首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Autoantigen Ro52alpha was recently identified as an E3 ubiquitin ligase. Its splicing variant Ro52beta, which lacks a leucine zipper, has not been characterized yet. We therefore characterized Ro52beta in contrast to Ro52alpha. Our biochemical assays revealed that both Ro52alpha and Ro52beta function as E3 ubiquitin ligases and self-ubiquitinate in cooperation with UbcH5B in vitro. In addition, both Ro52alpha and Ro52beta are ubiquitinated when overexpressed with ubiquitin in HEK293T cells, suggesting that both function as E3 ligases and self-ubiquitinate in vivo. However, cytological studies revealed that Ro52alpha mainly localizes to the cytoplasmic rod-like structures, whereas Ro52beta diffusely localizes to both the cytoplasm and the nucleus. Since the leucine zipper plays a role in the homodimerization and heterodimerization of Ro52alpha, the dimerization might be required for the localization of Ro52alpha to the rod-like structures. On the basis of these results, Ro52alpha and Ro52beta appear to ubiquitinate their particular substrates at different locations.  相似文献   

3.
The autoantigen Ro52 is an E3 ubiquitin ligase that can ubiquitinate itself (self-ubiquitination). Recently, we showed that UnpEL/Usp4 is an isopeptidase that can deconjugate ubiquitin from self-ubiquitinated Ro52. Here, we showed that UnpEL is ubiquitinated by Ro52 in cooperation with UbcH5B in vitro. We also showed that UnpEL is ubiquitinated by Ro52 in HEK293T cells. Interestingly, a catalytically inactive UnpEL mutant was strongly ubiquitinated by Ro52 in HEK293T cells. These results suggest that wild-type UnpEL is ubiquitinated by Ro52 and deubiquitinated by itself (self-deubiquitination), while mutant UnpEL is ubiquitinated by Ro52 but not deubiquitinated by itself. In conclusion, Ro52 and UnpEL transregulate each other by ubiquitination and deubiquitination.  相似文献   

4.
Anti-Ro/SSA antibodies are antinuclear antibodies most commonly found in patients with Sj?gren's syndrome, a chronic autoimmune disease characterized by dryness of the eyes and mouth. The autoantibodies recognize a RING-finger protein, Ro52/SSA (52 kDa), whose function is still unknown. In this study, the ubiquitination of Ro52 was investigated. We found that Ro52 was strongly conjugated by a single molecule of ubiquitin in cells. Although the biological relevance of this mono-ubiquitination was not defined, the function of Ro52 might be modified by the mono-ubiquitination. We also found that Ro52 was conjugated with poly-ubiquitin chain in cells (poly-ubiquitination), suggesting that Ro52 may be downregulated by the ubiquitin-proteasome pathway in vivo. Interestingly, sera from patients with Sj?gren's syndrome showed heterogeneity in their reactivity to poly-ubiquitinated Ro52, probably because of their differing antigenic determinants. This heterogeneity of the reactivity might be associated with the varying clinical features found in patients with Sj?gren's syndrome.  相似文献   

5.
The RING-finger protein Ro52/TRIM21 is known to be an autoantigen and is recognized by anti-Ro/SSA antibodies, which are commonly found in patients with Sjögren’s syndrome and systemic lupus erythematosus. We recently showed that Ro52 is an E3 ubiquitin ligase and localizes to cytoplasmic bodies that are highly motile along the microtubule network. To expand our knowledge of Ro52, we searched partners co-operating with Ro52. We performed a yeast two-hybrid screening of a human brain cDNA library with Ro52 as bait. This screening identified several genes encoding Ro52-interacting proteins, including the apoptosis-related proteins, Daxx and FLASH. Further yeast two-hybrid assays revealed that Daxx binds to the B30.2 domain of Ro52 and that FLASH binds to coiled-coil domains of Ro52 through its death-effector domain-recruiting domain. These results suggest that Ro52, Daxx, and FLASH form heteromeric protein complexes. Indeed, this was supported by results of immunoprecipitation experiments in which we found that Daxx is co-immunoprecipitated with Ro52 in the presence of overexpressed FLASH. Importantly, our fluorescence microscopy revealed that, although Daxx is predominantly located in the nucleus, overexpression of both Ro52 and FLASH leads to relocation of Daxx into the cytoplasm. Thus, Ro52 seems to co-operate with FLASH to induce cytoplasmic localization of Daxx in cells.  相似文献   

