首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Animal models of cardiovascular diseases allow to investigate relevant pathogenetic mechanisms in detail. In the present study, the mutations Asp175Asn and Glu180Gly in alpha-tropomyosin (TPM1), known cause familiar hypertrophic cardiomyopathy (FHC) were studied for changes in hemodynamic parameters and spontaneous baroreflex regulation in transgenic rats in comparison to transgenic and non-transgenic controls by telemetry. Heart rate variability (HRV) and blood pressure variability (BPV) were analyzed using time- and frequency domain, as well as non-linear measures. The dual sequence method was used for the estimation of the baroreflex regulation. In transgenic rats harboring mutated TPM1, changes in HRV were detected during exercise, but not at rest. Both mutations, Asp175Asn and Glu180Gly, caused increased low frequency power. In addition, in animals with mutation Asp175Asn a reduced total HRV was observed. BPV did not show any differences between all transgenic animal lines. During exercise, a strong increase in the number of bradycardic and tachycardic fluctuations accompanied with decreased baroreflex sensitivity (BRS) was detected in animals with either TPM1 mutation, Asp175Asn or Glu180Gly. These data suggest, that the analysis of cardiac autonomic control, particularly of baroreflex regulation, represents a powerful non-invasive approach to investigate the effects of subtle changes in sarcomeric architecture on cardiac physiology in vivo. In case of mutations Asp175Asn or Glu180Gly in TPM1, early detection of alterations in autonomic cardiac control could help to prevent sudden cardiac death in affected persons.  相似文献   

2.
Autonomic cardiovascular control was characterized in conscious, chronically catheterized mice by spectral analysis of arterial pressure (AP) and heart rate (HR) during autonomic blockade or baroreflex modulation of autonomic tone. Both spectra were similar to those obtained in humans, but at approximately 10x higher frequencies. The 1/f relation of the AP spectrum changed to a more shallow slope below 0.1-0.2 Hz. Coherence between AP and HR reached 0.5 or higher below 0.3-0.4 Hz and also above 2.5 Hz. Muscarinic blockade (atropine) or beta-adrenergic blockade (atenolol) did not significantly affect the AP spectrum. Atropine reduced HR variability at all frequencies, but this effect waned above 1 Hz. beta-Adrenergic blockade (atenolol) slightly enhanced the HR variability only above 1 Hz. alpha-Adrenergic blockade (prazosin) reduced AP variability between 0.05 and 3 Hz, most prominently at 0. 15-0.7 Hz. A shift of the autonomic nervous tone by a hypertensive stimulus (phenylephrine) enhanced, whereas a hypotensive stimulus (nitroprusside) depressed AP variability at 1-3 Hz; other frequency ranges of the AP spectrum were not affected except for a reduction below 0.4 Hz after nitroprusside. Variability of HR was enhanced after phenylephrine at all frequencies and reduced after nitroprusside. As with atropine, the reduction with nitroprusside waned above 1 Hz. In conclusion, in mice HR variability is dominated by parasympathetic tone at all frequencies, during both blockade and physiological modulation of autonomic tone. There is a limitation for further reduction but not for augmentation of HR variability from the resting state above 1 Hz. The impact of HR on AP variability in mice is confined to frequencies higher than 1 Hz. Limits between frequency ranges are proposed as 0.15 Hz between VLF (very low frequency range) and LF (low frequency range) and 1.5 Hz between LF and HF (high frequency range).  相似文献   

3.
Spectral analysis of heart rate variability (HRV) might provide an index of relative sympathetic (SNS) and parasympathetic nervous system (PNS) activity during exercise. Eight subjects completed six 17-min submaximal exercise tests and one resting measurement in the upright sitting position. During submaximal tests, work rate (WR) was increased for the initial 3 min in a ramp fashion until it reached constant WRs of 20 W, or 30, 60, 90, 100, and 110% of the predetermined ventilatory threshold (Tvent). Ventilatory profile and alveolar gas exchange were monitored breath by breath, and beat-to-beat HRV was measured as R-R intervals of an electrocardiogram. Spectral analysis was applied to the HRV from 7 to 17 min. Low-frequency (0-0.15 Hz) and high-frequency (0.15-1.0 Hz) areas under power spectra (LO and HI, respectively) were calculated. The indicator of PNS activity (HI) decreased dramatically (P less than 0.05) when the subjects exercised compared with rest and continued to decrease until the intensity reached 60% Tvent. The indicator of SNS activity (LO/HI) remained unchanged up to 100% Tvent, whereas it increased abruptly (P less than 0.05) at 110% Tvent. The results suggested that (cardiac) PNS activity decreased progressively from rest to a WR equivalent to 60% Tvent, and SNS activity increased only when exercise intensity exceeded Tvent.  相似文献   

