首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to measure the rate of demethylation of nitrosodimethylamine in vivo in the rat and determine its value to assess CYP2E1 activity in intact animals. Nitrosodimethylamine labeled with 14C on both methyl groups was administered to rats and exhaled 14CO2 was collected during 2-3 h. The nitrosodimethylamine breath test was increased by inducers of CYP2E1, such as ethanol (+139%) and 4-methylpyrazole (+115%), and decreased by the inhibitor diallyl sulfide (-53%). In addition, the nitrosodimethylamine breath test was not changed significantly by inducers specific for other cytochrome P450 such as beta-naphthoflavone, dexamethasone, and phenobarbital. The specificity of the induction by 4-methylpyrazole and of the inhibition by diallyl sulfide for CYP2E1 was determined using the [14C]caffeine (CYP1A2), [14C]aminopyrine (CYP2C11), and [14C]erythromycin (CYP3A2) breath tests. 4-Methylpyrazole treatment caused a small increase of the caffeine (+33%) and aminopyrine (+9%) breath tests and no change of the erythromycin breath test. Diallyl sulfide treatment led to a small decrease of the caffeine breath test (-33%) and of the aminopyrine breath test (-13%) but a 23% increase of the erythromycin breath test. It is concluded that the [14C]nitrosodimethylamine breath test is useful to assess CYP2E1 activity in vivo in the rat.  相似文献   

2.
We investigated the effects of curcumin, a major antioxidant constituent of turmeric, on hepatic cytochrome P450 (CYP) activity in rats. Wistar rats received curcumin-containing diets (0.05, 0.5 and 5 g/kg diet) with or without injection of carbon tetrachloride (CCl(4)). The hepatic CYP content and activities of six CYP isozymes remained unchanged by curcumin treatment, except for the group treated with the extremely high dose (5 g/kg). This suggested that daily dose of curcumin does not cause CYP-mediated interaction with co-administered drugs. Chronic CCl(4) injection drastically decreased CYP activity, especially CYP2E1 activity, which is involved in the bioactivation of CCl(4), thereby producing reactive free radicals. Treatment with curcumin at 0.5 g/kg alleviated the CCl(4)-induced inactivation of CYPs 1A, 2B, 2C and 3A isozymes, except for CYP2E1. The lack of effect of curcumin on CYP2E1 damage might be related to suicidal radical production by CYP2E1 on the same enzyme. It is speculated that curcumin inhibited CCl(4)-induced secondary hepatic CYPs damage through its antioxidant properties. Our results demonstrated that CYP isozyme inactivation in rat liver caused by CCl(4) was inhibited by curcumin. Dietary intake of curcumin may protect against CCl(4)-induced hepatic CYP inactivation via its antioxidant properties, without inducing hepatic CYPs.  相似文献   

3.
In an experimental model of liver cirrhosis, marked increases in ER proteasome content in rat livers were observed 5 h after acute i.p. injection of the hepatotoxicant CCl4. To confirm the role of CYP2E1 in mediating protein misfolding/damage in the ER via its metabolism of CCl4, 293T cells stably transfected with human CYP2E1 were exposed to CCl4 and cell ER fractions assessed for ubiquitination. Increases in ER ubiquitin conjugates were noted in CYP2E1/293T cells treated with CCl4 and not in controls, suggesting these effects are CYP2E1 specific. Finally, the role of CYP2E1 in ER homeostasis was investigated by examining the unfolded protein response (UPR). When exposed to CCl4, CYP2E1/293T cells but not 293T or CYP1A2/293T cells showed rapid induction of the UPR-inducible ER chaperone BiP. Collectively, the data presented suggest that CYP2E1 is capable of inducing significant ER protein damage and stress via its catalytic activation of pro-oxidants.  相似文献   