6.
The RING-finger protein Ro52/TRIM21 is known as an autoantigen and is recognized by anti-Ro/SSA antibodies, which are commonly found in patients with Sjögren’s syndrome and systemic lupus erythematosus. Recently, Ro52 has been shown to localize to distinct structures called cytoplasmic bodies and function as an E3 ubiquitin ligase. However, the Ro52 cytoplasmic bodies have not been well characterized. In this study, we investigated the Ro52 cytoplasmic bodies using fluorescence microscopy. This analysis revealed that the Ro52 cytoplasmic bodies are diffusely located in the cytoplasm and exist independently of TRIM5α cytoplasmic bodies. Our results further showed that the Ro52 cytoplasmic bodies are not stained with MitoTracker dye and are not colocalized with the proteasome subunit Rpt5, the caveolae component caveolin-1, the endosome markers (EEA1, Rab5, and Rab7), and the lysosome marker LAMP2. These results indicate that the Ro52 cytoplasmic bodies are not mitochondria, proteasome-enriched structures, caveolae, endosomes, or lysosomes. Importantly, the Ro52 cytoplasmic bodies are highly motile and are located along the microtubule network. These results suggest that the Ro52 cytoplasmic bodies are unidentified structures that are transported along the microtubule network.  相似文献   

7.
Ro52蛋白作为靶抗原,存在于多种自身免疫性疾病,如干燥综合征、系统性红斑狼疮、皮肌炎等患者的血清中。Ro52蛋白是TRIM蛋白家族成员(TRIM21),其分子内含有RING-finger、B-box、卷曲螺旋结构域,分别具有不同的生物学功能。Ro52蛋白在免疫防御中的作用日渐为研究者所关注,如Ro52与IgG分子的作用、Ro52作为一种E3泛素连接酶与其他信号分子的作用等。其自身泛素化和广泛的泛素化作用已经在Ro52与干扰素的作用中得到了体现。迄今,Ro52在自身免疫性疾病中的具体致病机制还不清楚。我们尝试通过介绍Ro52的分子生物学特点及其与相关活性分子的相互作用的最新研究进展,初步探索其可能的致病机制。  相似文献   

8.
Patients with the systemic autoimmune diseases Sjögrens's syndrome and systemic lupus erythematosus often have autoantibodies against the intracellular protein Ro52. Ro52 is an E3 ligase dependent on the ubiquitin conjugation enzymes UBE2D1 and UBE2E1. While Ro52 and UBE2D1 are cytoplasmic proteins, UBE2E1 is localized to the nucleus. Here, we investigate how domains of human Ro52 regulate its intracellular localization. By expressing fluorescently labeled Ro52 and Ro52 mutants in HeLa cells, an intact coiled-coil domain was found to be necessary for the cytoplasmic localization of Ro52. The amino acids 381-470 of the B30.2 region were essential for translocation into the nucleus. Furthermore, after exposure of HeLa cells to the inflammatory mediator nitric oxide (NO), Ro52 translocated to the nucleus. A nuclear localization of Ro52 in inflamed tissue expressing inducible NO synthetase (iNOS) from cutaneous lupus patients was observed by immunohistochemistry and verified in NO-treated cultures of patient-derived primary keratinocytes. Our results show that the localization of Ro52 is regulated by endogenous sequences, and that nuclear translocation is induced by an inflammatory mediator. This suggests that Ro52 has both cytoplasmic and nuclear substrates, and that Ro52 mediates ubiquitination through UBE2D1 in the cytoplasm and through UBE2E1 in the nucleus.  相似文献   

