首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA ligase IV (LigIV) deficiency was identified as the molecular basis for a severe form of combined immunodeficiency in two microcephalic siblings with cellular radiosensitivity. In one patient the diagnosis was made directly after birth, allowing analysis of the role of LigIV in the development of specific immune cells. Absolute numbers of B cells were reduced 100-fold and alphabeta T cells 10-fold, whereas gammadelta T cells were normal. Spectratyping of all three cell populations showed a diverse repertoire, but sequencing of IgH V(D)J junctions revealed shorter CDR3 regions due to more extensive nucleotide deletions among D and J elements and fewer N nucleotide insertions. Clonal restriction of IgG-expressing, but not IgM-expressing, B cells and the lack of primary and secondary lymph node follicles indicated impaired class switch recombination. Observations in the older sibling showed that this rudimentary immune system was able to mount specific responses to infection. However, partial Ab responses and extensive amplification of gammadelta T cells could not prevent a life-threatening course of viral and bacterial infections, the development of an EBV-induced lymphoma, and immune dysregulation reflected by severe autoimmune cytopenia. Impaired generation of immune diversity under conditions of limited LigIV activity can cause a human SCID variant with a characteristic immunological phenotype.  相似文献   

2.
DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.  相似文献   

3.
DNA double strand breaks (DSBs) are induced by external genotoxic agents (ionizing radiation or genotoxins) or by internal processes (recombination intermediates in lymphocytes or by replication errors). The DNA ends induced by these genotoxic processes are often not ligatable, requiring potentially mutagenic end-processing to render ends compatible for ligation by non-homologous end-joining (NHEJ). Using single molecule approaches, Loparo et al. propose that NHEJ fidelity can be maintained by restricting end-processing to a ligation competent short-range NHEJ complex that ‘maximizes the fidelity of DNA repair’. These in vitro studies show that although this short-range NHEJ complex requires DNA ligase IV (Lig4), its catalytic activity is dispensable. Here using cellular models, we show that inactive Lig4 robustly promotes DNA repair in living cells. Compared to repair products from wild-type cells, those isolated from cells with inactive Lig4 show a somewhat increased fraction that utilize micro-homology (MH) at the joining site consistent with alternative end-joining (a-EJ). But unlike a-EJ in the absence of NHEJ, a large percentage of joints isolated from cells with inactive Lig4 occur with no MH – thus, clearly distinct from a-EJ. Finally, biochemical assays demonstrate that the inactive Lig4 complex promotes the activity of DNA ligase III (Lig3).  相似文献   

4.
Wang Y  Lamarche BJ  Tsai MD 《Biochemistry》2007,46(17):4962-4976
In addition to linking nicked/fragmented DNA molecules back into a contiguous duplex, DNA ligases also have the capacity to influence the accuracy of DNA repair pathways via their tolerance/intolerance of nicks containing mismatched base pairs. Although human DNA ligase I (Okazaki fragment processing) and the human DNA ligase III/XRCC1 complex (general DNA repair) have been shown to be relatively intolerant of nicks containing mismatched base pairs, the human DNA ligase IV/XRCC4 complex has not been studied in this regard. Ligase IV/XRCC4 is the sole DNA ligase involved in the repair of double strand breaks (DSBs) via the non-homologous end joining (NHEJ) pathway. During the repair of DSBs generated by chemical/physical damage as well as the repair of the programmed DSB intermediates of V(D)J recombination, there are scenarios where, at least conceptually, a capacity for ligating nicks containing mismatched base pairs would appear to be advantageous. Herein we examine whether ligase IV/XRCC4 can contribute a mismatched nick ligation activity to NHEJ. Toward this end, we (i) describe an E. coli-based coexpression system that provides relatively high yields of the ligase IV/XRCC4 complex, (ii) describe a unique rate-limiting step, which has bearing on how the complex is assayed, (iii) specifically analyze how XRCC4 influences ligase IV catalysis and substrate specificity, and (iv) probe the mismatch tolerance/intolerance of DNA ligase IV/XRCC4 via quantitative in vitro kinetic analyses. Analogous to most other DNA ligases, ligase IV/XRCC4 is shown to be fairly intolerant of nicks containing mismatched base pairs. These results are discussed in light of the biological roles of NHEJ.  相似文献   