4.
Hepatic P450s, named M-3 and M-4 were purified from phenobarbitone pretreated rhesus monkey. These demonstrated polypeptide molecular mass of 50 and 52.5 kDa and specific content of 12 and 20 nmol P450/mg protein, respectively. Both the isozymes demonstrated low spin state of heme. Antibodies raised against M-3 inhibited the activity of aminopyrine, erythromycin and ethylmorphine N-demethylase in the microsomes obtained from PB pretreated rhesus monkey by 76, 40 and 35%, respectively. M-4 did the same by 69, 85 and 79%, respectively. These observations indicated M-3 and M-4 to be the members of CYP2C and 3A subfamilies, respectively. These results were substantiated by the observations that M-3 metabolized aminopyrine whereas M-4 metabolized aminopyrine, erythromycin and ethylmorphine in the reconstituted system. Microsomal lipids and cytochrome b5 enhanced the rate of these reactions. Further confirmation to the identity of these isozymes was provided by N-terminal amino acid sequences. The first 10 N-terminal amino acid residues of M-3 were 90% similar to CYP2C20 and 2C9 and that of M-4 were 100 and 90% similar to CYP3A8 and 3A5, respectively. In conclusion, two isozymes of hepatic P450 purified from PB pretreated rhesus monkey belong to CYP2C and 3A subfamilies.  相似文献   

5.
Studies initiated to investigate the presence of cytochrome P4503A (CYP3A) isoenzymes in brain revealed constitutive mRNA and protein expression of CYP3A1 in rat brain. Western blotting studies showed that pretreatment with CYP3A inducer such as pregnenolone-16α -carbonitrile (PCN) significantly increased the cross reactivity comigrating with hepatic CYP3A1 and CYP3A2 in rat brain microsomes. RT-PCR studies have also shown increase in mRNA expression of CYP3A1 following pretreatment of rats with PCN. The ability of rat brain microsomes to catalyze the demethylation of erythromycin, known to be mediated by CYP3A isoenzymes in liver and significant increase in the activity of erythromycin demethylase (EMD) following pretreatment with dexamethasone or PCN have indicated that CYP3A isoenzymes expressed in brain are functionally active. Kinetic studies revealed that increase in the enzyme activity following pretreatment with PCN resulted in increase in the apparent affinity (Km) and Vmax of the reaction. Similarities in the inhibition of the constitutive and inducible brain and liver EMD activity following in vitro addition of ketoconazole, a inhibitor specific for CYP3A catalysed reactions and anti-CYP3A have further indicated that like in liver, CYP3A isoenzymes catalyse the activity of EMD in rat brain. Data also revealed regional differences in the activity of EMD in the brain. Relatively higher constitutive as well as inducible mRNA expression of CYP3A1 in hypothalamus and hippocampus, the brain regions responsive to steroid hormones have suggested that CYP3A isoenzymes may not only be involved in the process of detoxication mechanism but also in the metabolism of endogenous substrates in brain.  相似文献   

6.
This study elucidated the effects of cornuside on carbon tetrachloride (CCl?)-induced hepatotoxicity. Rats were treated intraperitoneally with 0.5 mL/kg of CCl?. Sixteen h after CCl? treatment, the levels of serum aminotransferases, tumor necrosis factor-α (TNF-α), and lipid peroxidation were significantly elevated, whereas the hepatic antioxidative enzyme activities were decreased. These changes were attenuated by cornuside. Histological studies also indicated that cornuside inhibited CCl?-induced liver damage. Furthermore, the contents of hepatic nitrite, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were elevated after CCl? treatment, while cytochrome P450 2E1 (CYP2E1) expression was suppressed. Cornuside treatment inhibited the formation of liver nitrite, and reduced the overexpression of iNOS and COX-2 proteins, but restored the liver CYP2E1 content as compared with the CCl?-treated rats. Our data indicate that cornuside protects the liver from CCl?-induced acute hepatotoxicity, perhaps due to its ability to restore the CYP2E1 function and suppress inflammatory responses, in combination with its capacity to reduce oxidative stress.  相似文献   