9.
Ubiquitination is an essential post-translational modification that mediates diverse cellular functions. SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) belongs to the Nedd4 family of HECT ubiquitin ligases that directly catalyzes ubiquitin conjugation onto diverse substrates. As a result, SMURF1 regulates a great variety of cellular physiologies including bone morphogenetic protein (BMP) signaling, cell migration, and planar cell polarity. Structurally, SMURF1 consists of a C2 domain, two WW domain repeats, and a catalytic HECT domain essential for its E3 ubiquitin ligase activity. This modular architecture allows for interactions with other proteins, which are either substrates or adaptors of SMURF1. Despite the increasing number of SMURF1 substrates identified, current knowledge regarding regulatory proteins and their modes of action on controlling SMURF1 activity is still limited. In this study, we employed quantitative mass spectrometry to analyze SMURF1-associated cellular complexes, and identified the deubiquitinase FAM/USP9X as a novel interacting protein for SMURF1. Through domain mapping study, we found the second WW domain of SMURF1 and the carboxyl terminus of USP9X critical for this interaction. SMURF1 is autoubiquitinated through its intrinsic HECT E3 ligase activity, and is degraded by the proteasome. USP9X association antagonizes this activity, resulting in deubiquitination and stabilization of SMURF1. In MDA-MB-231 breast cancer cells, SMURF1 expression is elevated and is required for cellular motility. USP9X stabilizes endogenous SMURF1 in MDA-MB-231 cells. Depletion of USP9X led to down-regulation of SMURF1 and significantly impaired cellular migration. Taken together, our data reveal USP9X as an important regulatory protein of SMURF1 and suggest that the association between deubiquitinase and E3 ligase may serve as a common strategy to control the cellular protein dynamics through modulating E3 ligase stability.  相似文献   

10.
11.
UnpEL (also known as Usp4 or Unph) is an oncogenic protein, because its expression with a strong promoter results in the tumorigenic transformation of NIH3T3 cells injected into nude mice. Although the structure of UnpEL is that of a deubiquitinating enzyme, neither its precise function in mammalian cells nor the mechanism of UnpEL-mediated tumorigenesis is known. Here, we show that UnpEL functions as a deubiquitinating enzyme in human HEK293T cells and its isopeptidase activity deconjugates ubiquitin specifically from a UnpEL-interacting protein Ro52. We further show that UnpEL translocates to the cytoplasmic rod-like structures and colocalizes with Ro52 when Ro52 is overexpressed in HEK293 cells. These results suggest that UnpEL colocalizes with the unubiquitinated form of Ro52 to the cytoplasmic rod-like structures, where it keeps Ro52 unubiquitinated. The continuous deubiquitination of Ro52 might be involved in tumorigenesis.  相似文献   

12.
Loss of the tumour suppressor BRCA1 results in profound chromosomal instability. The fundamental defect underlying this catastrophic phenotype is not yet known. In vivo, BRCA1 forms a heterodimeric complex with BARD1. Both proteins contain an N-terminal zinc RING-finger domain which confers E3 ubiquitin ligase activity. We have isolated full-length human BRCA1/BARD1 complex and have shown that it has a dual E3 ubiquitin ligase activity. First, it mediates the monoubiquitylation of nucleosome core histones in vitro, including the variant histone H2AX that co-localizes with BRCA1 at sites of DNA damage. Secondly, BRCA1/BARD1 catalyses the formation of multiple polyubiquitin chains on itself. Remarkably, this auto-polyubiquitylation potentiates the E3 ubiquitin ligase activity of the BRCA1/BARD1 complex >20-fold. Even though BRCA1 has been reported to associate with a C-terminal ubiquitin hydrolase, BAP1, this enzyme does not appear to function in the deubiquitylation of the BRCA1/BARD1 complex.  相似文献   

