首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using high-performance liquid chromatography and a combination of electrochemical and radiometric flow detection for 2-[14C]hydroxyestradiol, changes in estrogen 2-hydroxylase activity in the microsomal fraction of rat ovarian homogenates were followed. Injection of human chorionic gonadotropin (hCG) at 12-hr intervals to hypophysectomized immature rats stimulated hypertrophy of the theca-interstitial tissue and produced a profound increase in enzyme activity. With the last injection of hCG at 96 hr the peak serum concentration of hCG was reached 12 hr later and then decreased exponentially with a half-time of 13 hr. However, enzyme activity remained elevated for at least 60 hr before beginning to fall. Pregnant mare's serum gonadotropin (PMSG) also produced an increase in activity, which was apparently limited to the thecal-interstitial tissue because freshly removed granulosa cells from the mature follicles had undetectable activity levels. Administration of anti-PMSG antiserum after enzyme activity had been increased resulted in a prompt fall in activity, as did injection of hCG to mimic an ovulatory surge of LH. The results indicate that the thecal-interstitial tissue of the rat ovary has estrogen 2-hydroxylase activity that is dependent upon gonadotropic stimulation for expression.  相似文献   

2.
S Azhar  Y D Chen  G M Reaven 《Biochemistry》1984,23(20):4533-4538
These studies were done to examine the effect of gonadotropin on rat luteal 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity (the rate-limiting step in cholesterol biosynthesis) in ovaries of pregnant mare's serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG) primed rats. Administration of hCG stimulated HMG CoA reductase activity in a time- and dose-dependent manner: significant increases were noted within 4 h, with maximum effects (30-40-fold increases) seen 24 h after hCG (25 IU) administration. This effect was specific in that only LH, of several hormones tested, was as effective as hCG in stimulating HMG CoA reductase activity, and no change in the activity of either liver microsomal HMG CoA reductase or luteal microsomal NADPH-cytochrome c reductase was seen after hCG. The gonadotropin-induced increase in HMG CoA reductase activity seemed to be due to a net increase in enzyme activity, not to a change in the phosphorylated/dephosphorylated state of the enzyme. Pretreatment of animals with aminoglutethimide, an inhibitor of the conversion of cholesterol to steroid (pregnenolone), prevented the hCG-induced rise in HMG CoA reductase activity, whereas treatment with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), which depletes cellular cholesterol content, led to striking increases in enzyme activity. However, the combined effects of 4-APP and hCG were additive, suggesting that the stimulating effect of hCG on HMG CoA reductase activity is not entirely due to a depletion of cellular sterol content of luteinized ovaries. Similarly, cholesteryl ester and cholesterol syntheses as measured by [14C]acetate conversion were also increased by hCG and 4-APP treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Incubation of rat ovarian cell suspension with human choriogonadotropin (hCG) caused a marked enhancement of ornithine decarboxylase (EC 4.1.1.17) activity after a lag period of several hours. Even though ovarian ornithine decarboxylase could be induced in minimum essential medium by the hormone alone, supplementation of the medium with various sera greatly enhanced the stimulation of the enzyme activity. All the sera tested (human, fetal calf and horse) were able to stimulate ornithine decarboxylase activity even in the absence of hCG. Maximum stimulation of the enzyme activity by hCG and/or serum occurred in ovarian cell suspensions prepared from 30 to 33-day-old rats. There was a close correlation between the stimulation of ornithine decarboxylase activity and the accumulation fo cyclic AMP in response to the administration of the hormone (in the presence or absence of serum). However, while various sera alone markedly enhanced ovarian ornithine decarboxylase activity in vitro they, if anything, only marginally stimulated the accumulation of cyclic AMP and the secretion of progesterone in ovarian cells in the absence of gonadotropin. A similar dissociation of the stimulation of ornithine decarboxylase activity from the production of cyclic AMP and progesterone was likewise found when the ovarian cells were incubated in an enriched medium (M199) supplemented with albumin and lactalbumin hydrolysate in the absence of the hormone. Under these culture conditions ornithine decarboxylase activity was strikingly enhanced, greatly exceeding the stimulation obtained with various sera, while the accumulation of cyclic AMP and the secretion of progesterone remained virtually unchanged. Specific inhibition (up to 90%) of gonadotropin-induced ornithine decarboxylase activity by difluoromethyl ornithine or 1,3-diamino-2-propanol had little effect on the ability of the ovarian cells to respond to the hormone with increasing production of cyclic AMP and progesterone. While showing that rat ovarian ornithine decarboxylase can be induced in vitro by choriogonadotropin or various sera, our results indicate that the activation of the enzyme involves at least two different mechanisms: (i) One (in response to gonadotropin) involving a prior stimulation of cyclic AMP production, and (ii) another (in response to serum) that is not associated with increases in the accumulation of the cyclic nucleotide.  相似文献   

