首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The alpha7 subunit-containing nicotinic acetylcholine receptor (alpha7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural alpha7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the alpha7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1-50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-kappaB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in alpha7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from alpha7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires alpha7nAChR-mediated signaling.  相似文献   

2.
3.
The preparation of novel pyridyl ethers as ligands for the nicotinic acetylcholine receptor (nAChR) is described. Variations of the ring size of the azacycle and substitution on the pyridine had dramatic effects on receptor binding affinity with IC50s at the alpha4beta2 nAChR ranging from 22 to >10,000 nM. The most potent molecule was (R)-2-chloro-3-(4-cyanophenyl)-5-((3-pyrrolidinyl)oxy)pyridine 27f with an IC50 of 22 nM.  相似文献   

4.
5.
Activation of a nicotinic acetylcholine receptor.   总被引:7,自引:2,他引:7       下载免费PDF全文
We studied activation of the nicotinic acetylcholine (ACh) receptor on cells of a mouse clonal muscle cell line (BC3H1). We analyzed single-channel currents through outside-out patches elicited with various concentrations of acetylcholine (ACh), carbamylcholine (Carb) and suberyldicholine (Sub). Our goal is to determine a likely reaction scheme for receptor activation by agonist and to determine values of rate constants for transitions in that scheme. Over a wide range of agonist concentrations the open-time duration histograms are not described by single exponential functions, but are well-described by the sum of two exponentials, a brief-duration and a long-duration component. At high concentration, channel openings occur in groups and these groups contain an excess number of brief openings. We conclude that there are two open states of the ACh receptor with different mean open times and that a single receptor may open to either open state. The concentration dependence of the numbers of brief and long openings indicates that brief openings do not result from the opening of channels of receptors which have only one agonist molecule bound to them. Closed-time duration histograms exhibit a major brief component at low concentrations. We have used the method proposed by Colquhoun and Sakmann (1981) to analyze these brief closings and to extract estimates for the rates of channel opening (beta) and agonist dissociation (k-2). We find that this estimate of beta does not predict our closed-time histograms at high agonist concentration (ACh: 30-300 microM; Carb: 300-1,000 microM). We conclude that brief closings at low agonist concentrations do not result solely from transitions between the doubly-liganded open and the doubly-liganded closed states. Instead, we postulate the existence of a second closed-channel state coupled to the open state.  相似文献   

6.
Using positron emission tomography (PET) with a specific and selective radioligand targeting nicotinic acetylcholine receptor (nAChR) would allow us to better understand various nAChR related CNS disorders. The use of radiolabeled nAChR antagonists would provide a much safer pharmacological profile, avoiding most peripheral side effects that might be generated from radiolabeled nAChR agonists even at the tracer level; thus, PET imaging with nAChR antagonists would facilitate clinical application. A potent and selective nAChR antagonist was labeled and characterized with PET in non-human primates. Its high brain uptake, high signal-to-noise ratio, and high specific binding strongly suggest a great potential to carry out imaging studies in humans. In addition, the use of a C-11 radiotracer would allow us to perform multiple PET studies in the same individual within a short time frame. The presence of an iodine atom in the molecule also allows the possibility to label with radioiodine for SPECT studies.  相似文献   

7.
The presence of muscarinic (M) acetylcholine receptors in the noninnervated chick amnion makes it possible to analyze their functioning with presynaptic effects excluded. The M receptors of the amnion mediating its contraction were identified by testing with selective antagonists: pirenzepine for M1, methoctramine for M2, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) for M3, and tropicamide for M4 receptor subtype. All antagonists acted as competitive inhibitors of M-acetylcholine receptors. With respect to cholinolytic activity estimated from the response to carbacholine (CBC) (-logIC50), the antagonists could be arranged in the following series: 4-DAMP (8.29) > tropicamide (6.97) > pirenzepine (5.85) > methoctramine (5.63). In addition, the effect of forskolin (5 μM), activator of adenylate cyclase (AC), was unidirectional with ?-adrenergic agonists; it blocked CBC-induced contractile activity of the amnion, whereas phospholipase C (1.25 U/ml) stimulated this activity. These data suggest that CBC-or acetylcholine (ACh)-induced contractile activity of the amnion is mediated by M3 acetylcholine receptors. Evaluation of contractile response to ACh by the tonic component usually revealed one pool of M3 acetylcholine receptors. One pool was also revealed after treatment with 4-DAMP, with the Hill coefficient being increased (ACh, n = 1.07; ACh against the 4-DAMP background, n = 1.48). It is possible to detect two pools of M3-acetylcholine receptors on the basis of either phase-frequency or tonic response, i.e., independently of the test parameter.  相似文献   

