive CD8 T cells expressing the P14 transgenic TCR from ZAP-Y292F mice were selectively affected in TCR/CD3 down-modulation in response to antigenic stimulation, whereas neither anti-CD3 Ab-, and PMA-induced TCR down-modulation, nor constitutive receptor endocytosis/cycling were impaired. We further established that the defect in TCR/CD3 down-modulation in response to Ag was paralleled by an impaired TCR/CD3 internalization and CD3zeta degradation. Analysis of T/APC conjugates revealed that delayed redistribution of TCR at the T/APC contact zone was paralleled by a delay in TCR internalization in the synaptic zone in ZAP-Y292F compared with ZAP-wild-type T cells. Cbl recruitment to the synapse was also retarded in ZAP-Y292F T cells, although F-actin and LFA-1 redistribution was similar for both cell types. This study identifies a step involving ZAP-70/cbl interaction that is critical for rapid internalization of the TCR/CD3 complex at the CD8 T cell/APC synapse.  相似文献   

11.
We previously reported that co-stimulation with LFA-1 triggered apoptosis in γδ T cells but not in αβ T cells after TCR engagement. We extended our earlier study on TCR/LFA-1 triggered apoptosis to two autoreactive TCR γδ and TCR αβ T cell clones, which were derived from syngeneic mixed lymphocyte culture of BALB/c mice. A γδ T cell clone, KM1, expressed the Vγ4 and Vδ5 genes and CD4-CD8-CD45RB+ phenotype; and an αβ T cell clone, BASL1.1, expressed Vβ6 and CD4+CD8-CD45RB+. Both clones produced Th-1-type cytokines in response to syngeneic BALB/c stimulator cells. KM1 underwent apoptosis upon stimulation with immobilized anti-CD3/LFA-1 mAbs, whereas BASL1.1 could proliferate successfully in response to stimulation with the immobilized mAbs. BASL1.1 was able to down-regulate the increased cytosolic Ca2+ after the simultaneous stimulation, but KM1 exhibited a sustained increase of cytosolic Ca2+ after stimulation via CD3 and LFA-1. Similar results with respect to the kinetics of cytosolic Ca2+ were obtained with normal heterogeneous γδ and αβ T cell populations after co-stimulation via CD3 and LFA-1. Our results suggested that persistently high levels of cytosolic Ca2+ might be related to apoptosis in γδ T cell clone triggered by costimulation via CD3 and LFA-1.  相似文献   

12.
Optimal proliferation of T cells although initiated via ligation of the CD3/TCR complex requires additional stimulation resulting from adhesive interactions between costimulatory receptors (R) on T cells and their counter-R on APC. At least four distinct adhesion molecules (counter-R) present on APC, B7, ICAM-1 (CD54), LFA-3 (CD58), and VCAM-1 have been individually shown to costimulate T cell activation. Because some of these molecules may be expressed simultaneously on APC, it has been difficult to examine relative contributions of individual counter-R during the induction of T cell proliferation. We have produced soluble IgC gamma 1 fusion chimeras (receptor globulins or Rg) of B7, ICAM-1, LFA-3, and VCAM-1 and compared their relative abilities to costimulate proliferation of resting or Ag-primed CD4+ T cells. When co-immobilized with mAb directed at TCR alpha beta or CD3 but not CD2 or CD28, each Rg induced proliferation of both resting and Ag-primed CD4+ cells. In contrast, similarly co-immobilized CD7 Rg or ELAM-1 Rg were ineffective. Resting CD4+ T cells produced more IL-2, expressed significantly higher levels of IL-2R alpha, and proliferated more efficiently when costimulated with either ICAM-1 Rg or VCAM-1 Rg than with B7 Rg or LFA-3 Rg. CD4+ CD45RO+ memory T cells proliferated more vigorously in response to the costimulation by each of the four Rg than CD4+ CD45RA+ naive T cells. In contrast with the behavior of resting CD4+ T cells, proliferation of Ag-preactivated CD4+ T cells was most efficient when costimulated by B7 Rg. The costimulatory effect of LFA-3 Rg on Ag-primed CD4+ T cells was weaker than that of B7 Rg but was significantly greater than that of either ICAM-1 Rg or VCAM-1 Rg. These results suggest that resting and Ag-primed CD4+ T cells preferentially respond by proliferation to different costimulatory counter-R. ICAM-1 and VCAM-1 may be involved in the initiation of proliferation of Ag-responsive T cells, and B7 and LFA-3 may facilitate sustained proliferation of Ag-primed T cells. The cumulative costimulation by the above counter-R may facilitate optimal expression of various regulatory and effector functions of T cells.  相似文献   