4.
Administration of human chorionic gonadotropin (hCG) to hypophysectomized immature rats caused a rapid reduction in ovarian microsomal 17 alpha-hydroxylase/C17,20-lyase activity (cytochrome P450(17 alpha] with a concomitant large increase in serum progesterone (P4) level. Pretreatment with cycloheximide (Cyclo) or aminoglutethimide (Ag) prevented these effects of hCG, while Actinomycin D (Act-D) or Azastene, an inhibitor of 3-hydroxysteroid dehydrogenase, were ineffective. In ovaries with enzyme activity increased by 48 h exposure to pregnant mare's serum gonadotropin, hCG also caused a large decrease in enzyme activity but only after a lag period of about 2 h: P4 levels were increased simultaneously. Administration of Cyclo. or puromycin (Puro) caused a loss of enzyme activity without changing P4 levels, but both inhibitors prevented some of the loss of activity and rise in P4 induced by hCG. AG and Act D completely inhibited the enzyme reducing action of hCG, as well as the increase in P4 synthesis, in these animals. P4 applied directly onto one ovary of an animal given hCG plus AG reduced enzyme activity by 69%. The results are consistent with the interpretation that increased substrate concentration is one of but not the only important factor in loss of hydroxylase/lyase activity induced by a sudden large increase in luteinizing hormone activity.  相似文献   

5.
It has become popular to use the gonadotropin-primed immature rat to study ovulation. The ovarian content of progesterone, estradiol, PGE2, PGF2 alpha, and 6-keto-PGF1 alpha during the ovulatory process was determined in this model. Also, the effect of three anti-ovulatory agents on the ovarian levels of the above substances was determined. At 23 days of age, Wistar rats were primed with pregnant mares serum gonadotropin (PMSG) sc, and two days later the ovulatory process was initiated with human chorionic gonadotropin (hCG) sc. The ovarian follicles began rupturing 12 h later. Ovaries were assayed for the two steroids and prostanoids at 2-h intervals before and several 4-h intervals after ovulation. The ovarian estradiol level increased slightly between 0 and 2 h after hCG, while the progesterone level increased sharply between 2 and 4 h after hCG--at a time when the estradiol declined markedly. All three prostanoids increased concomitantly with progesterone. When the PG synthesis was blocked by indomethacin treatment at 1 h before hCG, ovarian progesterone levels still increased. In contrast, when steroidogenic activity was inhibited by aminoglutethimide, the ovarian prostanoid levels also decreased. Cycloheximide had little effect on the steroids and prostanoids. It is concluded that ovarian prostanoid synthesis might be influenced by ovarian steroid output.  相似文献   

6.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

7.
Gonadotropic hormones PMSG (15 IU/rat), FSH (3 g/rat), LH (9 g/rat) and hCG (3 g/rat) were shown to decrease the free cytosolic lysosomal enzymes during the acute phase of hormone action in rat ovaries. When isolated cells from such rats were analyzed for the cathepsin-D activity, the granulosa cells of the ovary showed a reduction in the free as well as in the total lysosomal enzyme activities in response to FSH/PMSG; the stromal and thecal compartment of the ovary showed a reduction only in the free activity in response to hCG/PMSG. The results suggest the presence of two distinct, target cell specific, mechanisms by which the lysosmal activity of the ovary is regulated by gonadotropins.Abbreviations PMSG pregnant mare serum gonadotropin - FSH follicle stimulating hormone - LH luteinizing hormone - hCG human chorionic gonadotropin - GC granulosa cells - S/T stromal and thecal cells  相似文献   