8.
B G Wallace  Z Qu  R L Huganir 《Neuron》1991,6(6):869-878
Agrin causes acetylcholine receptors (AChRs) on chick myotubes in culture to aggregate, forming specializations that resemble the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction. Here we report that treating chick myotubes with agrin caused an increase in phosphorylation of the AChR beta, gamma, and delta subunits. H-7, a potent inhibitor of several protein serine kinases, blocked agrin-induced phosphorylation of the gamma and delta subunits, but did not prevent either agrin-induced AChR aggregation or phosphorylation of the beta subunit. Experiments with anti-phosphotyrosine antibodies demonstrated that agrin caused an increase in tyrosine phosphorylation of the beta subunit that began within 30 min of adding agrin to the myotube cultures, reached a plateau by 3 hr, and was blocked by treatments known to block agrin-induced AChR aggregation. Anti-phosphotyrosine antibodies labeled agrin-induced specializations as they do the postsynaptic apparatus. These results suggest that agrin-induced tyrosine phosphorylation of the beta subunit may play a role in regulating AChR distribution.  相似文献   

9.
Lophotoxin and lophotoxin analog-1 are natural diterpenes from coral that inhibit nicotinic acetylcholine receptors by covalent reaction with the acetylcholine recognition sites on the alpha-subunits. Although both toxins contain potentially reactive epoxides and alpha,beta-unsaturated aldehydes, the mechanism of their covalent reaction with the receptor is not known. The role of the alpha,beta-unsaturated aldehyde in analog-1 was investigated by reduction of the aldehyde to an alcohol with [3H]NaBH4. The reduced [3H]analog-1 bound selectively and covalently to the alpha-subunit of the receptor. Covalent binding was inhibited by agonists and antagonists, but not by noncompetitive allosteric inhibitors. The apparent dissociation constant of the reduced [3H]analog-1 was approximately 1.5 x 10(-6) M. These results demonstrate that the alpha,beta-unsaturated aldehyde in analog-1 is not an absolute requirement for covalent reaction with the receptor. Receptors were treated with the reduced-[3H]analog-1, and the labeled alpha-subunits were isolated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and digested with staphylococcal V8 protease. A labeled 20-kDa V8 protease fragment was purified by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse-phase high performance liquid chromatography and subjected to sequence analysis. A peptide beginning at Ser173 was identified, and the label appeared in the 18th step corresponding to Tyr190. This assignment was confirmed by digestion of the labeled 20-kDa V8 protease fragment with cyanogen bromide, followed by purification of the labeled cyanogen bromide peptide on reverse-phase high performance liquid chromatography. A peptide beginning at Lys179 was identified, and the label appeared in the 12th step, again corresponding to Tyr190. Tyr190 may react with the coral toxin by nucleophilic addition at one of the carbons associated with an epoxide, and may form part of the alkylammonium-binding subsite of the acetylcholine recognition site.  相似文献   

10.
The muscarinic acetylcholine receptors on rat lymphocytes were determined by [3H]quinuclidinyl benzilate binding studies. Binding of [3H]quinuclidinyl benzilate is rapid (half saturation occurred within 120 s) and highly specific. Muscarinic receptors reveal high lability. The number of receptors on plasma membrane depends on time of incubation as well as on composition of incubation medium. Lymphocytes incubated in nutrient-deficient media lose their surface receptors; enrichment of the medium causes reappearance of the receptors. Appearance of [3H]quinuclidinyl benzilate-binding sites in the incubation medium was under conditions in which binding to lymphocytes was decreased. It is concluded that the number of plasma membrane receptors on rat lymphocytes represents the dynamic steady state in which newly synthesized and degraded receptors are balanced.  相似文献   

11.
12.
The delta-subunit of the nicotinic acetylcholine receptor from Torpedo californica electric tissue isolated form receptor purified in the absence of protein phosphatase inhibitors contains a total of four phosphate groups. Three of these are shown to represent phosphoserine groups. The fourth possible represents phosphotyrosine. The phosphate groups are localized within the primary structure: We found phosphoserine in positions delta S361 and delta S377, the predicted sites phosphorylated by PKA and PKC, respectively. In addition, we found that position delta S362 is also phosphorylated. Phosphorylation experiments with the synthetic peptide delta L357-delta K368 show that phosphorylation of this novel site can be catalyzed by PKA and by PKC. It is concluded that the delat-subunit of the acetylcholine receptor is stably and not transiently phosphorylated. Implications for the physiological functions of receptor phosphorylation are discussed.  相似文献   

13.
14.
15.
Current folding models for the nicotinic acetylcholine receptor (AChR) predict either four or five transmembrane segments per subunit. The N-terminus of each subunit is almost certainly extracellular. We have tested folding models by determining biochemically the cellular location of an intermolecular disulfide bridge thought to lie at the delta subunit C-terminus. Dimers of AChR linked through the delta-delta bridge were prepared from Torpedo marmorata and T.californica electric organ. The disulfide's accessibility to hydrophilic reductants was tested in a reconstituted vesicle system. In right-side-out vesicles (greater than 95% ACh binding sites outwards), the bridge was equally accessible whether or not vesicles had been disrupted by freeze--thawing or by detergents. Control experiments based on the rate of reduction of entrapped diphtheria toxin and measurements of radioactive reductant efflux demonstrated that the vesicles provide an adequate permeability barrier. In reconstituted vesicles containing AChR dimers in scrambled orientations, right-side-out dimers were reduced to monomers three times more rapidly than inside-out dimers, consistent with the measured rate of reductant permeation. These observations indicate that in reconstituted vesicles the delta-delta disulfide bridge lies in the same aqueous space as the ACh binding sites. They are most easily reconciled with folding models that propose an even number of transmembrane crossing per subunit.  相似文献   

