首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have identified two Saccharomyces cerevisiae genes that, in high copy, confer resistance to Kluyveromyces lactis zymocin, an inhibitor that blocks cells in the G(1) phase of the cell cycle prior to budding and DNA replication. One gene (GRX3) encodes a glutaredoxin and is likely to act at the level of zymocin entry into sensitive cells, while the other encodes Sap155p, one of a family of four related proteins that function positively and interdependently with the Sit4p protein phosphatase. Increased SAP155 dosage protects cells by influencing the sensitivity of the intracellular target and is unique among the four SAP genes in conferring zymocin resistance in high copy, but is antagonized by high-copy SAP185 or SAP190. Since cells lacking SIT4 or deleted for both SAP185 and SAP190 are also zymocin resistant, our data support a model whereby high-copy SAP155 promotes resistance by competition with the endogenous levels of SAP185 and SAP190 expression. Zymocin sensitivity therefore requires a Sap185p/Sap190p-dependent function of Sit4p protein phosphatase. Mutations affecting the RNA polymerase II Elongator complex also confer K. lactis zymocin resistance. Since sit4Delta and SAP-deficient strains share in common several other phenotypes associated with Elongator mutants, Elongator function may be a Sit4p-dependent process.  相似文献   

3.
4.
5.
The Kluyveromyces lactis zymocin complex kills Saccharomyces cerevisiae cells in a process that involves tRNA cleavage by its tRNAse gamma-toxin subunit. In contrast to the gamma-toxin mode of action, the early steps of the zymocin response are less well characterized. Here, we present high-dosage suppressors of zymocin that encode a putative Pkc1-related kinase (ISR1) and UDP-glucose pyrophosphorylase (UGPase) (UGP1). Anti-UGPase Western blots and GAL10 - ISR1 overexpression suggest that zymocin suppression correlates with overproduction of UGPase or Isr1. As judged from protection against exo-zymocin and unaltered sensitivity to endogenous gamma-toxin, high-copy ISR1 and UGP1 operate in early, nontarget steps of the zymocin pathway. Consistent with a recent report on in vitro phosphorylation of Isr1 and UGPase by the CDK Pho85, high-copy ISR1 and UGP1 suppression of zymocin is abolished in a pho85 null mutant lacking CDK activity of Pho85. Moreover, suppression requires UGPase enzyme activity, and ISR1 overexpression also protects against CFW, a chitin-interfering poison. Our data agree with roles for UGPase in cell wall biosynthetic processes and for Isr1 in Pkc1-related cell wall integrity. In sum, high-copy ISR1 and UGP1 cells affect early steps of the zymocin response and potentially prevent the lethal K. lactis killer complex from establishing cell surface recognition and/or contact.  相似文献   

6.
Zymocin, a three-subunit (alpha beta gamma) toxin complex from Kluyveromyces lactis, imposes a cell cycle block on Saccharomyces cerevisiae. Phenotypic analysis of the resistant kti10 mutant implies a membrane defect, suggesting that KTI10 represents a gene involved early in the zymocin response. Consistently, KTI10 is shown here to be allelic to PMA1 encoding H(+)-ATPase, a plasma membrane H(+) pump vital for membrane energization (Delta Psi). Like pma1 mutants, kti10 cells lose viability at low pH, indicating a pH homeostasis defect, and resist the antibiotic hygromycin B, uptake of which is known to be Pma1 and Delta Psi sensitive. Similar to kti10 cells, pma1 mutants with reported H(+) pump defects survive in the presence of exozymocin but do not resist endogenous expression of its lethal gamma-toxin subunit. Based on DNA sequence data, kti10 cells are predicted to produce a malfunctional Pma1 variant with expression levels that are normal. Intriguingly, zymocin protection of kti10 cells is suppressed by excess H(+), a scenario ineffective in bypassing resistance of chitin or toxin target mutants. Together with unaltered zymocin docking and gamma-toxin import events in kti10 cells, our data suggest that Pma1's role in zymocin action is likely to involve activation of gamma-toxin in a step following its cellular uptake.  相似文献   

7.
R C Dickson 《Gene》1980,10(4):347-356
Three recombinant DNA vectors carrying the β-galactosidase structural gene, LAC4, from the yeast Kluyveromyces lactis were constructed and transformed into Saccharomyces cerevisiae. All transformants expressed the β-galactosidase activity of LAC4. However, the level of enzyme activity varied, being highest in cells transformed with vectors which are maintained as multicopy plasmids and lowest in cells transformed with a vector which integrates into chromosomes. Enzyme levels probably reflect gene dosage. LAC4 is very stable when integrated into a chromosome, but unstable when carried on a plasmid. Therefore, stability is a property of the recombinant vector rather than of LAC4, LAC4-coded β-galactosidase synthesized in either S. cerevisiae or in K. lactis is the same as judged by two-dimensional polyacrylamide gel electrophoresis. However, S. cerevisiae transformed with  相似文献   