4.
Transgenic experimentation has become a crucial part of hypertension and atherosclerosis research, and is growing more important in several other areas of cardiovascular disease. It has recently made a particular contribution to understanding the role of the renin-angiotensin system in controlling hypertension. The study of blood pressure regulation, cardiac hypertrophy, atherogenesis and thrombosis are also benefiting from the transgenic approach.  相似文献   

5.
6.
7.
糖尿病心血管并发症( cardiovascular complications of diabetes , CCD)是糖尿病患者最主要的死亡原因,其中糖尿病心肌病( diabetic cardiomyopathy , DC)是心力衰竭的主要原因。对于分析糖尿病心肌病的机制、早期诊断以及改进和优化治疗,心脏功能评估起到重要桥梁作用,而糖尿病动物模型直接或间接反映糖尿病的发生和发展过程,是一个良好的研究载体。本文旨在综述国内外糖尿病动物模型心脏功能评价的重要方法。  相似文献   

8.
9.
10.
A recent article by Farkas and colleagues, published in Arthritis Research & Therapy, is from the laboratory of Dr Tibor Glant and his research team in Chicago, who have investigated in considerable depth the immunopathology of experimental arthritis induced by the major cartilage component proteoglycan aggrecan in an animal model that mimics many features of human rheumatoid arthritis and ankylosing spondylitis. This present report takes our understanding a significant step forward by questioning whether genetic drift in distinct colonies of the same inbred strains of mice has an impact on the parity between data published by different laboratories.  相似文献   

11.
围绕疾病所开展的基础研究已成为当今生物医学研究领域中的主要内容,而利用模式动物建立疾病的动物模型已是其研究的重要手段,对疾病的基础研究和转化研究均具有重要意义,已成为影响该领域发展的一个关键因素。我国医学研究领域中加强人类疾病动物模型研究既是一个现实问题,更是一个迫切问题,国家自然科学基金委员会医学科学部将在这方面予以倾斜支持。  相似文献   

12.
13.
Impaired autonomic control represents a cardiovascular risk factor during long-term spaceflight. Little has been reported on blood pressure (BP), heart rate (HR), and heart rate variability (HRV) during and after prolonged spaceflight. We tested the hypothesis that cardiovascular control remains stable during prolonged spaceflight. Electrocardiography, photoplethysmography, and respiratory frequency (RF) were assessed in eight male cosmonauts (age 41-50 yr, body-mass index of 22-28 kg/m2) during long-term missions (flight lengths of 162-196 days). Recordings were made 60 and 30 days before the flight, every 4 wk during flight, and on days 3 and 6 postflight during spontaneous and controlled respiration. Orthostatic testing was performed pre- and postflight. RF and BP decreased during spaceflight (P < 0.05). Mean HR and HRV in the low- and high-frequency bands did not change during spaceflight. However, the individual responses were different and correlated with preflight values. Pulse-wave transit time decreased during spaceflight (P < 0.05). HRV reached during controlled respiration (6 breaths/min) decreased in six and increased in one cosmonaut during flight. The most pronounced changes in HR, BP, and HRV occurred after landing. The decreases in BP and RF combined with stable HR and HRV during flight suggest functional adaptation rather than pathological changes. Pulse-wave transit time shortening in our study is surprising and may reflect cardiac output redistribution in space. The decrease in HRV during controlled respiration (6 breaths/min) indicates reduced parasympathetic reserve, which may contribute to postflight disturbances.  相似文献   

14.
Fail of fast recovering to normal state after aversive event is the key feature of individual intolerance to emotional stress. Within the framework of this idea, dynamics of the arterial blood pressure reactivity was studied studied using defensive reaction of the cardiac defense response elicited by strong aversive acoustic stimuli. Dynamical patterns of cardiovascular responses observed in this reaction makes made it possible to perform affective chronometry of defensive arousal. Healthy male volunteers with normal arterial blood pressure and patients with firstly diagnosed and untreated essential hypertension were studied. The beat-by-beat dynamics of blood pressure values were registered by means of finger-cuff Finapres technology. It was shown that among healthy individuals with normal resting blood pressure values hyperreactive persons with delayed late systolic and diastolic blood pressure increases ocurred. It was suggested that similiarity of delayed pressor effects ofhypereactive healthy individuals and those of hypertension patients incate a high risk of essential hypertension in highly reactive individuals.  相似文献   

