首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
C3H/HeN mice that are naturally resistant to cutaneous disease and systemic infections with the protozoan parasite, Leishmania major, were treated at the time of infection, and weekly thereafter, with mouse anti-rat IFN-gamma mAb or an irrelevant antibody of similar isotype. Anti-IFN-gamma-treated mice developed cutaneous lesions; parasites spread to the regional lymph nodes and then metastasized to spleens and livers. The course of disease in these animals was similar to that of genetically susceptible BALB/c mice. Two exceptions in the pathology of L. major infections were noted between BALB/c and anti-IFN-gamma-treated C3H/HeN mice: 1) BALB/c mice died of systemic complications, whereas C3H/HeN mice did not, and 2) multinucleated giant cells were observed in lymph nodes and spleens of infected BALB/c mice, whereas these cells were not observed in infected C3H/HeN mice. Control mice, those treated with either saline or irrelevant antibody of the same isotype as the anti-IFN-gamma monoclonal, showed no evidence of cutaneous disease (development of footpad lesions) or systemic infection (by histopathology). Total abrogation of the natural resistance of C3H/HeN mice could be achieved by treatment with as little as 0.5 mg/mouse/wk of anti-IFN-gamma antibody, or by a single dose of 1 mg/mouse anti-IFN-gamma antibody administered at the time of parasite inoculation. If antibody treatment was delayed for as little as 1 wk after parasite inoculation, the infections in treated animals resembled that of untreated or control antibody-treated mice: no cutaneous lesions (by footpad swelling or viable counts of leishmania in footpad tissue) or systemic disease (by microscopic analysis of touch preparations of internal organs, and histopathology of same). The production of IFN-gamma during the initial interaction of the parasite and host cells appears to be a major component of genetic control of natural resistance to infection with L. major in C3H/HeN mice.  相似文献   

2.
To understand the immunomodulatory roles of neutrophils in Leishmania major infection, we examined the expression of cytokine and chemokine mRNAs from neutrophils of the infected resistant C3H/HeJ and susceptible BALB/c mice. We also examined the effects of neutrophil depletion on the expression of cytokine by peritoneal macrophages and draining lymph node cells and on the footpad lesions and parasite burdens in these mice. Neutrophils from resistant C3H/HeJ but not from susceptible BALB/c mice expressed mRNAs for IL-12p40, IFN-gamma,TNF-alpha and monokine induced by IFN-gamma(MIG). Neutrophil depletion of the resistant mice reduced the expression of IFN-gammaandTNF-alpha in peritoneal macrophages but did not affect the expression of IL-12p40 and IFN-gamma in draining lymph node cells and the growth of footpad lesions. On the other hand, neutrophil depletion of susceptible BALB/c mice did not affect the expression of TNF-alpha and monocyte-derived chemokine (MDC) in peritoneal macrophages but induced the early stage expression of IL-4 in draining lymph node cells and exacerbated the footpad lesions and increased the parasite burden. The exacerbation of footpad lesions induced by neutrophil depletion was abolished by rIL-12 treatment. Our results suggest that even in susceptible BALB/c but not in C3H/HeJ mice there is a certain resistance requiring neutrophils at the early stage of infection.  相似文献   

3.
In order to simulate the natural long term parasitisms which may occur in mammals infected with Leishmania, cutaneous leishmaniases due to Leishmania major or Leishmania amazonensis were induced using a model based on the inoculation of 10-1000 metacyclic promastigotes into the ear dermis of BALB/c mice. The final outcome of these parasitisms was dependent upon the number of inoculated parasites. Only some of the mice inoculated with ten parasites displayed cutaneous lesions, whereas most mice infected with 100 metacyclics and all mice infected with 1000 metacyclics developed progressive lesions. We found, using the latter experimental conditions, that the onset of the pathology was associated with: (a) parasite multiplication in the inoculation site and the draining lymph node correlating with an increase of the lymph node cell number, especially in L. major-infected mice; and (b) the detection of lymph node cells, at least in part CD4(+) T lymphocytes, able to produce high levels of interferon-gamma, interleukin (IL)-4, IL-10 and IL-13. Thereafter, mice infected by L. major harboured few parasites in the ear and had a 100-fold reduction in lymph node parasite load between 23 and 40 weeks post-inoculation. In contrast, the parasite loads of L. amazonensis-infected mice remained stable in the ear and increased in nodes during the same period of time. Only L. major-infected mice that exhibited cutaneous lesions in the primary site were resistant to the re-inoculation of 1000 metacyclic promastigotes, whereas all L. amazonensis-primary infected mice remained susceptible to a second homologous challenge. These results are the first to document that a status of resistance to re-infection, referred to concomitant immunity, is coupled to the development of primary progressive lesions in L. major-infected BALB/c mice. Such a protective status is absent in L. amazonensis-infected BALB/c mice.  相似文献   