5.
S H Teo  S P Jackson 《The EMBO journal》1997,16(15):4788-4795
DNA ligases catalyse the joining of single and double-strand DNA breaks, which is an essential final step in DNA replication, recombination and repair. Mammalian cells have four DNA ligases, termed ligases I-IV. In contrast, other than a DNA ligase I homologue (encoded by CDC9), no other DNA ligases have hitherto been identified in Saccharomyces cerevisiae. Here, we report the identification and characterization of a novel gene, LIG4, which encodes a protein with strong homology to mammalian DNA ligase IV. Unlike CDC9, LIG4 is not essential for DNA replication, RAD52-dependent homologous recombination nor the repair of UV light-induced DNA damage. Instead, it encodes a crucial component of the non-homologous end-joining (NHEJ) apparatus, which repairs DNA double-strand breaks that are generated by ionizing radiation or restriction enzyme digestion: a function which cannot be complemented by CDC9. Lig4p acts in the same DNA repair pathway as the DNA end-binding protein Ku. However, unlike Ku, it does not function in telomere length homeostasis. These findings indicate diversification of function between different eukaryotic DNA ligases. Furthermore, they provide insights into mechanisms of DNA repair and suggest that the NHEJ pathway is highly conserved throughout the eukaryotic kingdom.  相似文献   

6.
Ku-dependent C-NHEJ (classic non-homologous end joining) is the primary DNA EJing (end joining) repair pathway in mammals. Recently, an additional EJing repair pathway (A-NHEJ; alternative-NHEJ) has been described. Currently, the mechanism of A-NHEJ is obscure although a dependency on LIGIII (DNA ligase III) is often implicated. To test the requirement for LIGIII in A-NHEJ we constructed a LIGIII conditionally-null human cell line using gene targeting. Nuclear EJing activity appeared unaffected by a deficiency in LIGIII as, surprisingly, so were random gene targeting integration events. In contrast, LIGIII was required for mitochondrial function and this defined the gene's essential activity. Human Ku:LIGIII and Ku:LIGIV (DNA ligase IV) double knockout cell lines, however, demonstrated that LIGIII is required for the enhanced A-NHEJ activity that is observed in Ku-deficient cells. Most unexpectedly, however, the majority of EJing events remained LIGIV-dependent. In conclusion, although human LIGIII has an essential function in mitochondrial maintenance, it is dispensable for most types of nuclear DSB repair, except for the A-NHEJ events that are normally suppressed by Ku. Moreover, we describe that a robust Ku-independent, LIGIV-dependent repair pathway exists in human somatic cells.  相似文献   

7.
BLM has been implicated in DNA double-strand break (DSB) repair, but its precise role remains obscure. To explore this, we generated BLM(-/-) and BLM(-/-)LIG4(-/-) cells from the human pre-B cell line Nalm-6. BLM(-/-) cells exhibited retarded growth, increased mutation rates, and hypersensitivity to agents that block replication fork progression. Interestingly, these phenotypes were significantly suppressed by deletion of LIG4, suggesting that nonhomologous end-joining (NHEJ) is unfavorable for integrity and survival of cells lacking BLM. We propose that the absence of BLM leads to accumulation of replication-associated, one-ended DSBs, which are deleterious to cells and lead to genomic instability when repaired by NHEJ. In addition, the NHEJ pathway per se was marginally affected by BLM deficiency, as evidenced by x-ray sensitivity and I-SceI-based DSB repair assays. More intriguingly, however, these experiments revealed the presence of an alternative, DNA ligase IV-independent end-joining pathway, which was significantly affected by the loss of BLM. Collectively, our results provide the first evidence for genetic interactions between BLM and NHEJ in human cells.  相似文献   

