首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Ten monoclonal antibodies (Mabs) against glycoproteins of the bovine Reissner's fiber (RF) have been used in a structural and ultrastructural immunocyto-chemical investigation of the bovine subcommissural organ (SCO) and RF. The SCO of other vertebrate species has also been studied. For comparison, polyclonal antibodies against bovine RF (AFRU) were used. The SCO and RF of ox, pig and dogfish and the SCO of dog, rabbit, rat and frog were submitted to light-microscopic immunocytochemistry using AFRU and Mabs. Postembedding ultrastructural immunocytochemistry was applied to sections of bovine SCO using AFRU and Mabs. Bovine SCO consists of ependymal and hypendymal cell layers, the latter being arranged as cell strands across the posterior commissure, or as hypendymal rosette-like structures. All cytoplasmic regions of the ependymal and hypendymal cells were strongly stained with AFRU. Six Mabs showed the same staining pattern as AFRU, one Mab stained RF strongly and SCO weakly, two Mabs stained RF but not SCO, and, finally, one Mab (3B1) exclusively stained the apices of the ependymal and hypendymal cells. All Mabs recognized the SCO and RF of the pig. Two Mabs bound to the SCO of the dog. One Mab stained the SCO of the rabbit and another the SCO of the rat. The SCO of frog and dogfish were totally negative. Bovine SCO stained with AFRU, showed label in the rough endoplasmic reticulum (RER) and the secretory granules (SG) of the ependymal and hypendymal cells. The former, in the form of parallel cisternae, reticulum or concentric rings, was seen throughout all cytoplasmic regions. SG were abundant in the apical pole of the ependymal and hypendymal cells. Only one Mab showed a staining pattern similar to AFRU. Five Mabs showed strong reactions in the SG but weak labeling of the RER. Mab 3B1 showed the label confined to the SG only. Our results suggest that: (i) in the bovine tissue, some epitopes are present in both precursor and processed materials, whereas others are characteristic of mature glycoproteins present in SG and the RF; (ii) the bovine SCO secretes at least two different compounds present in ependymal and hypendymal cells: (iii) both compounds coexist in the same secretory granule; (iv) there are conserved, class-specific, and species-specific epitopes in the glycoproteins secreted by the SCO of vertebrates.  相似文献   

2.
Dopamine receptors have been found in certain populations of non-neuronal cells in the brain, viz., discrete areas of ciliated ependyma and the ependymal cells of the choroid plexus. We have studied the presence of both tyrosine-hydroxylase-immunoreactive nerve fibers and dopamine receptors in the subcommissural organ (SCO), an ependymal brain gland that is located in the roof of the third ventricle and that secretes, into the cerebrospinal fluid, glycoproteins that aggregate to form Reissners fiber (RF). Antibodies against D2, D3, D4, and D5 dopamine receptors were used in immunoblots of bovine striatum, fresh SCO, and organ-cultured SCO, and in immunocytochemistry of the bovine, rat, and mouse SCO. Only a few tyrosine-hydroxylase fibers appeared to reach the SCO. However, virtually all the secretory ependymal and hypendymal cells of the SCO immunoreacted with antibodies against D2, D4, and D5 receptors, with the last-mentioned rendering the strongest reaction, especially at the ventricular cell pole of the secretory ependymocytes, suggesting that dopamine might reach the SCO via the cerebrospinal fluid. The antibodies against the four subtypes of receptors revealed corresponding bands in immunoblots of striatum and fresh SCO. Although the cultured SCO displayed dopamine receptors, dopamine had no apparent effect on the expression of the SCO-spondin gene/protein or on the release of RF-glycoproteins (SCO-spondin included) by SCO explants, suggesting that dopamine affects the function(s) of the SCO differently from the secretion of RF-glycoproteins.Financial support was provided by grants PI 030756 and Red CIEN, Instituto de Salud Carlos III, Spain (to J.M.P.F.), and 1030265 from Fondecyt, Chile (to E.M.R.)  相似文献   