4.
Leishmania braziliensis is the species responsible for the majority of cases of human cutaneous leishmaniasis in Brazil. In the present study, L. braziliensis isolates from two different geographic areas in Brazil were studied by RAPD, using arbitrary primers. We also evaluated other biological features of these two isolates. We compared (a) the clinical features they initiate or not once delivered subcutaneously as stationary-phase promastigotes in the footpad of BALB/c mice; (b) the parasite load in both the footpad and the draining lymph node; (c) the cytokines present in the supernatant of cultures of the cell suspensions from the draining lymph nodes; and (d) the cell types present at the site of parasite delivery. The results show that the L. braziliensis strain from Ceará (H3227) is genotypically different from the L. braziliensis strain from Bahia (BA788). H3227-parasitized mice developed detectable lesions, whereas BA788-parasitized mice did not. Fifteen days post parasite inoculation there was an increase in the numbers of macrophages and lymphocytes in the footpads, whatever the parasite inoculum. Parasite load at the inoculation site--namely the footpad--did not differ significantly; in draining lymph nodes, however, it increased over the period under study. Early after parasite inoculation, the cells recovered from the draining lymph nodes of BA788-parasitized mice produced higher levels of IFN-gamma, a feature coupled to a higher number of NK cells. Later, after the parasite inoculation, there was an increased content of IL-12p70 and IL-10 in the supernatant of cells recovered from the lymph nodes of H3227-parasitized mice. This comparative analysis points out that L. braziliensis isolates differing in their genomic profiles do establish different parasitic processes in BALB/c mice.  相似文献   

5.
In the murine model of Leishmania major infection, resistance or susceptibility to the parasite has been associated with the development of a Th1 or Th2 type of immune response. Recently, however, the immunosuppressive effects of IL-10 have been ascribed a crucial role in the development of the different clinical correlates of Leishmania infection in humans. Since T cells and professional APC are important cellular sources of IL-10, we compared leishmaniasis disease progression in T cell-specific, macrophage/neutrophil-specific and complete IL-10-deficient C57BL/6 as well as T cell-specific and complete IL-10-deficient BALB/c mice. As early as two weeks after infection of these mice with L. major, T cell-specific and complete IL-10-deficient animals showed significantly increased lesion development accompanied by a markedly elevated secretion of IFN-γ or IFN-γ and IL-4 in the lymph nodes draining the lesions of the C57BL/6 or BALB/c mutants, respectively. In contrast, macrophage/neutrophil-specific IL-10-deficient C57BL/6 mice did not show any altered phenotype. During the further course of disease, the T cell-specific as well as the complete IL-10-deficient BALB/c mice were able to control the infection. Furthermore, a dendritic cell-based vaccination against leishmaniasis efficiently suppresses the early secretion of IL-10, thus contributing to the control of parasite spread. Taken together, IL-10 secretion by T cells has an influence on immune activation early after infection and is sufficient to render BALB/c mice susceptible to an uncontrolled Leishmania major infection.  相似文献   

6.
Infection with Trichinella spiralis rarely leads to significant morbidity. In this study, we show that IL-10 knockout mice infected with this parasite develop extensive areas of coagulative necrosis in the liver, and newborn larvae are required for lesion formation. Histopathological examination revealed that the hepatic inflammatory infiltrate was mixed but dominated by eosinophils. Accordingly, infected IL-10 knockout mice displayed a marked eosinophilia. IL-10 was expressed during infection in mesenteric lymph node populations and liver tissue. Analysis of cytokine profiles revealed a codominant expression of type 1 and 2 mediators that was enhanced in the absence of IL-10. Additionally, CD11c(+) MHC class II(+) cells were increased in mesenteric lymph nodes of IL-10 knockout mice, suggesting a possible link between IL-10 and dendritic cell trafficking. Nevertheless, there were no significant differences in mortality or parasite burdens between the strains of mice, indicating that IL-10 is necessary to control the host's inflammatory response but does not impact establishment of the parasite. Expression of IL-10 appears to be an adaptation used by the liver to protect itself from damage caused by migrating newborn larvae.  相似文献   

