首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two lipases (Lip A and Lip B), were purified from a commercial lipase preparation produced by Candida rugosa and partially characterized. The purified lipases were immobilized on Duolite A 568 and used in the selective esterification of cholesterol with free fatty acids from sardine fish oil. The results showed that Lip A and Lip B preferentially esterified saturated and monounsaturated fatty acids allowing a 3.4-fold (Lip B, 24 h) and 4-fold (Lip A, 10 h) enrichment of docosahexaenoic acid in the remaining free fatty acid fraction. Selectivity towards eicosapentaenoic acid was less pronounced. By this selective esterification docosahexaenoic acid was concentrated from 7.4 to 32% with a recovery of 95% of its initial content in sardine fish oil.  相似文献   

2.
The effect of the water content on the lipase-catalyzed (Candida rugosa) interesterification (acidolysis) of menhaden oil with conjugated linoleic acid was studied for amounts of added water ranging from 0-4% (w/w). The rate of the acidolysis reaction increased with increasing water content, but the corresponding percentage of n-3 fatty acids liberated also increased. The implications of water content for minimization of the release of n-3 fatty acid residues while maximizing incorporation of CLA are discussed.  相似文献   

3.
Six commercial lipases, in either free or immobilized forms, were screened for their ability to catalyze acyl exchange between the triacylglycerols of butteroil (milkfat) and conjugated linoleic acid (CLA) in an organic solvent-free medium. Immobilized lipase preparations from Candida antarctica and Mucor miehei demonstrated the ability to increase the CLA content of the milk fat acylglycerols from the native value of 0.6 g/100 g fat to values which were at least an order of magnitude higher. Comparable increases were also obtained with a free enzyme from Candida rugosa.

In addition to the screening studies, the effects of the weight ratio of milkfat to CLA on the product distribution and of the water content on the kinetics and maximum extent of this acidolysis reaction were systematically investigated in a batch reactor: The fatty acids liberated from the butteroil triacylglycerols were primarily short chain fatty acids, especially butyric and caproic acids.

Modified butteroils were also produced via acidolysis of butteroil with CLA in a packed bed reactor containing an immobilized lipase preparation from C. antarctica. Significant enrichment of the butteroil in CLA residues was accomplished at reactor space times (fluid residence times) of 2–4 h at 40–60°C. Under these conditions, approximately 80–90% of the free CLA fed to the reactor is (inter)esterified.  相似文献   


4.
The fatty acid specificity of five lipases towards eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was evaluated in the hydrolysis of fish oil, squid oil and a model system. The model system contained methyl esters of EPA, DHA and palmitic acid. All the investigated lipases discriminated against both EPA and DHA more in the model system than in the natural oils. Thus both EPA and DHA were more easily hydrolysed from a glyceride than from a methyl ester. In the model system, the lipase from Candida rugosa showed the highest discrimination against DHA, while the lipases from Pseudomonas fluorescens and Pseudomonas cepacia discriminated against EPA the most. In a glyceride, the fatty acid specificity of lipases towards EPA and DHA was affected by the positional distribution of the fatty acids and the glyceride structure due to the regiospecificity and triglyceride specificity of the lipase. In the oils, the Pseudomonas lipases also discriminated against EPA the most, while DHA was initially discriminated the most by the lipase from Thermomyces lanuginosus. However, after longer reaction times the enrichment of DHA in the glyceride fraction of the oils was greatest for the lipase from C. rugosa.  相似文献   

5.
Yan J  Liu S  Hu J  Gui X  Wang G  Yan Y 《Bioresource technology》2011,102(14):7154-7158
Novel modification methods for lipase biocatalysts effective in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids (PUFAs) were described. Based on conventional immobilization in single aqueous medium, immobilization of lipase in two phase medium composed of buffer and octane was employed. Furthermore, immobilization (in single aqueous or in two phase medium) coupled to fish oil treatment was integrated. Among these, lipase immobilized in two phase medium coupled to fish oil treatment (IMLAOF) had advantages over other modified lipases in initial reaction rate and hydrolysis degree. The hydrolysis degree increased from 12% with the free lipase to 40% with IMLAOF. Strong polar and hydrophobic solvents had negative impact on immobilization-fish oil treatment lipases, while low polar solvents were helpful to maintain the modification effect of immobilization-fish oil treatment. After five cycles of usage, the immobilization-fish oil treatment lipases still maintained more than 80% of relative hydrolysis degree.  相似文献   