3.
4.
The subcommissural organ (SCO) secretes glycoproteins into the cerebrospinal fluid (CSF) that aggregate and form Reissner's fiber (RF). The factors involved in this aggregation are not known. One factor may be the hydrodynamics of the CSF when flowing through the aqueduct. This hypothesis was tested by isografting rat SCO and xenografting bovine SCO into the lateral ventricle of rats. Xenografts were either fresh bovine SCO or explants cultured for 30 days before transplantation. The grafts were investigated by electron microscopy and immunocytochemistry using antibodies against RF glycoproteins, serotonin and the glucose transporter I. Maximal time of transplantation was 43 days for isografts and 14 days for xenografts. The isografts were not reinnervated but were revascularized; they secreted into the ventricle RF glycoproteins that became progressively packed into pre-RF and RF structures identical to those formed by the SCO in situ. RF was confined to the host ventricle and at its distal end the constituent proteins disassembled. Xenografts were neither reinnervated nor revascularized and secreted into the host ventricle a material that never formed an RF. These findings indicate that the CSF factor responsible for the formation of RF is species specific, and that this process does not depend on the hydrodynamics of the CSF. The blood vessels revascularizing the isografted SCO acquired the characteristics of the vessels irrigating the SCO in situ, namely, a tight endothelium displaying glucose transporter I, and a perivascular space containing long-spacing collagen, thus indicating that basal release of glycoproteins may also occur in the grafted SCO.  相似文献   

5.
The subcommissural organ (SCO) is an ependymal differentiation located in the dorsal midline of the caudal diencephalon under the posterior commissure. SCO cells synthesize and release glycoproteins into the cerebrospinal fluid (CSF) forming a threadlike structure known as Reissner’s fiber (RF), which runs caudally along the ventricular cavities and the central canal of the spinal cord. Numerous monoclonal antibodies have been raised against bovine RF and the secretory material of the SCO. For this study, we selected the 4F7 monoclonal antibody based on its cross-reactivity with chick embryo SCO glycoproteins in vivo. E4 chick embryos were injected with 4F7 hybridoma cells or with the purified monoclonal antibody into the ventricular cavity of the optic tectum. The hybridoma cells survived, synthesized and released antibody into the CSF for at least 13 days after the injection. E5 embryos injected with 4F7 antibody displayed precipitates in the CSF comprising both the monoclonal antibody and anti-RF-positive material. Such aggregates were never observed in control embryos injected with other monoclonal antibodies used as controls. Western blot analysis of CSF from E4-E6 embryos revealed several immunoreactive bands to anti-RF (AFRU) antibody. We also found AFRU-positive material bound to the apical surface of the choroid plexus primordia in E5 embryos. These and other ultrastructural evidence suggest the existence of soluble SCO-related molecules in the CSF of early chick embryos.C. Hoyo-Becerra and M.D. López-ávalos contributed equally to this study and should be considered as first authors. C. Hoyo-Becerra was the recipient of a predoctoral fellowship (PFPI) from the Ministerio de Educacion y Cultura (Spain). This work was supported by grants from DGICYT (BFI2003-03348; Spain) and FIS (01/0948; Spain), FIS (01-0948, PI021517; Spain) and ISCIII (red CIEN, nodo Fundación Carlos Haya).  相似文献   

6.
The subcommissural organ (SCO) of 7 human fetuses, 3 to 6.5 months old, was investigated by means of: (i) immunocytochemistry employing three different antisera against secretory products extracted from the bovine SCO and Reissner's fiber; (ii) lectin binding using concanavalin A (Con A; affinity: mannose, glucose), wheat-germ agglutinin (WGA; affinity: N-acetyl-glucosamine, sialic acid), and Limax flavus agglutinin (LFA; affinity: sialic acid). Sections of bovine SCO were processed simultaneously and examined for comparative purposes. The human fetal SCO displayed lectin-binding properties identical to those in the SCO of other mammals. Thus, Con A-binding sites were restricted to abundant supranuclear structures that most likely corresponded to the rough endoplasmic reticulum, but were missing from granules located in the apical cytoplasm. The latter secretory material was strongly WGA- and LFA-positive and formed a distinct zone in the most apical portion of the ependymal cells. In contrast, this type of reactivity was missing in the adjacent cells of ependyma proper. In the bovine SCO, LFA-positive granules were also aggregated in an apical layer. The secretory material in the bovine SCO, especially its apical granular component, was strongly immunoreactive with the three antisera used; the human fetal SCO, however, lacked this immunoreactivity. It is postulated that the SCO of human fetuses secretes glycoproteins with a carbohydrate chain similar to--and a protein backbone different from--the secretions elaborated by the SCO of other vertebrate species.  相似文献   