8.
Reproductive aging in the female rat is associated with gradual declines in LH secretion and ovarian progesterone (P) production. This study examined whether the influences of aging on P levels reflect decreased ovarian responsiveness to gonadotropin stimulation, as opposed to changes in gonadotropin release. Young and middle-aged regularly cyclic female rats received sodium pentobarbital to block endogenous proestrous luteinizing hormone (LH) surges, followed by administration of various doses of human chorionic gonadotropin (hCG). Similar treatments were performed in middle-aged acyclic persistent-estrous (PE) females. Injection of hCG resulted in equivalent plasma hCG levels in each treatment group. At the lowest hCG dose tested, a significant rise in plasma P levels was observed in middle-aged cyclic rats, but not in young cyclic or middle-aged PE females. This unexpected finding may reflect accelerated follicular development in middle-aged cyclic females, as suggested by a previous study. At the intermediate dose, young and middle-aged cyclic but not PE rats displayed significantly increased P in response to hCG. At the highest dose tested, all three groups of rats displayed increased P levels after hCG stimulation. However, P concentrations were significantly lower in middle-aged PE than regularly cyclic females. Northern and slot blot hybridization analyses revealed that ovarian mRNA levels for cytochrome P450 side-chain cleavage, the rate-limiting enzyme in P synthesis, were markedly reduced in PE rats following hCG stimulation. These findings indicate that ovarian responsiveness to gonadotropin stimulation is impaired in middle-aged PE, but not regularly cyclic rats, and suggest influences of cycle status on the biochemical and molecular mechanisms regulating ovarian steroid production. Furthermore, these findings reveal that attenuated P production in middle-aged proestrous rats is due to attenuated preovulatory LH surges, rather than decreased ovarian sensitivity to LH.  相似文献   

9.
We reported the presence of a 80 kDa polypeptide in porcine follicular fluid that inhibited the binding of 125I-radiolabelled hFSH as well as hCG to the rat ovarian gonadotropin receptors. In the present study, the biological activity of the receptor binding inhibitor is determined using an in vitro bioassay procedure. Granulosa cells isolated from PMSG primed immature rat ovaries respond to exogenously added gonadotropins in terms of progesterone production. Addition of fractions containing the gonadotropin receptor binding inhibitory activity inhibited progesterone production stimulated by the gonadotropins in a dose-dependent fashion. The receptor binding inhibitory activity was also capable of inhibiting progesterone production stimulated by PMSG, which has both FSH- and LH-like activities in rats. In contrast, progesterone production stimulated by dbcAMP was not inhibited by the receptor binding inhibitor. This result indicates that the site of action of the inhibitor is proximal to the formation of the cAMP. The above observations point out to a possible role for this factor in modulating gonadotropin activity at the ovarian level.  相似文献   

10.
Previous work has shown that deglycosylation of human chorionic gonadotropin (hCG) does not affect its receptor binding characteristics, but its ability to stimulate intracellular cyclic AMP accumulation and steroidogenesis in ovarian cells is abolished. To identify the site at which carbohydrate of hCG is involved in the mechanism of action of the hormone, we have studied adenylate cyclase activity in ovarian membrane preparations in response to deglycosylated and native hCG. The deglycosylated hCG does not stimulate adenylate cyclase of ovarian membrane preparation and also it acts as an inhibitor of hCG action. Data are presented to show that both hCG- and catecholamine receptors are coupled to the same adenylate cyclase complex. Since adenylate cyclase activity in the presence of deglycosylated hCG remains still responsive maximally to catecholamines, it indicates that the adenylate cyclase complex is functional and is unaffected by the interaction of deglycosylated hCG to its receptor. This is further supported by the fact that the deglycosylated hCG does not impair the maximal stimulation of adenylate cyclase by guanine nucleotides. Thus, the site of action of the carbohydrate of hCG is prior to the coupling of the hormone-receptor complex and the adenylate cyclase system.  相似文献   

