首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: This study aimed at further increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. METHODS AND RESULTS: We examined two strategies to decrease the activity of F0F1-ATPase. The strategies were to inhibit F0F1-ATPase activity by addition of oligomycin, or to disrupt F0F1-ATPase by screening neomycin-resistant mutant. The addition of 0.05 mmol l(-1) oligomycin to the culture broth of T. glabrata CCTCC M202019 resulted in a significantly decreased intracellular ATP level (35.7%) and a significantly increased glucose consumption rate (49.7%). A neomycin-resistant mutant N07 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the F0F1-ATPase activity of the mutant N07 decreased about 65%. As a consequence, intracellular ATP level of the mutant N07 decreased by 24%, which resulted in a decreased growth rate and growth yield. As expected, glucose consumption rate and pyruvate productivity of the mutant N07 increased by 34% and 42.9%, respectively. Consistently, the activities of key glycolytic enzymes of the mutant N07, including phosphofructokinase, pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase, increased by 63.7%, 28.8% and 14.4%, respectively. In addition, activities of the key enzymes involved in electron transfer chain of the mutant N07 also increased. CONCLUSIONS: Impaired oxidative phosphorylation in T. glabrata leads to a decreased intracellular ATP production, thereby increasing the glycolytic flux. SIGNIFICANCE AND IMPACT OF THE STUDY: The strategy of redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation provides an alternative approach to enhance the glycolytic flux in eukaryotic micro-organisms.  相似文献   

2.
氧化磷酸化抑制剂对光滑球拟酵母糖酵解速度的影响   总被引:6,自引:0,他引:6  
研究了不同浓度电子传递链抑制剂 ( 鱼藤酮和抗霉素 A) 和 FOF1-ATPase 抑制剂 ( 寡霉素 ) 对光滑球拟酵母胞内 ATP 水平、葡萄糖消耗速度、糖酵解途径关键酶的影响 . 在培养液中添加 10 mg/L 鱼藤酮和抗霉素 A ,相对于对照组,胞内 ATP 分别下降了 43% 和 27.7% ,使糖酵解关键酶磷酸果糖激酶 (PFK) 的活性分别提高 340% 和 230% ,从而导致葡萄糖消耗速度增加 360% 和 240% ,丙酮酸生成速度提高了 17% 和 8.5%. 改变胞内 ATP 水平并不影响糖酵解途径其他关键酶 HK 、 PK 活性 . 微量的寡霉素 (0.05 mg/L) 可使胞内 ATP 含量下降 64.3% ,当培养液中寡霉素浓度达到 0.4 mg/L 时,细胞不能继续生长,葡萄糖消耗速度和丙酮酸的生成速度却随着寡霉素浓度 ( 小于 0.6 mg/L) 的增加而增加 . 表明氧化磷酸化途径中, ATPase 决定着 ATP 的生成 . 降低胞内 ATP 含量能显著提高 PFK 活性 (r2=0.9971) ,葡萄糖消耗速度 (r2= 0.9967) 以及丙酮酸生产速度 (r2= 0.965) ,葡萄糖消耗速度的增加是糖酵解途径中关键酶 PFK 活性 (r2 = 0.9958) 和 PK 活性 (r2= 0.8706) 增加所导致的 . 这一结果有利于揭示真核微生物细胞中氧化磷酸化与中心代谢途径 ( 酵解 ) 的关系 .  相似文献   

3.
摘要:【目的】为进一步提高光滑球拟酵母(Torulopsis glabrata)葡萄糖代谢速率及丙酮酸生产强度。【方法】将源于荚膜胞浆菌(Histoplasma capsulatum)的编码选择性氧化酶的AOX1基因过量表达于T. glabrata中,获得了一株线粒体内NADH氧化途径发生改变且胞内总NADH 氧化酶活性提高1.8倍的重组菌株AOX。【结果】与出发菌株CON比较,细胞浓度以及发酵周期降低了20.3%和10.7%,而平均比葡萄糖消耗速率和丙酮酸合成速率分别提高了34.7%和54.1%。其原因  相似文献   