7.
The subcommissural organ (SCO) is an ependymal brain gland that releases glycoproteins into the ventricular cerebrospinal fluid where they condense to form the Reissner’s fiber (RF). We have developed a highly sensitive and specific two-antibody sandwich enzyme-linked immunosorbent assay (ELISA) for the quantification of the bovine SCO secretory material. The assay was based on the use of the IgG fraction of a polyclonal antiserum against the bovine RF as capture antibody and a pool of three peroxidase-labeled monoclonal antibodies that recognize non-overlapping epitopes of the RF glycoproteins as detection antibody. The detection limit was 1 ng/ml and the working range extended from 1 to 4000 ng/ml. The calibration curve, generated with RF glycoproteins, showed two linear segments: one of low sensitivity, ranging from 1 to 125 ng/ml, and the other of high sensitivity between 125 and 4000 ng/ml. This assay was highly reproducible (mean intra- and interassay coefficient of variation 2.2% and 5.3%, respectively) and its detectability and sensitivity were higher than those of ELISAs using exclusively either polyclonal or monoclonal antibodies against RF glycoproteins. The assay succeeded in detecting and measuring secretory material in crude extracts of bovine SCO, culture medium supernatant of SCO explants and incubation medium of bovine RF; however, soluble secretory material was not detected in bovine cerebrospinal fluid.  相似文献   

8.
The subcommissural organ (SCO) is a specialized ependymal structure of the brain that secretes glycoproteins into the cerebrospinal fluid (CSF), which condense to form a thread-like structure - Reissner's fiber (RF). The effects of soluble material released by RF were examined on neuroblastoma B104 cells grown in serum-free medium, using "low-density" and "high-density" culture systems. In the presence of soluble RF material, low-density cultures were suitable for analysis of the enhanced neurite outgrowth of B104 cells, while high-density cultures allowed the increased B104 cell aggregation to be examined. RF-induced neuronal aggregation and neuritic outgrowth were restricted to a perimeter around the RF. This standardized cell culture system reproduced in part the effects observed previously with primary cortical and spinal cord cell cultures and may serve the analysis of the mechanisms leading to aggregation and neurite outgrowth. In the present study, we analyzed variations in the rate of neural cell adhesion molecules, such as N-CAM and N-cadherin, induced by soluble RF material in high-density cultures.  相似文献   

9.
Reissners fiber (RF) is a threadlike structure present in the third and fourth ventricles and in the central canal of the spinal cord. RF develops by the assembly of glycoproteins released into the cerebrospinal fluid (CSF) by the subcommissural organ (SCO). SCO cells differentiate early during embryonic development. In chick embryos, the release into the CSF starts at embryonic day 7 (E7). However, RF does not form until E11, suggesting that a factor other than release is required for RF formation. The aim of the present investigation was to establish whether the factor(s) triggering RF formation is (are) intrinsic or extrinsic to the SCO itself. For this purpose, SCO explants from E13 chick embryos (a stage at which RF has formed) were grafted at two different developmental stages. After grafting, host embryos were allowed to survive for 6–7 days, reaching E9 (group 1) and E13 (group 2). In experimental group 1, the secretion released by the grafted SCOs never formed a RF; instead, it aggregated as a flocculent material. In experimental group 2, grafted SCO explants were able to develop an RF-like structure, similar to a control RF. These results suggest that the factor triggering RF formation is not present in the SCO itself, since E13 SCO secretion forms an RF in E13 brains but never develops RF-like structures when placed in earlier developmental environments. Furthermore, the glycoproteins released by implanted SCOs bind specifically to several structures: the apical portion of the mesencephalic floor plate and the choroid plexus of the third and fourth ventricles.C. Hoyo-Becerra and M. D. López-Avalos contributed equally to this study and should be considered as joint first authors. C. Hoyo-Becerra was the recipient of a predoctoral fellowship (PFPI) from the Ministerio de Ciencia y Tecnología (Spain). This work was supported by grants from DGICYT (BFI2003-03348; Spain) and FIS (01/0948; Spain), FIS (01–0948, PI021517; Spain) and ISCIII (red CIEN, nodo Fundación Carlos Haya).  相似文献   