6.
Abstract

We have investigated the direct enantioselective amidation of mandelic acid with ammonia, catalyzed by a variety of commercial lipases including those from Candida rugosa, Mucor miehei, Pseudomonas sp., Rhizomucor miehei, and Thermomyces lanuginosus covalently immobilized onto Florisil® support via glutaraldehyde and polysuccinimide spacer arms. All the immobilized lipase preparations tested preferentially amidated the R isomer of mandelic acid. The highest amide yields were obtained for immobilized Pseudomonas sp. lipase preparations under the optimized reaction conditions. After 24 h of amidation, the reaction had proceeded with an excellent yield (50%) and enantiopurity (> 99%). The immobilized Pseudomonas sp. lipase preparations catalyzed the amidation reaction with the same yield and enantioselectivity. The enzyme immobilized via a glutaraldehyde spacer arm showed better reusability than that immobilized via a polysuccinimide spacer arm.

In view of these results, it is revealed that the direct amidation of mandelic acid catalyzed by the immobilized Pseudomonas sp. lipases is a facile and effective methodology for obtaining (S)-mandelic acid and (R)-mandelamide.  相似文献   

7.
Four commercially available lipases, both free and immobilized, were tested for their ability to catalyze hydrolysis of blackcurrant (Ribes nigrum) oil using two different approaches. The lipase from Mucor miehei was studied free and immobilized in two different ways. The former series of enzymic reactions were performed in tap water at 40 degrees C, but the latter series of enzymic processes were carried out in mixtures of isooctane and phosphate buffer (in a typical 2/1 ratio of the components) at 30 degrees C. These conditions were optimized to increase and/or to maximize the yields of the products, which were priority targets in this study. A rate of hydrolysis and a selective preference of the hydrolytic enzymes towards fatty acids, with a special focus on enrichment of alpha-linolenic acid and/or gamma-linolenic acid, were studied. Higher rates of hydrolysis of the blackcurrant oil in the former series of reactions were observed with the immobilized lipase from Pseudomonas cepacia used as biocatalyst. In the latter approach, the most favorable results of the rate of hydrolysis of the target blackcurrant oil were achieved with the immobilized lipase from Mucor miehei employed as biocatalyst. Only three lipases, selected from a series of lipases tested during this investigation, displayed specificity towards alpha-linolenic acid and gamma-linolenic acid, i.e. the immobilized lipase from P. cepacia, lipase from M. miehei and lipase from P. fluorescens.  相似文献   

8.
《Process Biochemistry》2007,42(3):415-422
This work deals with the production of structured triacylglycerols (STAG) with caprylic acid (CA) located in positions 1 and 3 of the molecule of glycerol and docosahexaenoic acid (DHA) in position 2, by acidolysis of tuna oil and CA, catalyzed by several lipases. To this end several lipases and immobilization supports were tested with the aim of avoiding the acyl-migration observed in previous works. The determination of the best catalyst (i.e. the lipase and the immobilization support as a whole) was carried out by experiments of acidolysis of cod liver oil and CA in a bath reactor. The best results were obtained with the lipases from Rhizopus oryzae (Lipase D) and Rhizopus delemar (Lipase Rd), immobilized on Accurel MP1000 (a microporous polypropylene) with a lipase/support ratio 1:1.5 (w/w). The activity of these immobilized lipases was stable for a minimum of 5 days in the operational conditions (up to 40 °C).Lipase Rd was selected for the next step in which it was immobilized on Acurrel MP1000 to obtain STAG enriched in DHA by acidolysis of tuna oil (20% DHA) with CA. The experiments were carried out by recirculating the reaction mixture through an immobilized lipase packed bed reactor at different substrate/hexane ratios, as well as in absence of solvent. In the latter case, STAG with 51% CA and 13% DHA were obtained at 73 h. This result indicates that with this catalyst an acceptable reaction rate was attained in absence of solvent. A structural analysis by the pancreatic lipase method carried out to STAG with 45% CA and 16% DHA indicated that 91% of the CA incorporated is located in positions 1 and 3, and that 51% of the DHA is located in position 2 (MLM structure). This position is also rich in palmitic, eicosapentaenoic and oleic acids.After the acidolysis reaction a mixture of STAG and free fatty acids was obtained. The recovery of STAG from this reaction mixture is difficult because of the high content of free fatty acids. A separation method based on the neutralization of the free fatty acids with a KOH hydroalcoholic solution has been developed. By this procedure pure (100%) STAG were obtained with a recovery yield of 80%.  相似文献   