7.
The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have been measured in human liver microsomes. The three CYP isoenzymes, CYP2E1, CYP1A2 and CYP3A4, have been identified previously as important in the metabolism of this compound. To measure the constants for each isoenzyme, enzyme-specific inhibitory antibodies were used to block the activities for two of the three isoenzymes. CYP2E1 was found to have the lowest K(m), 2.9 microM, and the highest catalytic activity, k(cat). The K(m) for the other isoenzymes, CYP1A2 and CYP3A4, were about 60 microM with lower values of k(cat). Apparent kinetic constants obtained from two microsomal samples that were not inhibited were consistent with these results. In addition, 11 human microsome samples characterized for 10 CYP activities were correlated with the metabolism of 9.7 microM BDCM by each sample; statistical analysis showed a correlation with CYP2E1 activity only. This result is consistent with the finding that CYP2E1 is the only isoenzyme with a K(m) lower than the BDCM concentration used. The kinetic constants obtained from the inhibited microsomes were compared to similar results from recombinant human isoenzyme preparations containing only one CYP isoenzyme. The results for CYP2E1 were very similar, while the results for CYP1A2 were somewhat less similar and there was a substantial divergence for CYP3A4 in the two systems. Possible reasons for these differences are differing levels of CYP reductase and/or differing makeup of the membrane lipid environment for the CYPs. Because of the low levels of BDCM exposure from drinking water, it appears likely that CYP2E1 will dominate hepatic CYP-mediated BDCM metabolism in humans.  相似文献   

8.
We examined which human CYP450 forms contribute to carbon tetrachloride (CCl(4)) bioactivation using hepatic microsomes, heterologously expressed enzymes, inhibitory antibodies and selective chemical inhibitors. CCl(4) metabolism was determined by measuring chloroform formation under anaerobic conditions. Pooled human microsomes metabolized CCl(4) with a K(m) of 57 microM and a V(max) of 2.3 nmol CHCl(3)/min/mg protein. Expressed CYP2E1 metabolized CCl(4) with a K(m) of 1.9 microM and a V(max) of 8.9 nmol CHCl(3)/min/nmol CYP2E1. At 17 microM CCl(4), a monoclonal CYP2E1 antibody inhibited 64, 74 and 83% of the total CCl(4) metabolism in three separate human microsomal samples, indicating that at low CCl(4) concentrations, CYP2E1 was the primary enzyme responsible for CCl(4) metabolism. At 530 microM CCl(4), anti-CYP2E1 inhibited 36, 51 and 75% of the total CCl(4) metabolism, suggesting that other CYP450s may have a significant role in CCl(4) metabolism at this concentration. Tests with expressed CYP2B6 and inhibitory CYP2B6 antibodies suggested that this form did not contribute significantly to CCl(4) metabolism. Effects of the CYP450 inhibitors alpha-naphthoflavone (CYP1A), sulfaphenazole (CYP2C9) and clotrimazole (CYP3A) were examined in the liver microsome sample that was inhibited only 36% by anti-CYP2E1 at 530 microM CCl(4). Clotrimazole inhibited CCl(4) metabolism by 23% but the other chemical inhibitors were without significant effect. Overall, these data suggest that CYP2E1 is the major human enzyme responsible for CCl(4) bioactivation at lower, environmentally relevant levels. At higher CCl(4) levels, CYP3A and possibly other CYP450 forms may contribute to CCl(4) metabolism.  相似文献   

9.
10.
We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. Earlier work identified CYP2E1, CYP2B1/2 and CYP1A2 as activating enzymes necessary for hepatotoxicity in rat. In order to extend an existing PBPK model for rat to include a capability for extrapolation to humans, it is necessary to evaluate quantitatively the principal metabolic pathways in both species. We have conducted in vitro experiments using recombinant preparations of the three rat CYP isoenzymes mentioned above and for CYP2C11 and CYP3A1 as well. Similar experiments have been performed with human recombinant isoenzymes for CYP2E1, CYP1A2, CYP2A6, CYP2B6, CYP2D6 and CYP3A4. Results indicate that the principal metabolizing enzymes in rat are those identified previously, CYP2E1, CYP2B1/2 and CYP1A2. CYP3A1 may also have some activity. In human, CYP2E1, CYP1A2 and CYP3A4 show substantial activity, and CYP2A6 also measurably metabolizes BDCM. In both species, CYP2E1 is the low K(m) isoenzyme, with K(m) approximately 27-fold lower than those for the isoenzymes with the next lowest K(m). In addition, the metabolic parameters, K(m) and k(cat), for rat and human CYP2E1 were nearly identical. The metabolic parameters for CYP1A2, the only other isoenzyme active in both species, were not similar across species. In addition, calculations based on the kinetic constants obtained are compared to results from two in vivo experiments to show that the in vitro kinetic data is relevant to in vivo exposures. We conclude that although several CYPs metabolize BDCM, at low concentration/exposure, BDCM metabolism is dominated by CYP2E1 in both rat and human, but that other isoenzymes can be important at higher concentrations. We further conclude that the kinetic data are consistent with existing in vivo results.  相似文献   