10.
We used a combination of immunohistochemical and molecular-biological techniques to investigate the localization of transthyretin (TTR) in the brains of adult and fetal rats. The immunohistochemical studies employed antibodies purified by immunosorbent affinity chromatography, permitting the specific staining and localization of TTR using the unlabeled peroxidase-antiperoxidase method. TTR mRNA levels were measured by Northern-blot analysis of poly (A+) RNA, followed by hybridization to 32P-labeled TTR cDNA; TTR mRNA was localized in brain tissue sections by in situ hybridization. Immunoreactive TTR was found to be specifically localized in the choroid plexus epithelial cells of adult rat brain. High levels of TTR mRNA were found in poly (A+) RNA samples obtained from the choroid plexus. In addition, the specific localization of TTR mRNA in the epithelial cells of the choroid plexus was demonstrated by in situ hybridization. Neither immunoreactive TTR nor TTR mRNA were found in other regions of adult rat brains. The levels of TTR mRNA in the choroid plexus were at least 30 times higher than those observed in the adult liver. Immunoreactive TTR was observed in the brains of fetal rats on as early as the 11th day of gestation. This immunoreactive TTR was localized in the tela choroidea, the developmental forerunner of the choroid plexus. Immunoreactive TTR was also observed in the fetal choroid plexus as it began to form (14th day of gestation) as well as in the more completely developed choroid plexus (18th day of gestation).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Summary The subcommissural organs (SCO) of 76 specimens belonging to 25 vertebrate species (amphibians, reptiles, birds, mammals) were studied by use of the immunoperoxidase procedure. The primary antiserum was obtained by immunizing rabbits with bovine Reissner's fiber (RF) extracted in a medium containing EDTA, DTT and urea. Antiserum against an aqueous extract of RF was also produced. The presence of immunoreactive material in cell processes and endings was regarded as an indication of a possible route of passage. Special attention was paid to the relative development of the ventricular, leptomeningeal and vascular pathways established by immunoreactive structures.The SCO of submammalian species is characterized by (i) a conspicuous leptomeningeal connection established by ependymal cells, (ii) scarce or missing hypendymal cells, and (iii) a population of ependymal cells establishing close spatial contacts with blood vessels.The SCO of most mammalian species displays the following features: (i) ependymal cells lacking immunoreactive long basal processes, (ii) hypendymal secretory cells occurring either in a scattered arrangement or forming clusters, (iii) an occasional leptomeningeal connection provided by hypendymal cells, and (iv) in certain species numerous contacts of secretory cells with blood vessels. In the hedgehog immunoreactive material was missing in the ependymal formation of the SCO, but present in hypendymal cells and in the choroid plexuses. The SCO of several species of New-and Old-World monkeys displayed immunoreactive material, whereas that of anthropoid apes (chimpanzee, orangutan) and man was completely negative with the antisera used.Supported by Grant I/38 259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RR-82-18 from the Dirección de Investigaciones, Universidad Austral de Chile.The authors wish to thank Mrs. Elizabeth Santibánez and Mr. Genaro Alvial for valuable technical cooperation, and Dr. P. Fernandez-Llebrez, University of Malaga, for providing the specimens of Natrix maura.  相似文献   

12.
The subcommissural organ secretes N-linked complex-type glycoproteins into the cerebrospinal fluid. These glycoproteins condense to form Reissner’s fiber (RF), which extends along the fourth ventricle and central canal of the spinal cord. A set of three monoclonal antibodies (Mabs 3E6, 3B1, and 2A5) has been obtained using these glycoproteins as immunogens. Competitive and sandwich enzyme-linked immunoassay methods have demonstrated that the three monoclonal antibodies are directed against different epitopes, and that there is no competition among them for their binding to glycoproteins of RF. Mab 3E6 displays immunoblotting properties that are similar to those of a polyclonal antibody against the pool of glycoproteins from RF, but that are different from those of Mabs 3B1 and 2A5. All three antibodies immunostain the bovine subcommissural organ and RF. A population of ependymal cells is stained by the polyclonal antibody, and Mabs 2A5 and 3E6, but not by Mab 3B1. The material present in a population of ependymal cells of the central canal, and the glycoproteins secreted by the subcommissural organ thus probably have partial chemical identity. Some evidence suggests that the immunoreactive ependymal cells are secretory cells. The luminal surface of the central canal is coated by a thin layer of material with immunocytochemical characteristics different from those of the ependymal cells; such a coat may correspond to material released from RF. Received: 19 December 1995 / Accepted: 30 April 1996  相似文献   