7.
Suppression of autoimmune diabetes by viral IL-10 gene transfer   总被引:11,自引:0,他引:11  
Th1 cell activation and cytokine production shift the balance between Th1 and Th2, favoring the up-regulation of proinflammatory activity that leads to destruction of insulin-producing pancreatic beta cells in type 1 diabetes. Th2-type cytokines, such as IL-10, have immune regulatory function. Administration of IL-10, or IL-10 gene transfer, prevents autoimmune diabetes in nonobese diabetic (NOD) mice. However, constant administration of purified rIL-10 is not practical for long-term therapy to prevent diabetes. In this study, we transferred the BCRF-1 gene, an open reading frame in the Epstein-Barr viral genome with remarkable homology to mouse IL-10 (viral IL-10 or vIL-10), by an adeno-associated viral (AAV) vector to NOD mice to attain sustained vIL-10 gene expression. Like endogenous mouse IL-10, vIL-10 has potent immunoregulatory and immunosuppressive functions, but can be specifically distinguished from endogenous mouse IL-10 for monitoring of the transgene expression. A single systemic administration of AAV vIL-10 significantly reduced insulitis and prevented diabetes development in NOD mice. This protective effect correlated with sustained transgene expression and protein production. Moreover, splenocytes from the treated mice blocked diabetes transfer to NOD recipients, suggesting that vIL-10 induces an active suppression of autoimmunity. This study provides evidence to support the possibility of using vIL-10 gene therapy to prevent type 1 diabetes.  相似文献   

8.
Cathelicidin-type antimicrobial peptides (CAMP) are important mediators of innate immunity against microbial pathogens acting through direct interaction with and disruption of microbial membranes and indirectly through modulation of host cell migration and activation. Using a mouse knock-out model in CAMP we studied the role of this host peptide in control of dissemination of cutaneous infection by the parasitic protozoan Leishmania. The presence of pronounced host inflammatory infiltration in lesions and lymph nodes of infected animals was CAMP-dependent. Lack of CAMP expression was associated with higher levels of IL-10 receptor expression in bone marrow, splenic and lymph node macrophages as well as higher anti-inflammatory IL-10 production by bone marrow macrophages and spleen cells but reduced production of the pro-inflammatory cytokines IL-12 and IFN-γ by lymph nodes. Unlike wild-type mice, local lesions were exacerbated and parasites were found largely disseminated in CAMP knockouts. Infection of CAMP knockouts with parasite mutants lacking the surface metalloprotease virulence determinant resulted in more robust disseminated infection than in control animals suggesting that CAMP activity is negatively regulated by parasite surface proteolytic activity. This correlated with the ability of the protease to degrade CAMP in vitro and co-localization of CAMP with parasites within macrophages. Our results highlight the interplay of antimicrobial peptides and Leishmania that influence the host immune response and the outcome of infection.  相似文献   

9.
Experimental Leishmania major infection in mice has been of immense interest because it was among the first models to demonstrate the importance of the Th1/Th2 balance to infection outcome in vivo. However, the Th2 polarization that promotes the development of nonhealing cutaneous lesions in BALB/c mice has failed to adequately explain the mechanisms underlying nonhealing forms of leishmaniasis in humans. We have studied a L. major strain from a patient with nonhealing lesions that also produces nonhealing lesions with ulcerations and high parasite burden in conventionally resistant C57BL/6 mice. Surprisingly, these mice develop a strong, polarized, and sustained Th1 response, as evidenced by high levels of IFN-gamma produced by Leishmania-specific cells in the draining lymph node and in the ear lesion, and an absence of IL-4 or IL-13. The parasites fail to be effectively cleared despite high level induction of inducible NO synthase in the lesion, and despite their sensitivity to killing by IFN-gamma-activated macrophages in vitro. Infection of IL-10(-/-) mice, blockade of the IL-10R, or depletion of CD25(+) cells during the chronic phase promotes parasite killing, indicating that IL-10 and regulatory T cells play a role in rendering the Th1 responses ineffective at controlling infection in the skin. Mice with nonhealing primary lesions are nonetheless resistant to reinfection in the other ear. We suggest that nonhealing infections in animal models that are explained not by aberrant Th2 development, but by overactivation of homeostatic pathways designed to control inflammation, provide better models to understand nonhealing or reactivation forms of leishmaniasis in humans.  相似文献   