13.
14.
Protein tyrosine phosphorylation is one of the earliest signaling events detected in response to lymphocyte function-associated antigen-1 (LFA-1) engagement during lymphocyte adhesion. In particular, the focal adhesion kinase p125FAK, involved in the modulation and rearrangement of the actin cytoskeleton, seems to be a crucial mediator of LFA-1 signaling. Herein, we investigate the role of a FAK tyrosine phosphatase, namely low molecular weight phosphotyrosine phosphatase (LMW-PTP), in the modulation of LFA-1-mediated T cell adhesion. Overexpression of LMW-PTP in Jurkat cells revealed an impairment of LFA-1-dependent cell-cell adhesion upon T cell receptor (TCR) stimulation. Moreover, in these conditions LMW-PTP causes FAK dephosphorylation, thus preventing the activation of FAK downstream pathways. Our results also demonstrated that, upon antigen stimulation, LMW-PTP-dependent FAK inhibition is associated to a strong reduction of LFA-1 and TCR co-clustering toward a single region of T cell surface, thus causing an impairment of receptor activity by preventing changes in their avidity state. Because co-localization of both LFA-1 and TCR is an essential event during encounters of T cells with antigen-presenting cells and immunological synapse (IS) formation, we suggest an intriguing role of LMW-PTP in IS establishment and stabilization through the negative control of FAK activity and, in turn, of cell surface receptor redistribution.  相似文献   

15.
Although it is well accepted that intercellular adhesion involving the CD11a/CD18 (LFA-1) complex is critical in a wide array of T cell-dependent processes, recent demonstrations of an LFA-1 high avidity state, induced by triggering the T cell receptor (TCR) complex, has raised questions about the intracellular signals generated and molecular events leading to effective cell coupling, as well as their orderly sequence. In this study, we assessed the effects of T cell activation on the actin-based cytoskeleton, and LFA-1, as well as their interaction. Crosslinking the TCR complex with anti-CD3 mAb resulted in actin polymerization and colocalization with LFA-1, as detected by fluorescence microscopy. This association was confirmed by immunoprecipitating LFA-1 from the detergent insoluble, cytoskeletal-associated membrane fraction after TCR crosslinking. These consequences were inhibited by the protein kinase C (PKC) inhibitor staurosporine or by PKC desensitization, as was a transient CD11a hyperphosphorylation, induced by monoclonal anti-CD3. Furthermore, a small percentage of beta 2-deficient T cells maintained the ability to rearrange the cytoskeleton in response to TCR complex activation, with F-actin-VLA4 colocalization. These results provide evidence that the important consequences of TCR-induced signal transduction include a PKC-dependent cytoskeletal rearrangement, involving an association between leukocyte integrins and F-actin. We discuss the implications of these findings with respect to effective T cell functions.  相似文献   

16.
The beta2 integrin LFA-1 (CD11a/CD18) mediates adhesion of lymphocytes to cells expressing ICAM. The strength of this adhesion is regulated by different signals delivered by cytokines and chemokines, and by the TCR in the case of T cells. To determine the receptor-ligand interactions required for adhesion of resting NK cells, Drosophila cells expressing different combinations of ligands of human NK cell receptors were generated. Expression of ICAM-1 alone was sufficient for an adhesion of resting NK cells that was sensitive to inhibitors of src family kinase and of phosphatidylinositol 3-kinase. Binding of resting NK cells to solid-phase ICAM-1 showed similar signaling requirements. A pulse of either IL-2 or IL-15 to resting NK cells resulted in strongly enhanced, actin-dependent adhesion to insect cells expressing ICAM-1 alone. Coexpression of either LFA-3 (CD58) or CD48 with ICAM-1 resulted in strong adhesion by resting NK cells, even in the absence of cytokines. Therefore, receptors for LFA-3 and CD48 on resting NK cells strengthen the adhesion mediated by LFA-1.  相似文献   