13.
Patients affected by Sj?gren's syndrome and systemic lupus erythematosus (SLE) carry autoantibodies to an intracellular protein denoted Ro52. Although the serologic presence of Ro52 autoantibodies is used clinically for diagnostic purposes, the function of the protein or why it is targeted as an autoantigen in several rheumatic conditions has not been elucidated. In this study, we show that the expression of Ro52 is significantly increased in PBMC of patients with Sj?gren's syndrome and SLE, and demonstrate that Ro52 is a RING-dependent E3 ligase involved in ubiquitination. Overexpression of Ro52, but not of Ro52 lacking the RING domain, in a mouse B cell line lead to decreased growth in steady state and increased cell death after activation via the CD40 pathway. The role of Ro52 in activation-mediated cell death was further confirmed as a reduction in Ro52 expression restored cell viability. These findings suggest that the increased expression of the Ro52 autoantigen in patients may be directly involved in the reduced cellular proliferation and increased apoptotic cell death observed in Sj?gren's syndrome and SLE, and may thus contribute to the autoantigenic load and induction of autoimmune B and T cell responses observed in rheumatic patients.  相似文献   

14.
Sun H  Leverson JD  Hunter T 《The EMBO journal》2007,26(18):4102-4112
The function of small ubiquitin-like modifier (SUMO)-binding proteins is key to understanding how SUMOylation regulates cellular processes. We identified two related Schizosaccharomyces pombe proteins, Rfp1 and Rfp2, each having an N-terminal SUMO-interacting motif (SIM) and a C-terminal RING-finger domain. Genetic analysis shows that Rfp1 and Rfp2 have redundant functions; together, they are essential for cell growth and genome stability. Mammalian RNF4, an active ubiquitin E3 ligase, is an orthologue of Rfp1/Rfp2. Rfp1 and Rfp2 lack E3 activity but recruit Slx8, an active RING-finger ubiquitin ligase, through a RING-RING interaction, to form a functional E3. RNF4 complements the growth and genomic stability defects of rfp1rfp2, slx8, and rfp1rfp2slx8 mutant cells. Both the Rfp-Slx8 complex and RNF4 specifically ubiquitylate artificial SUMO-containing substrates in vitro in a SUMO binding-dependent manner. SUMOylated proteins accumulate in rfp1rfp2 double-null cells, suggesting that Rfp/Slx8 proteins may promote ubiquitin-dependent degradation of SUMOylated targets. Hence, we describe a family of SIM-containing RING-finger proteins that potentially regulates eukaryotic genome stability through linking SUMO-interaction with ubiquitin conjugation.  相似文献   

15.
The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes.  相似文献   

16.
E3 ubiquitin ligases catalyze the final step of ubiquitin conjugation and regulate numerous cellular processes. The HECT class of E3 ubiquitin (Ub) ligases directly transfers Ub from bound E2 enzyme to a myriad of substrates. The catalytic domain of HECT Ub ligases has a bilobal architecture that separates the E2 binding region and catalytic site. An important question regarding HECT domain function is the control of ligase activity and specificity. Here we present a functional analysis of the HECT domain of the E3 ligase HUWE1 based on crystal structures and show that a single N-terminal helix significantly stabilizes the HECT domain. We observe that this element modulates HECT domain activity, as measured by self-ubiquitination induced in the absence of this helix, as distinct from its effects on Ub conjugation of substrate Mcl-1. Such subtle changes to the protein may be at the heart of the vast spectrum of substrate specificities displayed by HECT domain E3 ligases.  相似文献   

17.
泛素连接酶的结构与功能研究进展   总被引:2,自引:0,他引:2  
泛素化是体内蛋白质翻译后重要修饰之一,是蛋白质降解的信号.泛素连接酶E3是泛素化过程中的关键酶之一,介导活化的泛素从结合酶E2转移到底物,不同的泛素连接酶作用于不同的底物蛋白,决定了泛素化修饰的特异性.根据结构与功能机制的不同,可将泛素连接酶E3分为HECT (homologousto E6AP C terminus)家族和RING-finger家族,前者含有HECT结构域,可直接与泛素连接再将其传递给底物.RING-finger家族的E3发现较晚,庞大且功能复杂,是近年来研究的热点,此家族均包含相似的E2结合结构域和特异的底物结合部分,作为桥梁将活化的泛素从E2直接转移到靶蛋白,其本身并不与泛素发生作用.总结了这2种E3连接酶家族成员的三维结构及功能机制研究的最新进展.  相似文献   