11.
We have previously demonstrated that 10-propargylestr-4-ene-3,17-dione (PED) functioned as an irreversible inhibitor of rat ovarian aromatase in vitro. These studies were undertaken to examine the in vivo effects of PED on rat ovarian aromatase activity and estrogen production. In the current experiments, a single injection of PED (0.5 or 2.5 mg/kg) was found to maximally inhibit aromatase at 3 h regardless of dose. Significant inhibition of enzyme activity by PED was observed beyond 18 h, although some recovery was noted at the lower dose (0.5 mg/kg). Concomitantly, ovarian estrogen levels were also maximally reduced at 3 h, however ovarian estrogen levels returned toward control values prior to the recovery in enzyme activity. Even though significant inhibition of enzyme activity was observed at 12 h following a single injection of PED, the effect of double injections of the inhibitor at 12 h intervals was surprisingly not cumulative. Similarly, continued multiple injections of PED revealed significant inhibition of enzyme activity and estrogen production several hours after the injection, but variations in effectiveness were observed by 12 h which changed in accordance with a circannual cycle in aromatase. Apparently other factors are involved with maintaining aromatase levels and compensating for reduced enzyme activity. These mechanisms are evidenced by a continuation of the rat reproductive cycle with prolonged PED administration and a reduced influence of PED in regard to enzyme inhibition at certain times of the year. Despite these variations in the duration of action of PED, no comparable changes were observed in effectiveness as an anti-tumor agent. These results suggest that complex mechanisms exist which regulate the activity of aromatase in order to maintain estrogen production. Further research using compounds such as PED may assist in elucidating the factors that modulate ovarian estrogen production.  相似文献   

12.
An in vivo human chorionic gonadotropin (hCG)-receptor complex was solubilized from the subcellular fraction of ovarian and testicular tissues of rats that had been injected with 125-I-labeled hCG. The soluble hCG-receptor complex was partially characterized by Sepharose 6B chromatography in the presence of the nonionic detergent, Emulphogene, and was shown to have a molecular size of about 65 A. By this method it was also shown that the in vivo uptake of radioactivity by rat gonadal tissues represents 125-I-hCG and not the dissociated subunits or degradation products of the hormone. A soluble hCG-receptor complex isolated in vitro in approximately the same yield from both rat testicular and ovarian homogenates was shown to be the same size. The hCG-receptor appears to be specifically located in gonadal tissue; a corresponding hCG-receptor complex was not obtained from liver or kidney that incorporated significant levels of 125-I-hCG administered in vivo. Furthermore, a desialyzed hCG-receptor complex was obtained from rat testis but not liver; desialyzed hCG, like other desialyzed glycoproteins, is nonspecifically bound by rat liver homogenates. The binding of hCG and luteinizing hormone (LH) by rat testis receptor exhibits a high degree of specificity. Other glycoprotein hormones without LH activity, such as follicle-stimulating hormone and thyroid-stimulating hormone, and glycoproteins such as fetuin or alpha1-acid glycoprotein do not bind to the hCG/LH receptors. Desialyzed hCG was 2 times more effective in competing for binding to rat testis receptors than "native" hCG, indicating that caution must be exercised when the radioligand receptor assay is utilized to assay hCG preparations varying in sialic acid content.  相似文献   