10.
Cilia-associated respiratory (CAR) bacillus is an unclassified, gram-negative, extracellular bacterium that causes chronic respiratory tract disease in rodents. Infected mice develop microscopic lesions characterized by a primary lymphocytic response followed by macrophage and neutrophilic infiltration. To characterize the lymphocytic subsets that respond to CAR bacillus infection, BALB/c mice were inoculated with 10(5) CAR bacillus bacteria. At seven weeks after inoculation, mice were euthanized and the tracheobronchiolar and hilar lymph nodes were collected and stained for cell surface markers to T cells (CD3, CD4, and CD8), B cells (B220, CD5), natural killer (NK) cells (pan-NK) and intracellular interleukin 10 (IL-10) and interferon-gamma (IFN-gamma). Flow cytometric analysis of lymph nodes from CAR bacillus-infected mice revealed 11% increase in frequency of B cells (R220+), 12% increase in the frequency of double-negative (CD4-CD8-CD3+) T cells, and slight increase in the B-1 subset of B cells (B220+CD5+). There was no change in the frequency of NK cells. The CAR bacillus-infected mice had an overall decrease in the frequency of T cells. Intracellular cytokine staining revealed distinct populations of T cells producing IL-10 and IFN-gamma, and IL-10 production from B cells; NK cells were not a substantial source of IFN-gamma. To our knowledge, this is the first characterization of lymphocytic responses and suggestion that B cells and double-negative T cells may be principally responsible for the lesions associated with CAR bacillus infection.  相似文献   

11.
Episomal expression of the major surface glycoprotein (gp63) sense and antisense mRNAs in Leishmania amazonensis was found previously to modulate the expression of this molecule as well as its infection of macrophages in vitro. Here, we evaluated the in vivo infectivity of these transfectants in BALB/c mice. Antisense downregulation of gp63 renders this parasite sensitive to complement-mediated lysis and less infective to mice, as indicated by a delay in lesion development and a significant reduction in lesion size and parasite loads at the site of inoculation and in the draining lymph nodes (DLNs). CD4+ cells at the site of inoculation decreased in number more rapidly and were 2-fold less numerous than those in controls by week 4. The number of IFN-gamma-positive cells was higher, while IL-10 positive cells were undetectable. In DLNs, CD4+ cells were higher in number, and the profile of cytokine-positive cells followed essentially the same patterns--found at the site of inoculation. These results suggest that the downregulation of gp63 increases extracellular lysis of the mutants by complement, in the in vivo environment, and reduces their infection of macrophages, resulting in a type 1 immune response seen at the site of inoculation and DLNs.  相似文献   

12.
Host resistance to the intracellular protozoan Leishmania major is highly dependent on IL-12 production by APCs. Genetically resistant C57BL/6 mice develop IL-12-mediated Th1 immune response dominated by IFN-gamma and exhibit only small cutaneous lesions that resolve spontaneously. In contrast, because of several genetic differences, BALB/c mice develop an IL-4-mediated Th2 immune response and a chronic mutilating disease. Myeloid differentiation marker 88 (MyD88) is an adaptator protein that links the IL-1/Toll-like receptor family to IL-1R-associated protein kinase. Toll-like receptors recognize pathogen associated molecular patterns and are crucially implicated in the induction of IL-12 secretion by APC. The role of MyD88 protein in the development of protective immune response against parasites is largely unknown. Following inoculation of L. major, MyD88(-/-) C57BL/6 mice presented large footpad lesions containing numerous infected cells and frequent mutilations. In response to soluble Leishmania Ag, cells from lesion-draining lymph node showed a typical Th2 profile, similar to infected BALB/c mice. IL-12p40 plasma level collapses in infected MyD88(-/-) mice compared with infected wild-type C57BL/6 mice. Importantly, administration of exogenous IL-12 rescues L. major-infected MyD88(-/-) mice, demonstrating that the susceptibility of these mice is a direct consequence of IL-12 deficiency. In conclusion, MyD88-dependent pathways appear essential for the development of the protective IL-12-mediated Th1 response against the Leishmania major parasite. In absence of MyD88 protein, infected mice develop a nonprotective Th2 response.  相似文献   