9.
Abstract

Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Castor bean lipase (CBL) were immobilized on celite by deposition from aqueous solution by the addition of hexane. Lipolytic performance of free and immobilized lipases were compared and optimizations of lipolytic enzymatic reactions conditions were performed by free and immobilized derivatives using olive oil as substrate. Afterwards, the influence on lipolysis of castor oil of free lipases and immobilized lipase derivatives have been studied in the case of production of ricinoleic acid. All of the lipases performances were compared and enzyme derivative was selected to be very effective on the production of ricinoleic acid by lipolysis reaction. Various reaction parameters affecting the production of ricinoleic acid were investigated with selected the enzyme derivative.

The maximum ricinoleic acid yield was observed at pH 7–8, 50°C, for 3 hours of reaction period with immobilized 1,3-specific PPL on celite. The kinetic constants Km and Vmax were calculated as 1.6 × 10?4 mM and 22.2 mM from a Lineweaver–Burk plot with the same enzyme derivative. To investigate the operational stability of the lipase, the three step lipolysis process was repeated by transferring the immobilized lipase to a substrate mixture. As a result, the percentange of conversion after usage decreased markedly.  相似文献   

10.
In order to investigate quantitatively the interesterification reaction, triolein and stearic acid were used as substrates and eight commercially available lipases were tested for their suitability for the reaction. Three fungal lipase preparations were found to be suitable. The hydrolytic activity of the commercial lipases was tested with olive oil, and it 2was noted that there was no correlation between their hydrolytic and interesterification activities. Among the lipases tested, Mucor miehei lipase was chosen for further study because of it high protein content and its relatively high hydrolytic and interesterification activities, both of which are required for effective interesterification. The effect of water activity of the interesterification reaction was investigated. interesterification activity was shown to be maximum at the water activity of 0.25. As the water activity of the lipase increased, hydrolysis of triglyceride was accelerated. At zero water activity, high conversion was achieved, although interesterification activity was relatively lower than that at the water activity of 0.25. A new and simple immobilization method was developed in order to render hydrophobicity to the lipase and hence to improve the interesterification activity of the lipase. The lipase was immobilized covalently with glutaraldehyde or with six alkyl chains as spacers onto Florisil (magnesium silicate, a inorganic matrix). Interesterification activity of the immobilized lipase with the hydrophobic spacers were increased against that of re lipase. The increase of activity was up to 8-fold that of the original activity of free lipase when the spacer was 7-aminoheptanoic acids. Relatively high stability of the immobilized lipase was shown in a continuous packed bed column reactor with a half-life of 97 days. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
Five microbial lipase preparations from several sources were immobilized by hydrophobic adsorption on small or large poly-hydroxybutyrate (PHB) beads and the effect of the support particle size on the biocatalyst activity was assessed in the hydrolysis of olive oil, esterification of butyric acid with butanol and transesterification of babassu oil (Orbignya sp.) with ethanol. The catalytic activity of the immobilized lipases in both olive oil hydrolysis and biodiesel synthesis was influenced by the particle size of PHB and lipase source. In the esterification reaction such influence was not observed. Geobacillus thermocatenulatus lipase (BTL2) was considered to be inadequate to catalyze biodiesel synthesis, but displayed high esterification activity. Butyl butyrate synthesis catalyzed by BTL2 immobilized on small PHB beads gave the highest yield (≈90 mmol L(-1)). In biodiesel synthesis, the catalytic activity of the immobilized lipases was significantly increased in comparison to the free lipases. Full conversion of babassu oil into ethyl esters was achieved at 72 h in the presence of Pseudozyma antarctica type B (CALB), Thermomyces lanuginosus lipase (Lipex(?) 100 L) immobilized on either small or large PHB beads and Pseudomonas fluorescens (PFL) immobilized on large PHB beads. The latter preparation presented the highest productivity (40.9 mg of ethyl esters mg(-1) immobilized protein h(-1)).  相似文献   