16.
A protein capable of binding atropine and (3H)propylbenzilylcholine mustard was solubilized and purified (200-fold) from rat brain. Pronase and trypsin, but not phospholipases, diminished the binding capacity of the solubilized receptor. The molecular weight of the salt-solubilized receptor as determined by gel filtration in the absence of detergents is 30,000. The purified protein showed specificity of binding toward muscarinic ligands. the high and low affinity dissociation constants of the receptor.atropine complex are 0.3 nM and 0.15 muM. Binding of atropine is pH-dependent with an optimum at 7.1. Ca2+ influences the binding of atropine and maximal binding occurs at 0.5 mM Ca2+. The subcellular distribution of the receptor was also examined.  相似文献   

17.
The nicotinic acetylcholine receptor (AChR) is a pentameric transmembrane protein (alpha 2 beta gamma delta) that binds the neurotransmitter acetylcholine (ACh) and transduces this binding into the opening of a cation selective channel. The agonist, competitive antagonist, and snake toxin binding functions of the AChR are associated with the alpha subunit (Kao et al., 1984; Tzartos and Changeux, 1984; Wilson et al., 1985; Kao and Karlin, 1986; Pederson et al., 1986). We used site-directed mutagenesis and expression of AChR in Xenopus oocytes to identify amino acid residues critical for ligand binding and channel activation. Several mutations in the alpha subunit sequence were constructed based on information from sequence homology and from previous biochemical (Barkas et al., 1987; Dennis et al., 1988; Middleton and Cohen, 1990) and spectroscopic (Pearce and Hawrot, 1990; Pearce et al., 1990) studies. We have identified one mutation, Tyr190 to Phe (Y190F), that had a dramatic effect on ligand binding and channel activation. These mutant channels required more than 50-fold higher concentrations of ACh for channel activation than did wild type channels. This functional change is largely accounted for by a comparable shift in the agonist binding affinity, as assessed by the ability of ACh to compete with alpha-bungarotoxin binding. Other mutations at nearby conserved positions of the alpha subunit (H186F, P194S, Y198F) produce less dramatic changes in channel properties. Our results demonstrate that ligand binding and channel gating are separable properties of the receptor protein, and that Tyr190 appears to play a specific role in the receptor site for acetylcholine.  相似文献   

18.
Vesicular monoamine transporter-2 (VMAT2) is a viable target for development of pharmacotherapies for psychostimulant abuse. Lobeline (1) is a potent antagonist at α4β21 nicotinic acetylcholine receptors, has moderate affinity (Ki = 5.46 μM) for VMAT2, and is being investigated currently as a clinical candidate for treatment of psychostimulant abuse. A series of carboxylic acid and sulfonic acid ester analogs 220 of lobeline were synthesized and evaluated for interaction with α4β21 and α71 neuronal nicotinic acetylcholine receptors (nAChRs), the dopamine transporter (DAT), serotonin transporter (SERT) and VMAT2. Both carboxylic acid and sulfonic acid esters had low affinity at α71 nAChRs. Similar to lobeline (Ki = 4 nM), sulfonic acid esters had high affinity at α4β21 (Ki = 5–17 nM). Aromatic carboxylic acid ester analogs of lobeline (24) were 100–1000-fold less potent than lobeline at α4β21 nAChRs, whereas aliphatic carboxylic acid ester analogs were 10–100-fold less potent than lobeline at α4β21. Two representative lobeline esters, the 10-O-benzoate (2) and the 10-O-benzenesulfonate (10) were evaluated in the 36Rb+ efflux assay using rat thalamic synaptosomes, and were shown to be antagonists with IC50 values of 0.85 μM and 1.60 μM, respectively. Both carboxylic and sulfonic acid esters exhibited a range of potencies (equipotent to 13–45-fold greater potency compared to lobeline) for inhibiting DAT and SERT, respectively, and like lobeline, had moderate affinity (Ki = 1.98–10.8 μM) for VMAT2. One of the more interesting analogs, p-methoxybenzoic acid ester 4, had low affinity at α4β21 nAChRs (Ki = 19.3 μM) and was equipotent with lobeline, at VMAT2 (Ki = 2.98 μM), exhibiting a 6.5-fold selectivity for VMAT2 over α4β2 nAChRs. Thus, esterification of the lobeline molecule may be a useful structural modification for the development of lobeline analogs with improved selectivity at VMAT2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号