8.
9.
The major mechanism for the repair of DNA double-strand breaks (DSBs) in mammalian cells is non-homologous end-joining (NHEJ), a process that involves the DNA-dependent protein kinase [1] [2], XRCC4 and DNA ligase IV [3] [4] [5] [6]. Rodent cells and mice defective in these components are radiation-sensitive and defective in V(D)J-recombination, showing that NHEJ also functions to rejoin DSBs introduced during lymphocyte development [7] [8]. 180BR is a radiosensitive cell line defective in DSB repair, which was derived from a leukaemia patient who was highly sensitive to radiotherapy [9] [10] [11]. We have identified a mutation within a highly conserved motif encompassing the active site in DNA ligase IV from 180BR cells. The mutated protein is severely compromised in its ability to form a stable enzyme-adenylate complex, although residual activity can be detected at high ATP concentrations. Our results characterize the first patient with a defect in an NHEJ component and suggest that a significant defect in NHEJ that leads to pronounced radiosensitivity is compatible with normal human viability and does not cause any major immune dysfunction. The defect, however, may confer a predisposition to leukaemia.  相似文献   

10.
DNA ligase IV is an essential protein that functions in DNA non-homologous end-joining, the major mechanism that rejoins DNA double-strand breaks in mammalian cells. LIG4 syndrome represents a human disorder caused by mutations in DNA ligase IV that lead to impaired but not ablated activity. Thus far, five conserved motifs in DNA ligases have been identified. We previously reported G469E as a mutational change in a LIG4 syndrome patient. G469 does not lie in any of the previously reported motifs. A sequence comparison between DNA ligases led us to identify residues 468-476 of DNA ligase IV as a further conserved motif, designated motif Va, present in eukaryotic DNA ligases. We carried out mutational analysis of residues within motif Va examining the impact on adenylation, double-stranded ligation, and DNA binding. We interpret our results using the DNA ligase I:DNA crystal structure. Substitution of the glycine at position 468 with an alanine or glutamic acid severely compromises protein activity and stability. Substitution of G469 with an alanine or glutamic acid is better tolerated but still impacts upon activity and protein stability. These finding suggest that G468 and G469 are important for protein stability and provide insight into the hypomorphic nature of the G469E mutation identified in a LIG4 syndrome patient. In contrast, residues 470, 473 and 476 within motif Va can be changed to alanine residues without any impact on DNA binding or adenylation activity. Importantly, however, such mutational changes do impact upon double-stranded ligation activity. Considered in light of the DNA ligase I:DNA crystal structure, our findings suggest that residues 470-476 function as part of a molecular pincer that maintains the DNA in a conformation that is required for ligation.  相似文献   

11.
An XRCC4-like factor, called XLF or Cernunnos, was recently identified as another important factor in the non-homologous DNA end joining (NHEJ) process. NHEJ is the major pathway for the repair of double-strand DNA breaks. The similarity in the putative secondary structures of XLF and XRCC4 as well as the association of XLF with XRCC4.DNA ligase IV in vivo suggested a role in the final ligation step of NHEJ. Here, we find that purified XLF directly interacts with purified XRCC4.DNA ligase IV complex and stimulates the ligase complex in a direct assay for ligation activity. Purified XLF has DNA binding activity, but this binding is dependent on DNA length in a manner most consistent with orientation of the C-terminal alpha helices parallel to the DNA helix. To better understand the function of XLF, we purified an XLF mutant (R57G), which was identified in patients with NHEJ deficiency and severe combined immunodeficiency. Surprisingly, the mutant protein retained its ability to stimulate XRCC4.DNA ligase IV but failed to translocate to the nucleus, and this appears to be the basis for the NHEJ defect in this patient.  相似文献   