13.
Leishmania (L.) major is a protozoan parasite that infects mammalian hosts and causes a spectrum of disease manifestations that is strongly associated with the genetic background of the host. Interleukin (IL)-6 is an acute phase proinflammatory cytokine, known in vitro to be involved in the inhibition of the generation of regulatory T cells. IL-6-deficient mice were infected with L. major, and T cell and monocyte subsets were analyzed with flow cytometry. Our data show that at the site of infection in the footpad and in the draining popliteal lymph node, numbers of regulatory T cells remain unchanged between WT and IL-6-deficient mice. However, the spleens of IL-6−/− mice contained fewer regulatory T cells after infection with L. major. The development of cutaneous lesions is similar between WT and IL-6-deficient mice, while parasite burden in IL-6−/− mice is reduced compared to WT. The development of IFN-γ or IL-10 producing T cells is similar in IL-6−/− mice. Despite a comparable adaptive T cell response, IL-6-deficient mice develop an earlier peak of some inflammatory cytokines than WT mice. This data indicate that the role of IL-6 in the differentiation of regulatory T cells is complex in vivo, and the effect of an absence of this cytokine can be counter-intuitive.  相似文献   

14.
Infection with Leishmania major in BALB/c mice is accompanied by the development of a nonprotective Th2-type response. It has previously been shown that disease progression, and the activation of a Th2-type response, can occur in the absence of CD28 costimulation following the inoculation of high numbers of L. major promastigotes. In this study, we show that in the absence of CD28-B7 interactions, BALB/c mice can spontaneously resolve their infections following the inoculation of low numbers of parasites. BALB/c CD28+/+ and CD28-/-mice were inoculated with 250, 500, and 750 metacyclic parasites. The CD28-/- mice controlled their lesions, whereas the wild-type (WT) mice developed progressive nonhealing infections. Resistance to infection was associated with reduced numbers of parasites in the CD28-/- mice compared with the WT mice. Infection of the CD28-/- mice resulted in the activation of a Th1-type response as evidenced by increased levels of mRNA for IFN-gamma and reduced levels of message for IL-4 and IL-10 in draining lymph nodes compared with those in WT mice. Healing of infected CD28-/- mice could also be ablated with anti-CD4 Ab treatment or treatment with anti-IFN-gamma Ab. In addition, healed CD28-/- mice were resistant to a challenge infection with L. major. These results suggest that CD28 costimulation influences the in vivo activation of a Th2-type response in a manner that is dependent on the size of the parasite inoculum.  相似文献   

15.
Most experimental studies on leishmaniasis compare two different inbred strains of mice that are resistant or susceptible to one species of Leishmania. In the present study we characterized some cytokines and nitric oxide production as well as histological changes related to resistance and susceptibility in isogenic CBA mice infected with Leishmania major or Leishmania amazonensis. CBA mice are capable of controlling infection with L.  major, but they succumb to infection with L. amazonensis. Cells from susceptible L. amazonensis-infected CBA mice produced interleukin (IL)-4 and IL-10 but no interferon (IFN)-γ. On the other hand, resistant L. major-infected CBA mice produced IFN-γ and IL-10, but IL-4 was detected only in the first week of infection. Histopathological studies showed patterns of tissue responses at the site of the infection and in the draining lymph nodes that correlated with resistance or susceptibility. Resistant mice showed a mixed inflammatory cell infiltration and granulomas in the lesions, whereas in susceptible mice only heavily parasitized macrophages were seen. Our results indicate an important role of the parasite species in determining the pattern of immune response. L. amazonensis induces a Th2-type immune response, whereas L.  major induces a Th1-type response. These factors must be identified and taken into account in the strategies for the development of vaccines against leishmaniasis. The model presented here will be useful for the study of such factors.  相似文献   