4.
Trypanosoma brucei is a parasitic protist responsible for sleeping sickness in humans. The procyclic form of this parasite, transmitted by tsetse flies, is considered to be dependent on oxidative phosphorylation for ATP production. Indeed, its respiration was 55% inhibited by oligomycin, which is the most specific inhibitor of the mitochondrial F0/F1-ATP synthase. However, a 10-fold excess of this compound did not significantly affect the intracellular ATP concentration and the doubling time of the parasite was only 1.5-fold increased, suggesting that oxidative phosphorylation is not essential for procyclic trypanosomes. To further investigate the sites of ATP production, we studied the role of two ATP producing enzymes, which are involved in the synthesis of pyruvate from phosphoenolpyruvate: the glycosomal pyruvate phosphate dikinase (PPDK) and the cytosolic pyruvate kinase (PYK). The parasite was not affected by PPDK gene knockout. In contrast, inhibition of PYK expression by RNA interference was lethal for these cells. In the absence of PYK activity, the intracellular ATP concentration was reduced by up to 2.3-fold, whereas the intracellular pyruvate concentration was not reduced. Furthermore, we show that this mutant cell line still excreted acetate from d-glucose metabolism, and both the wild type and mutant cell lines consumed pyruvate present in the growth medium with similar high rates, indicating that in the absence of PYK activity pyruvate is still present in the trypanosomes. We conclude that PYK is essential because of its ATP production, which implies that the cytosolic substrate level phosphorylation is essential for the growth of procyclic trypanosomes.  相似文献   

5.
过量表达NADH氧化酶加速光滑球拟酵母合成丙酮酸   总被引:1,自引:0,他引:1  
[目的]进一步提高光滑球拟酵母(Torulopsis glabrata)发酵生产丙酮酸的生产强度.[方法]将来源于乳酸乳球菌(Lactococcus lactis)中编码形成水的NADH氧化酶noxE基因过量表达于丙酮酸工业生产菌株T. glabrata CCTCC M202019中,获得了一株NADH氧化酶活性为34.8 U/mg蛋白的重组菌T. glabrata-PDnoxE.[结果]与出发菌株T. glabrata CCTCC M202019相比,细胞浓度、葡萄糖消耗速率和丙酮酸生产强度分别提高了168%、44.9%和12%,发酵进行到36 h葡萄糖消耗完毕.补加50 g/L葡萄糖继续发酵20 h,则使丙酮酸浓度提高到67.2 g/L.葡萄糖消耗速度和丙酮酸生产强度增加的原因在于形成水的NADH氧化酶过量表达,导致NADH和ATP含量分别降低了18.1%和15.8%.而NAD<' 增加了11.1%.[结论]增加细胞内NAD<' 含量能有效地提高酵母细胞葡萄糖的代谢速度及目标代谢产物的生产强度.  相似文献   

6.
Qin Y  Liu LM  Li CH  Xu S  Chen J 《Biotechnology progress》2010,26(6):1551-1557
This study aimed to increase the glycolytic flux of the multivitamin auxotrophic yeast Torulopsis glabrata by redirecting NADH oxidation from oxidative phosphorylation to membrane-bound ferric reductase. We added potassium ferricyanide as electron acceptor to T. glabrata culture broth at 20% dissolved oxygen (DO) concentration, which resulted in: (1) decreases in the NADH content, NADH/NAD(+) ratio, and ATP level of 45.3%, 60.3%, and 15.2%, respectively; (2) high activities of the key glycolytic enzymes hexokinase, phosphofructokinase, and pyruvate kinase, as well as high expression levels of the genes encoding these enzymes; and (3) increases in the specific glucose consumption rate and pyruvate yield of T. glabrata was by 45.5% and 23.1%, respectively. Our results showed that membrane-bound ferric reductase offers an alternative and efficient NADH oxidation pathway at lower DO concentration, which increases the glycolytic flux of T. glabrata.  相似文献   