11.
The aim of the present study was to develop a test for measuring hepatic and intestinal removal of cytochrome p-450 3A4 (CYP3A4)- and P-glycoprotein (PGP)-dependent xenobiotics that would be applicable for clinical use in humans. Orally and intravenously administered [N-methyl-14C]erythromycin was used for evaluation of 14C-labeled excretion dynamics in breath and urine. Simultaneous breath and urine test measurements were performed in 32 healthy volunteers and in 23 renal transplant recipients. Mathematical analysis of the excretion rate of labeled CO2 in breath and labeled carbon in urine resulted in 1). separation of both CYP3A4 and PGP activity in the liver and the intestinal mucosa and 2). numerical calculation of the dynamics of the different processes. The test was sufficiently sensitive to detect theoretically predicted process-specific pharmacological modulations by different drugs in healthy volunteers and after recent renal transplantation. It is concluded that the combined oral and intravenous erythromycin breath and urine test is a reliable and noninvasive test to measure phenotypic intestinal and hepatic CYP3A4 and PGP activity and may be a promising tool for prediction of drug interactions and dose adjustment of many pharmacotherapeutics in clinical practice, e.g., immunosuppressive agents after renal transplantation.  相似文献   

12.
Ueng YF  Shyu CC  Lin YL  Park SS  Liao JF  Chen CF 《Life sciences》2000,67(18):2189-2200
Effects of baicalein and wogonin, the major flavonoids of Scutellariae radix, on cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT), and glutathione S-transferase (GST) were studied in C57BL/6J mice. One-week treatment of mice with a liquid diet containing 5 mM baicalein resulted in 29%, 14%, 36%, 28%, and 46% decreases of hepatic benzo(a)pyrene hydroxylation (AHH), benzphetamine N-demethylation (BDM), N-nitrosodimethylamine N-demethylation (NDM), nifedipine oxidation (NFO), and erythromycin N-demethylation (EMDM) activities, respectively. Treatment with a liquid diet containing 5 mM wogonin resulted in 43%, 22%, 21%, 24%, and 35% decreases of hepatic AHH, BDM, NDM, NFO, and EMDM activities, respectively. However, hepatic 7-methoxyresorufin O-demethylation (MROD) activity was increased and decreased by baicalein- and wogonin-treatments, respectively. Similar modulation was observed with caffeine 3-demethylation (CDM) activity. Immunoblot analysis showed that the levels of hepatic CYP2E1 and CYP3A proteins were decreased by both baicalein- and wogonin-treatments. Hepatic CYP1A2 protein level was increased by baicalein but decreased by wogonin. In extrahepatic tissues, renal AHH activity was decreased by wogonin whereas pulmonary AHH, 7-ethoxyresorufin O-deethylation (EROD), and MROD activities were increased by both flavonoids. Both baicalein and wogonin strongly increased CYP1A protein level in mouse lung. Hepatic and renal UGT activities toward p-nitrophenol were suppressed by baicalein- and wogonin-treatments. However, cytosolic GST activity was not affected by flavonoids. These results suggest that ingestion of baicalein or wogonin can modulate drug-metabolizing enzymes and the modulation shows tissue specificity.  相似文献   