18.
Substrate-specific protein degradation mediated by the ubiquitin proteasome system (UPS) is crucial for the proper function of the cell. Proteins are specifically recognized and ubiquitinated by the ubiquitin ligases (E3s) and are then degraded by the proteasome. BTB proteins act as the substrate recognition subunit that recruits their cognate substrates to the Cullin 3-based multisubunit E3s. Recently, it was reported that missense mutations in KLHL7, a BTB-Kelch protein, are related to autosomal dominant retinitis pigmentosa (adRP). However, the involvement of KLHL7 in the UPS and the outcome of the adRP causative mutations were unknown. In this study, we show that KLHL7 forms a dimer, assembles with Cul3 through its BTB and BACK domains, and exerts E3 activity. Lys-48-linked but not Lys-63-linked polyubiquitin chain co-localized with KLHL7, which increased upon proteasome inhibition suggesting that KLHL7 mediates protein degradation via UPS. An adRP-causative missense mutation in the BACK domain of KLHL7 attenuated only the Cul3 interaction but not dimerization. Nevertheless, the incorporation of the mutant as a heterodimer in the Cul3-KLHL7 complex diminished the E3 ligase activity. Together, our results suggest that KLHL7 constitutes a Cul3-based E3 and that the disease-causing mutation inhibits ligase activity in a dominant negative manner, which may lead to the inappropriate accumulation of the substrates targeted for proteasomal degradation.  相似文献   

19.
SCF is a ubiquitin ligase and is composed of Skp1, Cul1, F-box protein, and Roc1. The catalytic site of the SCF is the Cul1/Roc1 complex and RING-finger protein Roc1. It was shown earlier that when Cul1 was co-expressed with Roc1 in Sf-9 cells in a baculovirus protein expression system, Cul1 was highly neddylated in the cell, suggesting that Roc1 may function as a Nedd8-E3 ligase. However, there is no direct evidence that Roc1 is a Nedd8-E3 in an in vitro enzyme system. Here we have shown that Roc1 binds to Ubc12, E2 for Nedd8, but not to Ubc9, E2 for SUMO-1 and Roc1 RING-finger mutant, H77A, did not bind to Ubc12. In in vitro neddylation system using purified Cul1/Roc1 complex expressed in bacteria, Roc1 promotes neddylation of Cul1. These results demonstrate that Roc1 functions as a Nedd8-E3 ligase toward Cul1. Furthermore, Roc1 and Cul1 were ubiquitinylated in a manner dependent on the neddylation of Cul1 in vitro. In addition, Cul1 was degraded through the ubiquitin-proteasome pathway, and a non-neddylated mutant Cul1, K720R, was more stable than wild-type in intact cells. Thus, neddylation of Cul1 might regulate SCF function negatively via degradation of Cul1/Roc1 complex.  相似文献   

20.
Huang J  Xu LG  Liu T  Zhai Z  Shu HB 《FEBS letters》2006,580(3):940-947
Recently, it has been shown that really interesting new gene (RING)-in between ring finger (IBR)-RING domain-containing proteins, such as Parkin and Parc, are E3 ubiquitin ligases and are involved in regulation of apoptosis. In this report, we show that p53-inducible RING-finger protein (p53RFP), a p53-inducible E3 ubiquitin ligase, induces p53-dependent but caspase-independent apoptosis. p53RFP contains an N-terminal RING-IBR-RING domain and an uncharacterized, evolutionally highly conserved C-terminal domain. p53RFP interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8 but not with UbcH5, and this interaction is mediated through the RING-IBR-RING domain of p53RFP. Interestingly, the conserved C-terminal domain of p53RFP is required and sufficient for p53RFP-mediated apoptosis, suggesting p53RFP-mediated apoptosis does not require its E3 ubiquitin ligase activity. Together with a recent report showing that p53RFP is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, our findings suggest that p53RFP is involved in switching a cell from p53-mediated growth arrest to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号