7.
Liu L  Li Y  Shi Z  Du G  Chen J 《Journal of biotechnology》2006,126(2):173-185
This study aimed at increasing the pyruvate productivity from a multi-vitamin auxotrophic yeast Torulopsis glabrata, by increasing the availability of NAD+. We examined two strategies for increasing availability of NAD+. To supplement nicotinic acid (NA), the precursor of NAD+; and to increase the activity of alcohol dehydrogenase integrating with addition acetaldehyde as exterior electron acceptor. The addition of 8 mg l(-1) NA to the fermentation medium resulted in a significant increase in the glucose consumption rate (48.4%) and the pyruvate concentration (29%). An ethanol-utilizing mutant WSH-13 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the alcohol dehydrogenase activity of the mutant WSH-13 increased about 110% and the mutant could utilize ethanol as the sole carbon source for growth (1.8 g l(-1) dry cell weight). When growing with glucose, the addition of 4 mg l(-1) acetaldehyde to the mutant WSH-13 culture broth led to a significant increase in the glucose consumption rate (26.3%) and pyruvate production (22.5%), but the ratio of NADH/NAD+ decreased to 0.22. Acetaldehyde did not affect the glucose and energy metabolism at high dissolved oxygen (DO) concentration. However, at lower DO concentration (20%), maintaining the acetaldehyde concentration in the mutant culture broth at 4 mg l(-1) caused an increased NAD+ concentration but a decreased NADH concentration. As a consequence, the pyruvate production rate, the pyruvate yield on glucose and the pyruvate concentration were 68, 44 and 45% higher, respectively, than the corresponding values of the control (without acetaldehyde). The strategy for increasing the glycolytic flux and the pyruvate productivity in T. glabrata by increasing the availability of NAD+ may provide an alternative approach to enhance the metabolites productivity in yeast.  相似文献   

8.
光滑球拟酵母新霉素抗性株加速葡萄糖代谢   总被引:2,自引:0,他引:2  
为进一步提高光滑球拟酵母发酵生产丙酮酸的生产强度,在能量代谢分析的基础上提出了降低ATP合成酶活性、但不影响NADH氧化的育种策略。通过亚硝基胍诱变,获得一株新霉素抗性突变株N07,该菌株F1ATPase活性降低65%、丙酮酸产量高于48gL且单位细胞消耗葡萄糖能力提高38%。添加双环己基碳二亚胺(DCCD)、叠氮钠(NaN3)、新霉素显著降低出发株F1ATPase活性但不影响突变株F1ATPase活性。突变菌株胞内ATP含量下降23.7%导致生长速率和最终菌体浓度(为出发菌株的76%)均低于出发菌株,但葡萄糖消耗速度和丙酮酸生产速度分别提高34%和42.9%,发酵周期缩短12h。进一步研究发现,突变株糖酵解途径中关键酶磷酸果糖激酶、丙酮酸激酶和磷酸甘油醛激酶的活性提高了63.7%、28.8%和14.4%,电子传递链关键酶活性提高10%。结果表明降低真核微生物F1ATPase活性有效地提高了糖酵解关键酶活性而加速葡萄糖代谢。  相似文献   

9.
10.
This study aimed at increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting NADH oxidation from adenosine triphosphate (ATP)-production pathway (oxidative phosphorylation pathway) to non-ATP production pathway (fermentative pathway). Two respiratory-deficient mutants, RD-17 and RD-18, were screened and selected after ethidium bromide (EtBr) mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, cytochrome aa 3 and b in electron transfer chain (ETC) of RD-18 and cytochrome b in RD-17 were disrupted. As a consequence, the activities of key ETC enzymes of the mutant RD-18, including F0F1-ATP synthase, complex I, complex I + III, complex II + III, and complex IV, decreased by 22.2, 41.6, 53.1, 23.6, and 84.7%, respectively. With the deficiency of cytochromes in ETC, a large amount of excessive cytosolic NADH was accumulated, which hampered the further increase of the glycolytic flux. An exogenous electron acceptor, acetaldehyde, was added to the strain RD-18 culture to oxidize the excessive NADH. Compared with the parent strain, the concentration of pyruvate and the glucose consumption rate of strain RD-18 were increased by 26.5 and 17.6%, respectively, upon addition of 2.1 mM of acetaldehyde. The strategy for increasing the glycolytic flux in T. glabrata by redirecting the NADH oxidation pathway may provide an alternative approach to enhance the glycolytic flux in yeast.  相似文献   