15.
16.
Both acute hypoxia and sildenafil may influence autonomic control through transient cardiovascular effects. In a double-blind study, we investigated whether sildenalfil (Sil) could interfere with cardiovascular effects of hypoxia. Twelve healthy men [placebo (Pla) n = 6; Sil, n = 6] were exposed to an altitude of 4,350 m during 6 days. Treatment was continuously administered from 6 to 8 h after arrival at altitude (3 x 40 mg/day). The autonomic control on the heart was assessed by heart rate variability (HRV) during sleep at sea level (SL) and between day 1-2 and day 5-6 in hypoxia. Arterial pressure (AP) and total peripheral resistances (TPR) were obtained during daytime. There was no statistical difference between groups in HRV, AP, and TPR throughout the study. Hypoxia induced a decrease in R-R interval and an increase in AP in both groups. Low frequency-to-high frequency ratio increased at day 1-2 (Pla, P = 0.04; Sil, P = 0.02) and day 5-6 (Pla and Sil, P = 0.04) vs. SL, whereas normalized high-frequency power decreased only in Pla (P = 0.04, day 1-2 vs. SL). Normalized low-frequency power increased at high altitude (Pla and Sil, P = 0.04, day 5-6 vs. SL). TPR decreased at day 2 in Pla (P = 0.02) and tended to normalize at day 6 (P = 0.07, day 6 vs. day 2). Acute hypoxia induced a decrease in parasympathetic and increase in sympathetic tone, which tended to be reversed with acclimatization. Sil had no deleterious effects on the cardiovascular response to high-altitude exposure and its control by the autonomic nervous system.  相似文献   

17.
Insulin induces phosphorylation and activation of JAK2 tyrosine, as well as its association with STAT1 and SHP2 in insulin-sensitive tissues of intact rats, thus demonstrating a new pathway in transduction of insulin signals. We investigated this pathway in hearts of rats in three situations of insulin resistance: 72 h of fasting, chronic treatment with dexamethasone, and acute treatment with epinephrine. The acute treatment with epinephrine showed no difference in insulin-induced JAK2 tyrosine phosphorylation or JAK2/STAT1 and JAK2/SHP2 association in comparison with the control. In fasted rats the JAK2 protein concentration decreased, accompanied by a decrease in the stoichiometry of the phosphorylation to 70%, an increase in association of JAK2/STAT1 to 160%, and a decrease in JAK2/SHP2 association to 85%. In the dexamethasone-treated group, the JAK2 protein concentrations increased but the stoichiometry of its phosphorylation decreased to 20%, whereas the JAK2/STAT1 and JAK2/SHP2 associations changed by 70% and 170%, respectively. In fasting and dexamethasone-treated rats, therefore, insulin-induced JAK2 tyrosine phosphorylation decreases, and the JAK2 protein expression is differentially regulated such that the insulin-induced JAK2 association with SHP2 and STAT1 shows opposite interactions with the kinase.  相似文献   

18.
19.
A stochastic model for the dynamics of a plant-pathogen interaction is developed and fitted to observations of the fungal pathogen Rhizoctonia solani (Kühn) in radish (Raphanus sativus L.), in both the presence and absence of the antagonistic fungus Trichoderma viride (Pers ex Gray). The model incorporates parameters for primary and secondary infection mechanisms and for characterizing the time-varying susceptibility of the host population. A parameter likelihood is developed and used to fit the model to data from microcosm experiments. It is shown that the stochastic model accounts well for observed variability both within and between treatments. Moreover, it enables us to describe the time evolution of the probability distribution for the variability among replicate epidemics in terms of the underlying epidemiological parameters for primary and secondary infection and decay in susceptibility. Consideration of profile likelihoods for each parameter provides strong evidence that T. viride mainly affects primary infection. By using the stochastic model to study the dependence of the probability distribution of disease levels on the primary infection rate we are therefore able to predict the effectiveness of a widely used biological control agent.  相似文献   

20.
We examined the role of hyperpolarization-activated currents (Ih) in heart rate regulation in mongrel white rats. The ZD 7288 blocking agent decreased the heart rate. Vagus stimulation in bradycardia also decreased the heart rate and was dose-depended. Vagotomy following the ZD 7288 administration induced different dose-dependent changes in heart activity. The index figures of the heart activity following beta-AR isoproterenol administration depended on the level of hyperpolarization-activated currents. The data suggest existence of a possible modulating effect of the ANS on the hyperpolarization-activated activity of the channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号