13.
Debeljuk L 《Peptides》2003,24(9):1445-1448
In this investigation, substance P (SP) and neurokinin A (NKA) concentrations have been determined in the ovary of control prepubertal mice, and prepubertal mice injected with pregnant mare serum (PMS) gonadotropin, an equine gonadotropin with predominant FSH action, or with PMS followed by human chorionic gonadotropin (hCG), which produces heavily luteinized ovaries after the stimulation with PMS. Control animals were injected with saline. The ovaries of animals treated with gonadotropins were heavier than the control ovaries, the combination of PMS plus hCG produced significantly heavier ovaries than PMS alone. The concentrations of SP and NKA in the ovaries of the animals treated with PMS or PMS/hCG were significantly lower than in control ovaries. No significant differences in ovarian tachykinin concentrations were observed between PMS and PMS/hCG-treated animals. The total ovarian content of SP was lower in PMS-injected animals as compared with the controls. The total ovarian content of NKA was not significantly different in the three groups of animals studied. These results show that ovaries stimulated with gonadotropins have lower concentrations of tachykinins than normal ovaries at the same age. It is therefore evident that gonadotropins can affect tachykinin stores in the ovaries of mice.  相似文献   

14.
delta 5-3 beta-Hydroxysteroid dehydrogenase is a key enzyme for testicular androgen biosynthesis and a marker for the Leydig cells. The hormonal regulation of this enzyme was studied in cultured rat testicular cells. Human chorionic gonadotropin (hCG) increased testosterone production in vitro while time course studies indicated a biphasic action of the gonadotropin on 3 beta-hydroxysteroid dehydrogenase activity. An initial stimulation (51%) of the enzyme was detected between 3 and 12 h of culture when medium testosterone was low. This is followed by an inhibition of 3 beta-hydroxysteroid dehydrogenase activity on days 2 and 3 of culture when medium testosterone was elevated. Concomitant treatment with a synthetic androgen (R1881) inhibited 3 beta-hydroxysteroid dehydrogenase activity and testosterone production in hCG-treated cultures while an anti-androgen (cyproterone acetate) increased 3 beta-hydroxysteroid dehydrogenase activity and testosterone biosynthesis. Addition of 10(-5) M spironolactone, an inhibitor of 17 alpha-hydroxylase, blocked the hCG stimulation of testosterone production but increased medium progesterone. In the absence of the secreted androgen, hCG stimulated 3 beta-hydroxysteroid dehydrogenase activity in a time- and dose-related manner. Furthermore, hCG stimulation of 3 beta-hydroxysteroid dehydrogenase activity and progesterone accumulation in spironolactone-supplemented cultures was decreased by concomitant treatment with R1881 but was not affected by cyproterone acetate. The inhibitory effect of R1881 was blocked by the anti-androgen. In the absence of hCG, treatment with testosterone, dihydrotestosterone, or R1881, but not promegestone, alone also inhibited 3 beta-hydroxysteroid dehydrogenase activity while the inhibitory effect of testosterone was blocked by cyproterone acetate. Thus, hCG stimulates 3 beta-hydroxysteroid dehydrogenase activity in cultured testicular cells. The androgenic steroidogenic end products, in turn, inhibit this enzyme. The hormonal regulation of 3 beta-hydroxysteroid dehydrogenase activity may be important in the ultrashort loop autoregulation of androgen biosynthesis.  相似文献   

15.
It has become popular to use the gonadotropin-primed immature rat to study ovulation. The ovarian content of progesterone, estradiol, PGE2, PGF, and 6-keto-PGF during the ovulatory process was determined in this model. Also, the effect of three anti-ovulatory agents on the ovarian levels of the above substances was determined. At 23 days of age, Wistar rats were primed with pregnant mares serum gonadotropin (PMSG) sc, and two days later the ovulatory process was initiated with human chorionic gonadotropin (hCG) sc. The ovarian follicles began rupturing 12 h later. Ovaries were assayed for the two steroids and prostanoids at 2-h intervals befored and several 4-h intervals after ovulation. The ovarian estradiol level increased slightly between 0 and 2 h after hCG, while the progesterone level increased sharply between 2 and 4 h after hCg--at a time when the estradiol declined markedly. All three prostanoids increased concomitantly with progesterone. When the PG synthesis was blocked by indomethacin treatment at 1 h before hCG, ovarian progesterone levels still incrased. In contrast, when steroidogenic activity was inhibited by aminoglutethimide, the ovarian prostanoid levels also decreased. Cycloheximide had little effect on the steroids and prostanoids. It is concluded that ovarian prostanoid synthesis might be influenced by ovarian steroid output.  相似文献   