11.
12.
Cultures of chick tendon fibroblasts were capable of normal ATP production and protein synthetic activity even though the normally high rate of glycolysis was markedly reduced by substitution of pyruvate for glucose. Iodoacetate and 2-deoxyglucose reduced ATP levels and protein synthesis even in the presence of pyruvate. Under these conditions, both inhibitors were shown to have effects on the energy metabolism of cells which were apparently unrelated to an inhibition of glycolysis. Selective inhibition of either glycolysis, by incubation in glucose-free medium, or of oxidative phosphorylation, by incubation with an uncoupler, was shown to have little effect on cellular ATP levels or intracellular transport and secretion of collagen. However, inhibition of both glycolysis and oxidative phosphorylation resulted in decreased cellular ATP levels and an inhibition of collagen secretion. This effect was not due to a requirement for continued protein synthesis, since inhibition of protein synthesis with cycloheximide or puromycin had little effect on collagen secretion. The ATP requirement for intracellular transport and secretion is discussed in relation to the secretory pathway for collagen.  相似文献   

13.
AIMS: To investigate the relationship between the activity of pyruvate dehydrogenase (PDH) bypass and the production of pyruvate of a multi-vitamin auxotrophic yeast Torulopsis glabrata. METHODS AND RESULTS: Torulopsis glabrata CCTCC M202019, a multi-vitamin auxotrophic yeast that requires acetate for complete growth on glucose minimum medium, was selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata WSH-IP303 screened in previous study [Li et al. (2001) Appl. Microbiol. Biotechnol. 55, 680-685]. Strain CCTCC M202019 produced 21% higher pyruvate than the parent strain and was genetically stable in flask cultures. The activities of the pyruvate metabolism-related enzymes in parent and mutant strains were measured. Compared with the parent strain, the activity of pyruvate decarboxylase (PDC) of the mutant strain CCTCC M202019 decreased by roughly 40%, while the activity of acetyl-CoA synthetase (ACS) of the mutant increased by 103.5 or 57.4%, respectively, in the presence or absence of acetate. Pyruvate production by the mutant strain CCTCC M202019 reached 68.7 g l(-1) at 62 h (yield on glucose of 0.651 g g(-1)) in a 7-l jar fermentor. CONCLUSIONS: The increased pyruvate yield in T. glabrata CCTCC M202019 was due to a balanced manipulation of the PDH bypass, where the shortage of cytoplasmic acetyl-CoA caused by the decreased activity of PDC was properly compensated by the increased activity of ACS. SIGNIFICANCE AND IMPACT OF THE STUDY: Manipulating the PDH bypass may provide an alternative approach to enhance the production of glycolysis-related metabolites.  相似文献   

14.
Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis‐activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti‐cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down‐regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells.  相似文献   

15.
降低光滑球拟酵母电子传递链活性加速丙酮酸合成   总被引:6,自引:1,他引:6  
光滑球拟酵母CCTCCM2 0 2 0 19经溴化乙锭诱变 ,挑选假阳性呼吸缺陷型菌株共 4 0株。对其中 7株丙酮酸产量提高的突变株进行发酵性底物 (葡萄糖 )和非发酵性底物 (甘油、乙酸 )的利用能力测试 ,鉴定得到 3株呼吸缺陷型突变株RD 16、RD 17和RD 18。相对于出发菌株 ,呼吸缺陷型突变株生长速率下降 ,最终菌体浓度降低 2 1%~2 9% ,胞内ATP含量下降 15 %~ 2 1% ,但单位细胞耗葡萄糖能力和单位细胞产丙酮酸能力分别提高了 2 0 7%~30 7%和 30 7%~ 5 5 5 %。进一步研究发现 ,呼吸缺陷型突变株线粒体复合体Ⅰ、Ⅰ Ⅲ、Ⅱ Ⅲ和Ⅳ的活性分别下降了 34%~ 4 1%、38 6 %~ 5 2 6 %、2 1%~ 2 5 %、15 0 %~ 6 30 % ,表明线粒体电子传递链氧化NADH的功能受到抑制。为使酵解产生的NADH正常氧化 ,在RD 18菌株的对数生长期流加 2 1mmol L外源电子受体乙醛。发现细胞合成丙酮酸能力提高 2 1 6 % ,且葡萄糖消耗速度明显加快 ,发酵周期缩短 14h。结果表明适当削弱能量代谢能够提高真核微生物中心代谢途径的速度  相似文献   