12.
Temozolomide (TMZ) is a methylating agent used in chemotherapy against glioblastoma. This work was designed to clarify details in repair pathways acting to remove DNA double-strand breaks (DSBs) induced by TMZ. Cultured mouse embryonic fibroblasts were used which were deficient in DSB repair genes such as homologous recombination repair-related genes X-ray repair cross-complementing group 2 (XRCC2)and radiation sensitive mutant54 (Rad54), non-homologous end joining repair-related gene DNAligase IV (Lig4). Cell sensitivity to drug treatments was assessed using colony forming assays. The most effective molecular target which was correlated with TMZ cell sensitivity was Lig4. In addition, it was found that small interference RNAs (siRNA) for Lig4 efficiently enhanced cell lethality induced by TMZ in human glioblastoma A172 cells. These findings suggest that down regulation of Lig4 might provide a useful tool for cell sensitization during TMZ chemotherapy.  相似文献   

13.
Liu  Yanshan  Yang  Wei  Hua  Rui  Huang  Yingzhi  Zhang  Xue 《中国科学:生命科学英文版》2019,62(11):1554-1556
<正>Dear Editor.During the past decades,the rising prevalence of obesity,especially in children,has become one of the major public health challenges in modern China and worldwide.This increase in prevalence of obesity can partly be attributed to high-calorie food intake and lack of exercise.Conversely,previous research has demonstrated the importance of genetic factors in the etiology of obesity.For instance,a genome-wide association study (GWAS) has identified several SNPs in genes associated with common obesity,including  相似文献   

14.
Microcephaly with early-onset, intractable seizures and developmental delay (MCSZ) is a hereditary disease caused by mutations in polynucleotide kinase/phosphatase (PNKP), a DNA strand break repair protein with DNA 5'-kinase and DNA 3'-phosphatase activity. To investigate the molecular basis of this disease, we examined the impact of MCSZ mutations on PNKP activity in vitro and in cells. Three of the four mutations currently associated with MCSZ greatly reduce or ablate DNA kinase activity of recombinant PNKP at 30°C (L176F, T424Gfs48X and exon15Δfs4X), but only one of these mutations reduces DNA phosphatase activity under the same conditions (L176F). The fourth mutation (E326K) has little impact on either DNA kinase or DNA phosphatase activity at 30°C, but is less stable than the wild-type enzyme at physiological temperature. Critically, all of the MCSZ mutations identified to date result in ~ 10-fold reduced cellular levels of PNKP protein, and reduced rates of chromosomal DNA strand break repair. Together, these data suggest that all four known MCSZ mutations reduce the cellular stability and level of PNKP protein, with three mutations likely ablating cellular DNA 5'-kinase activity and all of the mutations greatly reducing cellular DNA 3'-phosphatase activity.  相似文献   

15.
DNA ligase IV (Lig4), x-ray cross-complementation group 4 (XRCC4), and DNA-dependent protein kinase (DNA-PK) are essential mammalian nonhomologous end joining proteins used for V(D)J recombination and DNA repair. Previously a Lig4 peptide was reported to be an in vitro substrate for DNA-PK, but the phosphorylation state of Lig4 protein in vivo is not known. In this study, we report that a full-length Lig4 construct was expressed as a phosphoprotein in the cell. Also the full-length Lig4 protein, in complex with XRCC4, was an in vitro substrate for DNA-PK. Using tandem mass spectrometry, we identified a DNA-PK phosphorylation site at Thr-650 in human Lig4 and a potential second phosphorylation site at Ser-668 or Ser-672. Phosphorylation of Lig4 per se was not required for Lig4 DNA end joining activity. Substitution of these amino acids with alanine, individually or in combination, led to changes in Lig4 protein stability of mouse Lig4. The phosphomimetic mutation S650D returned Lig4 stability to that of the wild-type protein. Furthermore DNA-PK was found to negatively regulate Lig4 protein stability. Our results suggest that Lig4 stability is regulated by multiple factors, including interaction with XRCC4, phosphorylation status, and possibly Lig4 conformation.  相似文献   