16.
Pelican KM  Wildt DE  Howard JG 《Theriogenology》2006,66(6-7):1768-1777
In many species, controlling the ovary prior to induction of ovulation improves the success of ovarian response and artificial insemination (AI). We assessed the impact of suppression of estrus with the GnRH agonist, Lupron, on ovarian sensitivity to equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) in the clouded leopard. Seven female clouded leopards were given two injections of Lupron (3.75 mg IM) 23 d apart, followed 44 d later by eCG and hCG. Daily fecal samples were collected from 60 d before Lupron to 60 d after hCG. Fecal metabolites of estrogen (E) and progesterone (P) were measured by radioimmunoassay. Lupron decreased (P < 0.05) the number of E peaks during Lupron treatment compared to pre-Lupron. All females had baseline E and six of seven (86%) had nadir P on day of eCG. Exogenous gonadotropins induced E elevations in all females. However, mean E in the gonadotropin-provoked estrus was decreased (P < 0.05) compared to pre-Lupron estrous periods. Only one of seven (14%) females ovulated after eCG/hCG. In conclusion, estrous cycle control with Lupron resulted in predictable ovarian suppression prior to gonadotropin stimulation but altered ovarian sensitivity by an as yet unknown mechanism so that ovulation was inhibited, even when using a proven exogenous gonadotropin protocol.  相似文献   

17.
It has been suggested that resident ovarian macrophages may play a role in the regulation of ovarian function through local paracrine secretion of regulatory molecule(s). It is the objective of the in vitro studies reported herein to evaluate the potential ovarian relevance of one such macrophage product, tumor necrosis factor alpha (TNF-alpha). To this end, use was made of a primary culture system of rat ovarian granulosa cells, the functional status of which was monitored by the acquisition of estrogen, progestin, and proteoglycan biosynthetic capacity. Whereas treatment with the gonadotropin follicle-stimulating hormone (FSH), a potent functional regulator, resulted in a substantial increase in the extent of aromatization (conversion of androgenic steroid precursors to estrogens), concomitant exposure to TNF-alpha (10 ng/ml) produced significant (p less than 0.05), yet reversible inhibition (71 +/- 7%) of this FSH effect. This specific activity of TNF-alpha was characterized by a projected minimal effective dose of less than 0.1 ng/ml, an apparent median inhibitory dose of 0.56 +/- 0.14 ng/ml, and a minimal time requirement of 48 h. Significantly, the direct effect of TNF-alpha could not be accounted for by a decrease in cellular viability or plating efficiency, nor by a decrease in the number of cells or their DNA content. Instead, TNF-alpha inhibited FSH hormonal action at the level of stimulatable adenylate cyclase activity, exerting no apparent effect either at the level of the FSH receptor or at site(s) of action distal to cAMP generation. The effect of TNF-alpha was not limited to the attenuation of estrogen biosynthesis, exerting qualitatively similar effects on FSH-supported progestin and proteoglycan biosynthetic capacity. As such, these findings are in keeping with the notion that subnanomolar concentrations of TNF-alpha, possibly of ovarian macrophage origin, may comprise the signal of a paracrine loop designed to attenuate gonadotropin action thereby playing a potential role in the development and/or demise of the ovarian follicle.  相似文献   