12.
Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics.  相似文献   

13.
《Process Biochemistry》2010,45(8):1245-1250
Mixtures of specific structured lipids and phytosterol esters, valuable food components, were synthesized by an enzymatic one-pot process in organic-solvent-free medium starting from a mixture of phytosterol, caprylic acid and sunflower oil. Nine biocatalysts, seven commercially available lipases and two air-dried solid state (SSF) fermentation preparations of Aspergillus oryzae NRRL 6270 (AoSSF) and Aspergillus sojae NRRL 6271 (AsSSF), were screened for lipase activity in the transesterification reactions of sunflower oil with caprylic acid and for sterol esterase activity in the direct esterification of phytosterols with free fatty acids. The best process variant using a sequence of sterol esterase (AoSSF)-catalyzed esterification reaction of the free fatty acids and phytosterols, followed by water removal in vacuum and lipase-catalyzed transesterification with immobilized lipase from Rhizomucor miehei (Lipozyme) resulted in 92.1% conversion to phytosterol esters and 44.1% conversion to triacylglycerols containing two caprylic esters.  相似文献   

14.
Yolk fat fatty acid (FA) concentrations, sensory quality and firmness of eggs and laying hen performance were evaluated with respect to the combined inclusion in the diet of conjugated linoleic acid (CLA), high n-3 oil sources and high-oleic sunflower oil (HOSO). Nine diets were arranged factorially, with three levels of n-3 FA supplementation (2.9, 3.7 and 4.5 g/kg) from three different sources (two fish oils highly concentrated in eicosapentanoic (EPA) or docosahexanoic acid (DHA) and one algae oil with a very high-DHA content) in diets added with fixed amounts of CLA (2.5 g/kg) and HOSO (30 g/kg). A commercial feed with no CLA, n-3 or HOSO added, and another one containing 4.5 g/kg of high-DHA fish oil but not CLA or HOSO were also formulated. An increase in n-3 FA supplementation had little effect on proportions of CLA, monounsaturated FA, saturated FA or total polyunsaturated FA in yolk fat, but increased (P<0.005) long-chain n-3 FA and decreased (P<0.001) long-chain n-6 FA. An increment of dietary n-3 FA also impaired linearly (P<0.001) egg acceptability by consumers. An increment in the proportion of DHA with respect to total n-3 FA from 0.28 to 0.96 increased yolk concentrations of DHA (P<0.001) and total n-3 FA (P<0.01), but decreased (P<0.001) concentrations of EPA and docosapentanoic acid FA. Current data indicate that addition of HOSO to diets supplemented with moderate amounts of CLA and n-3 FA allows the production of double enriched eggs while maintaining sensory quality for consumers at acceptable levels.  相似文献   

15.
Microwave-assisted rapid characterization of lipase selectivities   总被引:4,自引:0,他引:4  
A rapid screening procedure for characterization of lipase selectivities using microwaves was developed. The rate of reaction of various commercial lipases (porcine pancreas, Mucor miehei, Candida rugosa, Pseudomonas cepacia) as well as lipases from laboratory isolates-Bacillus stearothermophilus and Burkholderia cepacia RGP-10 for triolein hydrolysis was 7- to 12-fold higher in a microwave oven as compared to that by pH stat. The esterification of sucrose/methanol and ascorbic acid with different fatty acids was also achieved within 30 s in a microwave using porcine pancreas, B. stearothermophilus SB-1 and B. cepacia RGP-10 lipases. The relative rates and selectivity of the lipases both for hydrolytic and synthesis reactions remains unaltered. However, the rate of reaction was dynamically enhanced when exposed to microwaves. Microwave-assisted enzyme catalysis can become an attractive procedure for rapid characterization of large number of enzyme samples and substrates, which otherwise is a cumbersome and time-consuming exercise.  相似文献   