16.
In the absence of the telomerase, telomeres undergo progressive shortening and are ultimately recruited into end-to-end chromosome fusions via the non-homologous end joining (NHEJ) double-strand break repair pathway. Previously, we showed that fusion of critically shortened telomeres in Arabidopsis proceeds with approximately the same efficiency in the presence or absence of KU70, a key component of NHEJ. Here we report that DNA ligase IV (LIG4) is also not essential for telomere joining. We observed only a modest decrease (3-fold) in the frequency of chromosome fusions in triple tert ku70 lig4 mutants versus tert ku70 or tert. Sequence analysis revealed that, relative to tert ku70, chromosome fusion junctions in tert ku70 lig4 mutants contained less microhomology and less telomeric DNA. These findings argue that the KU-LIG4 independent end-joining pathway is less efficient and mechanistically distinct from KU-independent NHEJ. Strikingly, in all the genetic backgrounds we tested, chromosome fusions are initiated when the shortest telomere in the population reaches ~1 kb, implying that this size represents a critical threshold that heralds a detrimental structural transition. These data reveal the transitory nature of telomere stability, and the robust and flexible nature of DNA repair mechanisms elicited by telomere dysfunction.  相似文献   

17.
18.
DNA ligase IV functions in DNA non-homologous end-joining, in V(D)J recombination, and during brain development. We previously reported a homozygous mutation (R278H) in DNA ligase IV in a developmentally normal leukemia patient who overresponded to radiotherapy. The impact of this hypomorphic mutation has been evaluated using cellular, biochemical, and structural approaches. Structural modeling using T7 DNA ligase predicts that the activity and conformational stability of the protein is likely to be impaired. We show that wild type DNA ligase IV-Xrcc4 is an efficient double-stranded ligase with distinct optimal requirements for adenylate complex formation versus rejoining. The mutation impairs the formation of an adenylate complex as well as reducing the rejoining activity. Additionally, it imparts temperature-sensitive activity to the protein consistent with the predictions of the structural modeling. At the cellular level, the mutation confers a unique V(D)J recombination phenotype affecting the fidelity of signal joint formation with little effect on the frequency of the reaction. These findings suggest that hypomorphic mutations in ligase IV may allow normal development but confer marked radiosensitivity.  相似文献   

19.
Here we demonstrate that the Saccharomyces cerevisiae DNA ligase activity, which we previously designated DNA ligase II, is encoded by the genomic DNA sequence YOR005c. Based on its homology with mammalian LIG4, this yeast gene has been named DNL4 and the enzyme activity renamed Dnl4. In agreement with others, we find that DNL4 is not required for vegetative growth but is involved in the repair of DNA double-strand breaks by non-homologous end joining. In contrast to a previous report, we find that a dnl4 null mutation has no effect on sporulation efficiency, indicating that Dnl4 is not required for proper meiotic chromosome behavior or subsequent ascosporogenesis in yeast. Disruption of the DNL4 gene in one strain, M1-2B, results in temperature-sensitive vegetative growth. At the restrictive temperature, mutant cells progressively lose viability and accumulate small, nucleated and non-dividing daughter cells which remain attached to the mother cell. This novel temperature-sensitive phenotype is complemented by retransformation with a plasmid-borne DNL4 gene. Thus, we conclude that the abnormal growth of the dnl4 mutant strain is a synthetic phenotype resulting from Dnl4 deficiency in combination with undetermined genetic factors in the M1-2B strain background.  相似文献   

20.
Effect of DNA delay mutations of bacteriophage T4 on genetic recombination.   总被引:6,自引:3,他引:3  
Studies have been made of the effect of the DNA delay mutations of bacteriophage T4 on growth and genetic recombination in a number of Escherichia coli hosts. DNA delay mutations in genes 39, 52, 58 (61), and 60 result in abnormally high recombination frequencies. These high recombination frequencies are discussed in the context of other observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号