8.
9.
mTn3-tagging identified Kluyveromyces lactis zymocin target genes from Saccharomyces cerevisiae as TOT1-3/ELP1-3 coding for the RNA polymerase II (pol II) Elongator histone acetyltransferase (HAT) complex. tot phenotypes resulting from mTn3 tagging were similar to totDelta null alleles, suggesting loss of Elongator's integrity. Consistently, the Tot1-3/Elp1-3 proteins expressed from the mTn3-tagged genes were all predicted to be C-terminally truncated, lacking approximately 80% of Tot1p, five WD40 Tot2p repeats and two HAT motifs of Tot3p. Besides its role as a HAT, Tot3p assists subunit communication within Elongator by mediating Tot2-Tot4, Tot2-Tot5, Tot2-Tot1 and Tot4-Tot5 protein-protein interactions. TOT1 and TOT2 are essential for Tot4-Tot2 and Tot4-Tot3 interactions respectively. The latter was lost with a C-terminal Tot2p truncation; the former was affected by progressively truncating TOT1. Despite being dispensable for Tot4-Tot2 interaction, the extreme C-terminus of Tot1p may play a role in TOT/Elongator function, as its truncation confers zymocin resistance. Tot4p/Kti12p, an Elongator-associated factor, also interacted with pol II and could be immunoprecipitated while being bound to the ADH1 promoter. Two-hybrid analysis showed that Tot4p also interacts with Cdc19p, suggesting that Tot4p plays an additional role in concert with Cdc19p, perhaps co-ordinating cell growth with carbon source metabolism.  相似文献   

10.
11.
A multitude of metabolic regulations occur in yeast, particularly under dynamic process conditions, such as under sudden glucose excess. However, quantification of regulations and classification of yeast strains under these conditions have yet to be elucidated, which requires high-frequency and consistent quantification of the metabolic response. The present study aimed at quantifying the dynamic regulation of the central metabolism of strains Saccharomyces cerevisiae, S. kluyveri, and Kluyveromyces lactis upon sudden glucose excess, accomplished by a shift-up in dilution rate inside of the oxidative region using a small metabolic flux model. It was found that, under transient growth conditions, S. kluyveri behaved like K. lactis, while classification using steady-state conditions would position S. kluyveri close to S. cerevisiae. For transient conditions and based on the observation whether excess glucose is initially used for catabolism (energy) or anabolism (carbon), we propose to classify strains into energy-driven, such as S. cerevisiae, and carbon-driven, such as S. kluyveri and K. lactis, strains. Furthermore, it was found that the delayed onset of fermentative catabolism in carbon-driven strains is a consequence of low catabolic flux and the initial shunt of glucose in non-nitrogen-containing biomass constituents. The MFA model suggests that energy limitation forced the cell to ultimately increase catabolic flux, while the capacity of oxidative catabolism is not sufficient to process this flux oxidatively. The combination of transient experiments and its exploitation with reconciled intrinsic rates using a small metabolic model could corroborate earlier findings of metabolic regulations, such as tight glucose control in carbon-driven strains and transient changes in biomass composition, as well as explore new regulations, such as assimilation of ethanol before glucose. The benefit from using small metabolic flux models is the richness of information and the enhanced insight into intrinsic metabolic pathways without a priori knowledge of adaptation kinetics. Used in an online context, this approach serves as an efficient tool for strain characterization and physiological studies.  相似文献   

12.
The putative Kluyveromyces lactis zymocin target complex, TOT, from Saccharomyces cerevisiae comprises five Tot proteins, four of which are RNA polymerase II (RNAP II) Elongator subunits. Recently, two more Elongator subunit genes, ELP6 (TOT6) and ELP4 (TOT7), have been identified. Deletions of both TOT6 and TOT7 result in the complex tot phenotype, including resistance to zymocin, thermosensitivity, slow growth and hypersensitivity towards drugs, thus reinforcing the notion that TOT/Elongator may be crucial in signalling zymocicity. Mutagenesis of ELP3/TOT3, the Elongator histone acetyltransferase (HAT) gene, revealed that zymocin sensitivity could be uncoupled from Elongator wild-type function, indicating that TOT interacts genetically with zymocin. To test the possibility that zymocin functions by affecting RNAP II activity in a TOT/Elongator-dependent manner, global poly(A)+ mRNA levels were found to decline drastically on zymocin treatment. Moreover, cells overexpressing Fcp1p, the RNAP II carboxy-terminal domain phosphatase, acquired partial zymocin resistance, whereas cells underproducing RNAP II became zymocin hypersensitive. This suggests that zymocin may convert TOT/Elongator into a cellular poison toxic for RNAP II function and eventually leading to the observed G1 cell cycle arrest.  相似文献   