13.
目的:采用cocktail探针药物法研究傣药"雅解沙把"对肝细胞色素P450亚型CYP1A2、CYP2C19、CYP2E1、CYP3A4的影响。方法:将SD大鼠随机分为空白对照组、苯巴比妥钠组(10.8 mg/kg)、"雅解沙把"低剂量组(0.27 g生药/kg)和"雅解沙把"高剂量组(2.43 g生药/kg),按上述剂量灌胃给药,空白对照组灌胃蒸馏水。连续灌胃7天后处死动物,取肝脏制备肝微粒体,以甲硝唑为内标,建立HPLC方法检测Cocktail探针药物奥美拉唑、氯唑沙宗、咖啡因、氨苯砜的代谢情况。结果:与空白对照组比较,"雅解沙把"低剂量组和高剂量组氯唑沙宗的代谢明显升高,氯唑沙宗的含量显著降低(P0.01),"雅解沙把"高剂量组奥美拉唑和氨苯砜的代谢明显升高,奥美拉唑和氨苯砜的含量明显降低(P0.05)。"雅解沙把"低剂量组和高剂量组虽咖啡因代谢较与空白对照组有上升的趋势,但差异无统计学意义(P0.05)。结论:傣药"雅解沙把"能促进肝药酶CYP3A4、CYP2C19、CYP2E1的活性,加速药物代谢,这可能是其解药物毒的作用机制之一。  相似文献   

14.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

15.
The importance of gender-specific growth hormone (GH) secretion pattern in the regulation of growth and metabolism has been demonstrated clearly in rodents. We recently showed that GH secretion in humans is also sexually dimorphic. Whether GH secretion pattern regulates the metabolic effects of GH in humans is largely unknown. To address this question, we administered the same daily intravenous dose of GH (0.5 mg. m(-2). day(-1)) for 8 days in different patterns to nine GH-deficient adults. Each subject was studied on four occasions: protocol 1 (no treatment), protocol 2 (80% daily dose at 0100 and 10% daily dose at 0900 and 1700), protocol 3 (8 equal boluses every 3 h), and protocol 4 (continuous GH infusion). The effects of GH pattern on serum IGF-I, IGF-binding protein (IGFBP)-3, osteocalcin, and urine deoxypyridinoline were measured. Hepatic CYP1A2 and CYP3A4 activities were assessed by the caffeine and erythromycin breath tests, respectively. Protocols 3 and 4 were the most effective in increasing serum IGF-I and IGFBP-3, whereas protocols administering pulsatile GH had the greatest effects on markers of bone formation and resorption. All GH treatments decreased CYP1A2 activity, and the effect was greatest for pulsatile GH. Pulsatile GH decreased, whereas continuous GH infusion increased, CYP3A4 activity. These data demonstrate that GH pulse pattern is an independent parameter of GH action in humans. Gender differences in drug metabolism and, potentially, gender differences in growth rate may be explained by sex-specific GH secretion patterns.  相似文献   

16.
Summary Interference of antiviral agent adefovir, i.e. 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) with microsomal drug metabolizing system was investigated in rats. The content of total liver cytochrome P450 (CYP) was lowered while that of its denaturated form, P420, was elevated in animals intraperitoneally treated with PMEA (25 mg/kg). Similar effect was observed after treatment with a prodrug of adevofir, adefovir dipivoxil (bisPOM-PMEA). The CYP2E1-dependent formation of 4-nitrocatechol from p-nitrophenol was diminished, though the specific activity of p-nitrophenol hydroxylase remained unchanged. PMEA had no influence on expression of CYP2E1 protein and mRNA and mRNAs of other P450 isoenzymes (1A1, 1A2, 2C11, 3A1, 3A2, and 4A1). It may be concluded that repeated systemic administration of higher doses of PMEA results in a partial degradation of rat CYP protein to inactive P420.  相似文献   