17.
18.
The leukocyte function-associated molecule-1 (LFA-1) plays a key role in cell adhesion processes between cells of the immune system. We investigated the mechanism that may regulate LFA-1-ligand interactions, which result in cell-cell adhesion. To this end we employed an intriguing anti-LFA-1 alpha mAb (NKI-L16), capable of inducing rather than inhibiting cell adhesion. Aggregation induced by NKI-L16 or Fab fragments thereof is not the result of signals transmitted through LFA-1. The antibody was found to recognize a unique Ca2(+)-dependent activation epitope of LFA-1, which is essentially absent on resting lymphocytes, but becomes induced upon in vitro culture. Expression of this epitope correlates well with the capacity of cells to rapidly aggregate upon stimulation by PMA or through the TCR/CD3 complex, indicating that expression of the NKI-L16 epitope is essential for LFA-1 to mediate adhesion. However, expression of the NKI-L16 epitope in itself is not sufficient for cell binding since cloned T lymphocytes express the NKI-L16 epitope constitutively at high levels, but do not aggregate spontaneously. Based on these observations we propose the existence of three distinct forms of LFA-1: (a) an inactive form, which does not, or only partially exposes the NKI-L16 epitope, found on resting cells; (b) an intermediate, NKI-L16+ form, expressed by mature or previously activated cells; and (c) an active (NKI-L16+) form of LFA-1, capable of high affinity ligand binding, obtained after specific triggering of a lymphocyte through the TCR/CD3 complex, by PMA, or by binding of NKI-L16 antibodies.  相似文献   

19.
We have analyzed activation of resting human T cells by anti-T cell receptor (TCR) monoclonal antibody (mAb) BMA031, a murine mAb of the G2b isotype. Human peripheral blood lymphocytes (PBL) respond to anti-TCR mAb by short-term proliferation in vitro and by acquisition of responsiveness to interleukin 2 (rIL-2) in the absence of detectable IL-2 production. Cell depletion and limiting dilution experiments indicate that anti-TCR mAb +/- rIL-2 stimulation covers a substantial portion of human T cells, including CD4+ and CD8+ cells. Enhancement by rIL-2 of anti-TCR mAb-induced proliferation is blocked by anti-IL-2 receptor (IL-2R, p55) mAb, while anti-TCR mAb-induced proliferation is not. In contrast, anti-TCR mAb-induced proliferation is blocked by anti-lymphocyte function antigen 1 (LFA-1, CD11a) mAb and is not demonstrable in PBL from two patients with severe congenital LFA-1 deficiency, not even in the presence of irradiated LFA-1+ PBL. We conclude that stimulation of resting human T cells by anti-TCR mAb BMA031 enables dissociation of distinct steps in T cell activation that specifically require participation of IL-2R (p55) and LFA-1 cell surface molecules in a mutually exclusive way.  相似文献   

20.
Activation of T cells through the TCR/CD3 receptor complex with either specific Ag or antibody results in tyrosine phosphorylation of intracellular protein substrates and phosphatidylinositol-phospholipase C (PLC) signaling, leading to the generation of PI breakdown products and the mobilization of intracellular calcium. Stimulation of the T cell surface receptor CD2 similarly propagates early signals through phosphatidylinositol-PLC activation. Previous reports have shown that CD3 activation leads to tyrosine phosphorylation of the PLC isozyme PLC gamma 1. In this report, we investigated the potential similarity between CD3-induced signaling through PLC gamma 1 and that induced by CD2. We show that stimulation of CD2 receptors on T cells caused tyrosine phosphorylation of PLC gamma 1. Cross-linking of CD2 with CD3 receptors augmented the phosphorylation of PLC gamma 1 on tyrosine, whereas ligation of the CD45 tyrosine phosphatase with CD2 receptors prevented PLC gamma 1 tyrosine phosphorylation. T cells stimulated by ligation of CD2 with its counter-receptor in the form of a soluble LFA-3/Ig fusion protein cross-linked on the cell surface, resulted in a low, but detectable level of PLC gamma 1 phosphorylation with prolonged kinetics, whereas that induced by cross-linking with anti-CD2 was stronger but transient. Co-ligation of LFA-3/Ig with suboptimal concentrations of anti-CD3 resulted in profound augmentation of PLC gamma 1 tyrosine phosphorylation, mobilization of intracellular calcium and T cell proliferation. To explore the relationship between CD3- and CD2-stimulated signaling, T cells were desensitized through 1 h incubation with anti-CD3. CD3 receptor modulation potently down-regulated CD2-induced PLC gamma 1 tyrosine phosphorylation and calcium mobilization. In contrast, PMA or ionomycin treatment did not alter CD2-stimulated tyrosine phosphorylation of PLC gamma 1, suggesting that tyrosine kinase inhibition by CD3 receptor modulation was not caused by signaling events downstream of PLC gamma 1. Taken together, these results support the hypothesis that CD2 provides a potent co-stimulatory signal for CD3-induced T cell activation that is associated with tyrosine kinase(s) and PLC gamma 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号