13.
14.
We have investigated the chromatin structure of Kluyveromyces lactis centromeres in isolated nuclei of K. lactis and Saccharomyces cerevisiae by using micrococcal nuclease and DNAse I digestion. The protected region found in K. lactis is approximately 270 bp long and encompasses the centromeric DNA elements, KlCDEI, KlCDEII, and KlCDEIII, but not KlCDE0. Halving KlCDEII to 82 bp impaired centromere function and led to a smaller protected structure (210 bp). Likewise, deletion of 5 bp from KlCDEI plus adjacent flanking sequences resulted in a smaller protected region and a decrease in centromere function. The chromatin structures of KlCEN2 and KlCEN4 present on plasmids were found to be similar to the structures of the corresponding centromeres in their chromosomal context. A different protection pattern of KlCEN2 was detected in S. cerevisiae, suggesting that KlCEN2 is not properly recognized by at least one of the centromere binding proteins of S. cerevisiae. The difference is mainly found at the KlCDEIII side of the structure. This suggests that one of the components of the ScCBF3-complex is not able to bind to KlCDEIII, which could explain the species specificity of K. lactis and S. cerevisiae centromeres.  相似文献   

15.
Screening for genes affecting super-secreting phenotype of the over-secreting mutant of Kluyveromyces lactis resulted in isolation of the gene named KlMNN10, sharing high homology with Saccharomyces cerevisiae MNN10. The disruption of the KlMNN10 in Kluyveromyces lactis, as well as of MNN10 and MNN11 in Saccharomyces cerevisiae, conferred the super-secreting phenotype. MNN10 isolated from Saccharomyces cerevisiae suppressed the super-secretion phenotype in Kluyveromyces lactis klmnn10, as did the homologous KlMNN10. The genes MNN10 and MNN11 of Saccharomyces cerevisiae encode mannosyltransferases responsible for the majority of the alpha-1,6-polymerizing activity of the mannosyltransferase complex. These data agree with the view that the structure of glycoproteins in a yeast cell wall strongly influences the release of homologous and heterologous proteins in the medium. The set of genes namely the suppressors of the over-secreting phenotype, could be attractive for further analysis of gene functions, over-secreting mechanisms and for construction of new strains optimized for heterologous protein secretion. KlMNN10 has EMBL accession no. AJ575132.  相似文献   

16.
The GAL regulatory system is highly conserved in yeast species of Saccharomyces cerevisiae and Kluyveromyces lactis. While the GAL system is a well studied system in S. cerevisiae, the dynamic behavior of the KlGAL system in K. lactis has not been characterized. Here, we have characterized the GAL system in yeast K. lactis by developing a dynamic model and comparing its performance to its not-so-distant cousin S. cerevisiae. The present analysis demonstrates the significance of the autoregulatory feedbacks due to KlGal4p, KlGal80p, KlGal1p and Lac12p on the dynamic performance of the KlGAL switch. The model predicts the experimentally observed absence of bistability in the wild type strain of K. lactis, unlike the short term memory of preculturing conditions observed in S. cerevisiae. The performance of the GAL switch is distinct for the two yeast species although they share similarities in the molecular components. The analysis suggests that the whole genome duplication of S. cerevisiae, which resulted in a dedicated inducer protein, Gal3p, may be responsible for the high sensitivity of the system to galactose concentrations. On the other hand, K. lactis uses a bifunctional protein as an inducer in addition to its galactokinase activity, which restricts its regulatory role and hence higher galactose levels in the medium are needed to trigger the GAL system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11693-011-9082-7) contains supplementary material, which is available to authorized users.  相似文献   