18.
A concomitant increase in the activity of LH-senstive adenylate cyclase and in the number of LH/hCG binding sites was induced in ovaries of immature rats upon administration of pregnant mare serum gonadotropin (PMSG), a hormone preparation known to have predominantly follicle stimulation (FSH-like) activity. When an optimal dose of PMSG (15 i.u./rat) was administered to 25-day-old rats, specific activity of LH-dependent adenylate cyclase and the number of binding sites for LH/hCG per mg protein remained unchanged during the first 24h, but 48h after injection a 2-to 4-fold increase in both parameters was observed. By contrast, there was no change in basal adenylate cyclase activity or in the response of the enzyme to the stimulatory action of guanosine-5'-(beta gamma-imino) triphosphate (Gpp (NH)p), GTP, or NaF. Specific activity of succinate cytochrome c reductase, glucose-6-phosphatase and 5'-nucleotidase were found to be unaffected by the hormonal pretreatment, although total protein determined in these homogenates increased 3-fold in the course of this treatment. It is inferred that during follicular maturation, FSH enhances the responsiveness of ovarian adenylate cyclase to LH by stimulating the insertion of LH/hCG-receptors into the cell membrane.  相似文献   

19.
Previous studies have demonstrated the involvement of eicosanoids (prostaglandins and hydroxyperoxides, including leukotrienes) in ovulation in several mammalian species. In this study, the role played by eicosanoids in the vascular changes that occur in the immediate preovulatory period after human chorionic gonadotropin (hCG) stimulation was examined in the rat. Changes in the ovarian uptake of two iodinated proteins were examined 30 minutes after i.v. injection of 125I-bovine serum albumin (BSA, Mr = 68,000) and 125I-alpha 2-macroglobulin (alpha 2M, Mr = 750,000). Uptake was measured during 30 min, 0, 3, 6, and 9 h after induction of ovulation by an i.p. injection of human chorionic gonadotropin (hCG, 10 IU). hCG enhanced the uptake of both iodinated proteins, with peak uptake values at 6 and 9 h. Intra-bursal injections of an ovulation inhibiting dose (0.5 mg/bursa) of indomethacin-a cycooxygenase inhibitor-and nordihydroguaiaretic acid (NDGA), esculetin, or caffeic acid--inhibitors of lipoxygenase--concomitantly with hCG attenuated the action of the hormone on 125I-BSA uptake. Indomethacin and esculetin were without effect on the uptake of alpha 2M. Ovarian and follicular blood flow was measured using 113Sn-microspheres. hCG increased ovarian and follicular blood flow with the most pronounced effect at the early time of 1.5 h. Indomethacin and NDGA did not attenuate this action of hCG. Accordingly, ovarian vascular resistance was reduced by hCG at 1.5, 6, and 9 h post-hCG, respectively, and indomethacin and NDGA had no significant effects. We suggest that one way in which eicosanoids are involved in follicular rupture is by their modulation of vascular permeability as revealed by uptake of the protein marker albumin.  相似文献   

20.
Aromatase inhibitors and hormone-dependent cancers   总被引:1,自引:0,他引:1  
Aromatase (estrogen synthetase) occurs in a variety of tissues. Using immunocytochemistry, we have recently located this enzyme in cellular compartments of several types of human tissue. Furthermore, we found the mRNA was located in the same structures where tested. As both gonadal and peripherally formed estrogen contribute to growth of hormone sensitive cancers, we have developed aromatase inhibitors to block synthesis of this hormone. We have determined that 4-hydroxyandrostenedione (4-OHA) selectively inhibits aromatase activity in ovarian and peripheral tissues and reduces plasma estrogen levels in rat and non-human primate species. 4-OHA was also found to inhibit gonadotropin levels and reduce estrogen and progesterone receptor levels in treated animals. The mechanism of these effects appear to be associated with the weak androgenic activity of the compound. These effects together with aromatase inhibition may result in a synergistic response reducing estrogen production and action. In postmenopausal women, estrogens are mainly of peripheral origin. When postmenopausal breast cancer patients were administered either daily oral or parenteral weekly treatment with 4-OHA at doses that did not affect their gonadotropin levels, plasma estrogen concentrations were significantly reduced. Complete or partial response to treatment occurred in 34% of 100 patients with advanced breast cancer, while the disease was stabilized in 12%. These results indicate that 4-OHA is of benefit in postmenopausal patients with advanced disease who have relapsed from prior hormonal therapies, and that steroidal inhibitors may be of value in premenopausal patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号