16.
Kahveci D  Xu X 《Biotechnology letters》2011,33(10):2065-2071
Candida rugosa lipase (CRL) and Candida antarctica lipase A (CALA) with improved activity and selectivity were prepared for use in organic solvent media. CRL bioimprinted with fatty acids exhibited eightfold enhanced transesterification activity in hexane. Combination of bioimprinting and coating with lecithin or with immobilization did not improve the activity further. CALA was immobilized with and without bioimprinting, none of which improved the activity. All modified lipases were tested for selective ethanolysis of fish oil to concentrate omega-3 polyunsaturated fatty acids (PUFA). None of the preparations, except the immobilized ones catalysed ethanolysis. Immobilized CRL-catalyzed ethanolysis giving 27% (v/v) ethyl esters (EE) in 48 h, of which 43 mol% was oleic acid but no PUFA was detected in the EE fraction. Fatty acid selectivity of CALA was significantly improved by immobilization combined with bioimprinting, resulting in 5.5-fold lower omega-3 PUFA in EE.  相似文献   

17.
Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.  相似文献   

18.
The solvent-free esterification reaction of a commercial oleic acid and ethanol was selected as the test reaction for Candida rugosa lipase immobilized on polypropylene (PP) at 318 K (initial molar ratio 1:1). Adding of water from 0 to 30 wt. % (in gram per gram of fatty acid x 100) and the pretreatment of Candida rugosa lipase with polyethylenglycol (PEG), octane, and acetone increases the conversion to ethyl esters. The role of hydrophobic interactions of the lipase with PP and PEG was studied using molecular mechanics (MM2) for calculation of steric energies and the parametrized model (PM3) for calculation of enthalpy changes upon interaction. The nonpolar lateral groups of amino acids interact strongly with PP, whereas polar groups interact more strongly with PEG. Both interactions stabilize the open, active conformation of the lipase from Candida rugosa. Activities ranged from 5 x 10(-5) to 2.0 x 10(-4) mol ethyl oleate/h/mg enzyme, depending on reaction conditions. Steric energy changes vary between +30 and -10 kcal/mol, whereas the enthalpy changes ranged from +10 to -10 kcal/mol.  相似文献   

19.
A novel immobilized lipase (from Candida rugosa) on hydrophobic and superparamagnetic microspheres was prepared and used as a biocatalyst to catalyze esterification reactions in diverse solvents and reaction systems. The results showed that the immobilized lipase had over 2-fold higher activities in higher log P value solvents. An exponential increase of lipase activity against log P of two miscible solvent mixtures was observed for the first time. Both free and immobilized lipase achieved its maximum activity at the range of water activity (a(w)) 0.5-0.8 or higher. At a(w) 0.6, the immobilized lipase exhibited markedly higher activities in heptane and a solvent-free system than did the native lipase. In multicompetitive reactions, the alcohol specificity of the lipase showed a strong chain-length dependency, and the immobilized enzyme exhibited more preference for a longer-chain alcohol, which is different from previous reports. The immobilized lipase showed higher specificities for butyric acid and the medium-chain-length fatty acids (C(8)-C(12)). Then, the immobilized lipase was extended to solvent-free synthesis of glycerides from glycerol and fatty acids. Recovered by magnetic separation, the immobilized lipase exhibited good reusability in repeated batch reaction, indicating its promising feature for biotechnology application.  相似文献   

20.
Previously isolated and characterized Pseudomonas lipases were immobilized in a low‐cost MP‐1000 support by a re‐loading procedure that allowed a high activity per weight of support. Immobilized LipA, LipC, and LipCmut lipases, and commercial Novozym® 435 were tested for fatty acid methyl ester (FAMEs) synthesis using conventional and alternative feedstocks. Triolein and degummed soybean oils were used as model substrates, whereas waste cooking oil and M. circinelloides oil were assayed as alternative, low cost feedstocks, whose free fatty acid (FFA), and acylglyceride profile was characterized. The reaction conditions for FAMEs synthesis were initially established using degummed soybean oil, setting up the best water and methanol concentrations for optimum conversion. These conditions were further applied to the alternative feedstocks and the four lipases. The results revealed that Pseudomonas lipases were unable to use the FFAs, displaying a moderate FAMEs synthesis, whereas a 44% FAMEs production was obtained when M. circinelloides oil was used as a substrate in the reaction catalysed by Novozym® 435, used under the conditions established for degummed soybean oil. However, when Novozym® 435 was tested under previously described optimal conditions for this lipase, promising values of 85 and 76% FAMEs synthesis were obtained for waste cooking oil and M. circinelloides oil, respectively, which might result in promising, nonfood, alternative feedstocks for enzymatic biodiesel production. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1209–1217, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号