16.
In murine leishmaniasis, the induction of the T-helper type 1 (Th1) response contributes to infection resistance, whereas the establishment of the Th2 response makes the mice susceptible to infection. Interleukin-12 (IL-12) plays a pivotal role in the diversification of immune responses to the Th1 type. In this study, we tested whether the co-administration of IL-12 expression plasmid which compose p35 and p40 subunits and soluble leishmanial antigen (SLA) will skew the susceptible BALB/c mice to Th1 response and protect from leishmaniasis. When the mice were intradermally injected with the combination of IL-12 plasmid and SLA 7 days prior to the challenge with 1x10(6) promastigotes of Leishmania major, the local lesions completely healed and the parasite burden in the local lymph nodes significantly decreased. The cured mice attained long-term immunity, and were resistant to any subsequent rechallenge of the lethal dose of the parasite. The protective effect was associated with the development of a Th1 response, as demonstrated by the enhanced level of antigen-specific interferon-gamma (IFN-gamma) and dominant production of IgG2a in the serum. In contrast, the administration of empty plasmid plus SLA or IL-12 plasmid alone failed to protect the disease and shape the Th1 response. Furthermore, the protective efficiency induced by the vaccination was clearly prevented by the injection of either neutralizing anti-IL-12 mAb or anti-IFN-gamma mAb. The IL-12 expression plasmid is thus an effective adjuvant for the elicitation of a protective Th1 response against leishmaniasis and is therefore, considered to be appropriate for vaccinations that require the induction of Th1 type immunity.  相似文献   

17.
Two strains of a presumed lower trypanosomatid isolated from immunocompetent and HIV-infected humans in French West Indies were investigated in vitro and in vivo in a murine experimental model. The ability of parasites to grow in vitro in bone marrow-derived macrophages and their virulence in vivo were assessed. For in vivo infection, two groups of BALB/c mice were inoculated either by the subcutaneous or intravenous route with 10(7) promastigotes at day 0. Infection was monitored by measuring parasite load in liver, spleen, foot pad, popliteal, and mesenteric lymph nodes and brain from day 7 to day 150 post-infection using a microtitration technique. Parasites multiplied in mouse macrophages in vitro. In vivo, both strains proved infective to mice and capable of visceralization and dissemination in the popliteal and mesenteric lymph nodes, liver, spleen, and even brain. Both strains elicited a strong humoral response against trypanosomatid antigen in mice, which cross-reacted with Leishmania antigen. Contrasting with the straightforward dissemination of parasites, the infection was strikingly well tolerated by the murine host with no clinical signs and minimal tissue changes around parasitized macrophage infiltrates.  相似文献   

18.
To investigate the role of the cytokine IFN-gamma and its negative regulator, the suppressor of cytokine signaling-1 (SOCS1) in the progression of cutaneous leishmaniasis, we infected mice lacking a single copy of the gene encoding SOCS1 (SOCS1(+/-)), mice lacking both copies of IFN-gamma (IFN-gamma(-/-)), or mice lacking copies of both SOCS1 and IFN-gamma (SOCS1(-/-) IFN-gamma(-/-)), with a moderate dose of 10(3) or 10(4) of the most virulent stage of parasites, metacyclic promastigotes. Surprisingly, SOCS1(+/-) mice developed larger lesions than wild-type mice, although the parasite load in the draining lymph node was not significantly altered. These mice also developed apparently normal Th1 responses, as indicated by elevated levels of IFN-gamma and low levels of IL-4 and IL-10. The persistence of lesions and the enlargement of draining lymph nodes despite a normal Th1 response and control of parasitemia indicate that there may be a dissociation of the inflammatory pathology and clearance of parasites in SOCS1(+/-) mice. We also investigated the role of the related suppressor of cytokine signaling, SOCS2, which has been implicated in the development of Th1 immunity. The progression of disease in SOCS2(-/-) mice did not differ from that in C57BL/6 control mice, suggesting that it is not involved in the host response to Leishmania major infection and supporting the specific role of SOCS1. These results suggest that SOCS1 plays an important role in the regulation of appropriate inflammatory responses during the resolution of L. major infection.  相似文献   

19.
20.
Recognizing the invasive potential of the dermatophytes and understanding the mechanisms involved in this process will help with disease diagnosis and with developing an appropriate treatment plan. In this report, we present the histopathological, microbiological and immunological features of a model of invasive dermatophytosis that is induced by subcutaneous infection of Trichophyton mentagrophytes in healthy adult Swiss mice. Using this model, we observed that the fungus rapidly spreads to the popliteal lymph nodes, spleen, liver and kidneys. Similar to the human disease, the lymph nodes were the most severely affected sites. The fungal infection evoked acute inflammation followed by a granulomatous reaction in the mice, which is similar to what is observed in patients. The mice were able to mount a Th1-polarized immune response and displayed IL-10-mediated immune regulation. We believe that the model described here will provide valuable information regarding the dermatophyte–host relationship and will yield new perspective for a better understanding of the immunological and pathological aspects of invasive dermatophytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号