16.
The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.  相似文献   

17.
为进一步提高光滑球拟酵母发酵生产丙酮酸的水平 ,在途径分析的基础上提出了一种组成型降低丙酮酸脱酸酶、但增强乙酰辅酶A合成酶活性的育种策略。通过亚硝基胍诱变 ,获得 1株乙酸需求型突变株CCTCCM2 0 2 0 19,在外加乙酸的培养基中表现出高于出发株 2 1%的丙酮酸生产能力和良好的遗传稳定性。检测突变株CCTCCM2 0 2 0 19中丙酮酸代谢相关酶的活性发现 :(1)丙酮酸脱羧酶活性降低了 4 0 % ;(2 )外加乙酸与否的条件下 ,乙酰辅酶A合成酶的活性分别提高了 10 3 5 %和 5 7 4 % ;(3)添加乙酸和突变对丙酮酸羧化酶、丙酮酸脱氢酶系、乙醇脱氢酶和乙醛脱氢酶的活性没有显著影响。在含有乙酸的培养基中突变株细胞干重比出发株高 2 1 7% ,可能是因为乙酰辅酶A合成酶活性的提高 ,补充了因丙酮酸脱羧酶活性降低而引起的胞质乙酰辅酶A短缺。在 7L罐中含有 6g L乙酸钠的培养基中发酵 6 2h ,丙酮酸产量达到 6 8 7g L ,对葡萄糖的产率为 0 6 5 1g g。  相似文献   

18.
Regulation of the oxidative phosphorylation rate in the intact cell   总被引:3,自引:0,他引:3  
The mechanisms that underlie the balance between the consumption and oxidative generation of ATP in the intact cell are not well-defined. Cytosolic inorganic phosphate (Pi) and ADP levels, the cytosolic ATP/ADP ratio, and the cytosolic phosphorylation potential (PP) have all been proposed as major regulatory variables, the latter as a component of a "near-equilibrium" thermodynamic regulatory scheme. Therefore, the potential regulatory roles of these variables in the intact cell were evaluated with 31P NMR and Langendorff perfused rat hearts; in this preparation, the tissue oxygen consumption rate (MVO2) can be varied over a wide range. When the exogenous carbon source was varied, none of the proposed regulatory parameters, i.e., the ATP/ADP ratio, PP, or cytosolic ADP level, were found to be uniquely related to MVO2. Rather, ADP levels at a given MVO2 decreased progressively for the exogenous carbon sources in the following order: glucose, glucose + insulin, palmitate + glucose, lactate, pyruvate + glucose, and octanoate + glucose. In the octanoate and pyruvate groups, MVO2(-1) was linearly dependent upon [ADP]-1 with apparent Km values being in the range previously observed in isolated mitochondria. A similar trend was observed in the MVO2-[Pi] relationship. The present findings suggest that exogenous carbon sources which effectuate deregulation of intramitochondrial NADH generation lower cytosolic ADP and Pi to levels which are limiting to the rate of oxidative phosphorylation. For other carbon sources, the processes controlling the rate of NADH generation also participate in determining the rate of oxidative ATP synthesis. However, this control must be exerted kinetically rather than through a near-equilibrium thermodynamic mechanism as indicated by the present data and prior kinetic studies of the ATP synthetic process in both isolated mitochondria and intact myocardium [La Noue, K. F., et al. (1986) Biochemistry 25, 7667-7675; Kingsley-Hickman, P., et al. (1987) Biochemistry 26, 7501-7510].  相似文献   