17.
We have previously described a method to capture, identify and quantify volatile components in expired breath. The purpose of this research is to provide a non-invasive means to measure biomarkers of metabolism in vivo. In the present studies, the effect of 1-aminobenzotriazole (ABT), an inhibitor of diverse cytochrome P450 (P450) enzymes, on the composition of volatile organic chemicals (VOCs) expired in the breath of male F-344 rats was determined in parallel with the catalytic activities and total content of hepatic P450. lntraperitoneal administration of ABT (100 mg kg-1) to rats resulted in markedly diminished hepatic microsomal P450 content and activities. The extent of inhibition was near maximal at 4 h, at which time approximately 50% of the total P450 content, about 65% of the CYPlA2 activity, 55% of the CYP2E1 activity, and about 80% of CYP2B activity were lost. Inhibition was maintained to 48 h post-dosing, but P450 content and activities had largely been restored by day 7. Concomitant with the inhibition of P450 were corresponding increases (up to several hundred-fold) in the molar amount of volatiles appearing in the breath of ABT-treated animals, and the rebound of P450 levels was attended by corresponding decreases in the appearance of breath volatiles. These studies indicate that P450 plays a major role in the metabolism of VOCs appearing in breath, and that these chemicals can serve as markers on P450 activity in vivo.  相似文献   

18.
Rutaecarpine is reported as a potent inducer of CYP1A2 enzyme in rats. There are natural herbal supplements containing rutaecarpine that are designed to enhance the CYP1A2-dependent removal of caffeine from blood so that people can have coffee later in the day without causing sleep interference. This study aimed to determine the minimum amount of time needed from oral rutaecarpine administration until the observed effect of rutaecarpine on caffeine pharmacokinetics (PK) in 15 male Sprague-Dawley rats. PK parameters for caffeine and its metabolites in the control and rutaecarpine groups were calculated using WinNonlin®. Results showed that orally administered rutaecarpine at 100 mg/kg dose as early as 3 h before oral caffeine administration significantly decreased the oral systemic exposure and mean residence time of caffeine and its metabolites due to decreased caffeine bioavailability (by up to 75%) and increased clearance. The systemic exposure of caffeine and its metabolites were also decreased when caffeine was given intravenously, though this effect was less pronounced than when caffeine was given orally. Although plasma level of rutaecarpine was undetectable (less than 10 ng/mL), rutaecarpine still induced hepatic CYP1A2 activity. Results from 7-methoxyresorufin O-demethylation activity, which is specific to CYP1A2, showed that 3 h after one rutaecarpine oral dose, CYP1A2 activity in rat liver tissue was increased by 3- fold. This finding suggested that rutaecarpine effectively induced CYP1A2 activity in the liver.  相似文献   

19.
Dey A  Yadav S  Dhawan A  Seth PK  Parmar D 《Life sciences》2006,79(18):1729-1735
Freshly isolated peripheral blood lymphocytes from control rats were found to catalyze the N-demethylation of erythromycin, known to be mediated by cytochrome P450 3A (CYP3A) isoenzymes in rat liver. Pretreatment of rats with dexamethasone (100 mg/kgx3 days, i.p.), a CYP3A inducer, resulted in 3-4-fold increase in the activity of erythromycin demethylase (EMD) in freshly isolated peripheral blood lymphocytes. This increase in the enzyme activity was found to be associated with an increase in the rate of the reaction and affinity of the substrate towards the enzyme. Significant inhibition of the EMD activity on in vitro addition of ketoconazole, a specific CYP3A inhibitor in liver and polyclonal antibody raised against rat liver CYP3A have suggested that EMD activity in blood lymphocytes is catalyzed primarily by CYP3A isoenzymes. Further, immunoblot analysis with polyclonal antibody raised against rat liver CYP3A revealed significant immunoreactivity, co-migrating with the liver isoenzyme, indicating constitutive expression of CYP3A in blood lymphocytes. Pretreatment with dexamethasone was found to significantly increase the expression of CYP3A protein in freshly isolated rat blood lymphocytes, as observed with liver. Likewise, significant CYP3A mRNA detected in control rat blood lymphocytes has further demonstrated constitutive expression of CYP3A isoenzymes in blood lymphocytes. Furthermore, several fold increase in CYP3A mRNA expression following pretreatment with dexamethasone showed similarities in the regulation of CYP3A isoenzymes in rat blood lymphocytes with the liver enzyme. The data suggest that the blood lymphocytes can be used to monitor tissue expression of CYP3A isoenzymes and validate the suitability of lymphocytes as surrogates of CYP status in less accessible target tissues.  相似文献   

20.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号