17.
Heterologous expression of Pleurotus ostreatus POXC and POXA1b laccases in two yeasts, Kluyveromyces lactis and Saccharomyces cerevisiae, was performed. Both transformed hosts secreted recombinant active laccases, although K. lactis was much more effective than S. cerevisiae. rPOXA1b transformants always had higher secreted activity than rPOXC transformants did. The lower tendency of K. lactis with respect to S. cerevisiae to hyperglycosylate recombinant proteins was confirmed. Recombinant laccases from K. lactis were purified and characterised. Specific activities of native and recombinant POXA1b are similar. On the other hand, rPOXC specific activity is much lower than that of the native protein, perhaps due to incomplete or incorrect folding. Both recombinant laccase signal peptides were correctly cleaved, with rPOXA1b protein having two C-terminal amino acids removed. The availability of the established recombinant expression system provides better understanding of laccase structure–function relationships and allows the development of new oxidative catalysts through molecular evolution techniques.  相似文献   

18.
Kluyveromyces lactis zymocin, a trimeric (alphabetagamma) protein toxin complex, inhibits proliferation of Saccharomyces cerevisiae cells. Here we present an analysis of kti6 mutants, which resist exogenous zymocin but are sensitive to intracellular expression of its inhibitory gamma-toxin subunit, suggesting that KTI6 encodes a factor needed for toxin entry into the cell. Consistent with altered cell surface properties, kti6 cells resist hygromycin B, syringomycin E, and nystatin, antibiotics that require intact membrane potentials or provoke membrane disruption. KTI6 is allelic to IPT1, coding for mannosyl-diinositolphospho-ceramide [M(IP)(2)C] synthase, which produces M(IP)(2)C, the major plasma membrane sphingolipid. kti6 membranes lack M(IP)(2)C and sphingolipid mutants that have reduced levels of M(IP)(2)C precursors, including the sphingolipid building block ceramide survive zymocin. In addition, kti6/ipt1 cells allow zymocin docking but prevent import of its toxic gamma-subunit. Genetic analysis indicates that Kti6 is likely to act upstream of lipid raft proton pump Kti10/Pma1, a previously identified zymocin sensitivity factor. In sum, M(IP)(2)C operates in a plasma membrane step that follows recognition of cell wall chitin by zymocin but precedes the involvement of elongator, the potential toxin target.  相似文献   

19.
The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for secretory protein movement from the Golgi complex. That some conservation of SEC14p function may exist was initially suggested by experiments that revealed immunoreactive polypeptides in cell extracts of the divergent yeasts Kluyveromyces lactis and Schizosaccharomyces pombe. We have cloned and characterized the K. lactis SEC14 gene (SEC14KL). Immunoprecipitation experiments indicated that SEC14KL encoded the K. lactis structural homolog of SEC14p. In agreement with those results, nucleotide sequence analysis of SEC14KL revealed a gene product of 301 residues (Mr, 34,615) and 77% identity to SEC14p. Moreover, a single ectopic copy of SEC14KL was sufficient to render S. cerevisiae sec14-1(Ts) mutants, or otherwise inviable sec14-129::HIS3 mutant strains, completely proficient for secretory pathway function by the criteria of growth, invertase secretion, and kinetics of vacuolar protein localization. This efficient complementation of sec14-129::HIS3 was observed to occur when the rates of SEC14pKL and SEC14p synthesis were reduced by a factor of 7 to 10 with respect to the wild-type rate of SEC14p synthesis. Taken together, these data provide evidence that the high level of structural conservation between SEC14p and SEC14pKL reflects a functional identity between these polypeptides as well. On the basis of the SEC14p and SEC14pKL primary sequence homology to the human retinaldehyde-binding protein, we suggest that the general function of these SEC14p species may be to regulate the delivery of a hydrophobic ligand to Golgi membranes so that biosynthetic secretory traffic can be supported.  相似文献   

20.
Protoplasts of Saccharomyces cerevisiae were mixed with linear DNA plasmids, pGKl1 and pGKl2, isolated from a Kluyveromyces lactis killer strain and treated with polyethylene glycol. Out of 2,000 colonies regenerated on a nonselective medium, two killer transformants were obtained. The pGKl plasmids and the killer character were stably maintained in one (Pdh-1) of them. Another transformant, Pdl-1, was a weak killer, and the subclones consisted of a mixture of weak and nonkiller cells. The weak killers were characterized by the presence of pGKl1 in a decreased amount, and nonkillers were characterized by the absence of pGKl1. The occurrence of two new plasmids which migrated faster than pGKl1 in an agarose gel was observed in Pdl-1 and its subclones, whether weak or nonkillers. Staining with 4',6-diamidino-2-phenylindole revealed that the pGKl plasmids exist in the cytosol of transformant cells with numerous copy numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号