19.
Glucose requirement for postischemic recovery of perfused working heart   总被引:5,自引:0,他引:5  
The quantitative importance of glycolysis in cardiomyocyte reenergization and contractile recovery was examined in postischemic, preload-controlled, isolated working guinea pig hearts. A 25-min global but low-flow ischemia with concurrent norepinephrine infusion to exhaust cellular glycogen stores was followed by a 15-min reperfusion. With 5 mM pyruvate as sole reperfusion substrate, severe contractile failure developed despite normal sarcolemmal pyruvate transport rate and high intracellular pyruvate concentrations near 2 mM. Reperfusion dysfunction was characterized by a low cytosolic phosphorylation potential [( ATP]/[( ADP][Pi]) due to accumulations of inorganic phosphate (Pi) and lactate. In contrast, with 5 mM glucose plus pyruvate as substrates, but not with glucose as sole substrate, reperfusion phosphorylation potential and function recovered to near normal. During the critical ischemia-reperfusion transition at 30 s reperfusion the cytosolic creatine kinase appeared displaced from equilibrium, regardless of the substrate supply. When under these conditions glucose and pyruvate were coinfused, glycolytic flux was near maximum, the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction was enhanced, accumulation of Pi was attenuated, ATP content was slightly increased, and adenosine release was low. Thus, glucose prevented deterioration of the phosphorylation potential to levels incompatible with reperfusion recovery. Immediate energetic support due to maximum glycolytic ATP production and enhancement of the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction appeared to act in concert to prevent detrimental collapse of [ATP]/[( ADP][Pi]) during creatine kinase dysfunction in the ischemia-reperfusion transition. Dichloroacetate (2 mM) plus glucose stimulated glycolysis but failed fully to reenergize the reperfused heart; conversely, 10 mM 2-deoxyglucose plus pyruvate inhibited glycolysis and produced virtually instantaneous de-energization during reperfusion. The following conclusions were reached. (1) A functional glycolysis is required to prevent energetic and contractile collapse of the low-flow ischemic or reperfused heart (2). Glucose stabilization of energetics in pyruvate-perfused hearts is due in part to intensification of glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase activity. (3) 2-Deoxyglucose depletes the glyceraldehyde-3-phosphate pool and effects intracellular phosphate fixation in the form of 2-deoxyglucose 6-phosphate, but the cytosolic phosphorylation potential is not increased and reperfusion failure occurs instantly. (4) Consistent correlations exist between cytosolic ATP phosphorylation potential and reperfusion contractile function. The findings depict glycolysis as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.  相似文献   

20.
Inhibition of the mitochondrial electron transport chain (ETC) ultimately limits ATP production and depletes cellular ATP. However, the individual complexes of the ETC in brain mitochondria need to be inhibited by approximately 50% before causing significant depression of ATP synthesis. Moreover, the ETC is the key site for the production of intracellular reactive oxygen species (ROS) and inhibition of one or more of the complexes of the ETC may increase the rate of mitochondrial ROS generation. We asked whether partial inhibition of the ETC, to a degree insufficient to perturb oxidative phosphorylation, might nonetheless induce ROS production. Chronic increase in mitochondrial ROS might then cause oxidative damage to the ETC sufficient to produce prolonged changes in ETC function and so compound the defect. We show that the exposure of astrocytes in culture to low concentrations of nitric oxide (NO) induces an increased rate of O2*- generation that outlasts the presence of NO. No effect was seen on oxygen consumption, lactate or ATP content over the 4-6 h that the cells were exposed to NO. These data suggest that partial ETC inhibition by NO may initially cause oxidative stress rather than ATP depletion, and this may subsequently induce irreversible changes in ETC function providing the basis for a cycle of damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号