13.
In the subcommissural organ (SCO) of the guinea pig, rat, golden hamster, and mouse the activity and distribution of enzymes related to the energy-supplying metabolism and of some marker enzymes of different cell organelles have been investigated by means of mostly modified histochemical methods. The results were compared with findings in the ciliated ependyma of the ventricular wall and with those in the ependyma of the choroid plexus of the third ventricle. In the ependymal part of the SCO only a moderate activity of hexokinase is observed in its specialized columnar cells whereas a high activity is present both in the ciliated ependyma and the choroid plexus. - The staining pattern of glucose-6-phosphatase is similar to that of hexokinase but this enzyme is found is the SCO only. - Likewise hexokinase, glycogen granules and enzymes related to glycogen metabolism (phosphoglucomutase, uridine-diphosphoglucose pyrophosphorylase, glycogen synthetase and phosphorylase) are regularly found most numerous and active in the nuclear and supra-nuclear area of the ependymal part. These enzymes are less active in both the other ependymal regions. - Uridine-diphosphoglucose dehydrogenase could not be demonstrated in the SCO. The NADP-linked enzymes of the pentose phosphate shunt, glucose-6-phosphate and 6-phosphogluconate dehydrogenase, show a moderate activity which decreases also from the nuclear towards the apical area of the ependymal cells of the SCO. Enzymes of the glycolytic pathway, such as glucosephosphate isomerase, fructose-6-phosphate kinase, fructose-I,6-diphosphate aldolase, glyceraldehyde-3-phosphate and lactate dehydrogenase, are highly active in the SCO and are located mainly in the supranuclear area, too. Fructose-1,6-diphosphatase could not be demonstrated thus indicating that in the SCO the pathway is most probably only glycolytic but not gluconeogenetic. Compared to the ependyma of the ventricular wall and of the choroid plexus, in the SCO the M type subunits of lactate dehydrogenase predominate. Glycolytic enzymes are also very active in the choroid plexus but less in the ciliated ependyma. Compared to the ciliated ependyma and especially to the ependyma of the choroid plexus, the activities of enzymes which are only present in mitochondria (NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, NAD-linked malate dehydrogenase after preextraction, cytochrome oxidase, 3-hydroxybutyrate and glycerolphosphate and glutamate dehydrogenase) are relatively low. Mitochondria are accumulated near the superior pole of the nuclei as well as in the most apical part of the ependymal cells. - The staining pattern of NADP-linked isocitrate and malate dehydrogenase as well as of NADH dehydrogenase suggests that these enzymes are localized both in and out of mitochondria. The extramitochondrial activity of the first two enzymes might be localized in the cytosol. The extramitochondrial activity of NADH dehydrogenase might be localized in the endoplasmic reticulum...  相似文献   

14.
Transthyretin is synthesized in the mammalian eye   总被引:2,自引:0,他引:2  
Transthyretin (TTR, prealbumin) is a 55 kDa protein which plays an important role in the plasma transport of thyroxine and retinol. Although the liver and choroid plexus are the two major known sites of TTR synthesis, several lines of evidence suggest the possibility of a separate ocular source of TTR. We report the presence of TTR mRNA in rat and bovine eye and of TTR in rat eye. Preliminary immunohistochemical data indicate that the retinal pigment epithelium is a major site of TTR immunoreactivity in the rat. While the functional significance of ocular TTR synthesis is unclear, TTR may be involved in the ocular translocation and processing of retinol. The finding of TTR synthesis in the eye may explain ocular involvement in the familial amyloidotic polyneuropathies.  相似文献   

15.
Summary Reissner's fiber (RF) of the subcommissural organ (SCO), the central canal and its bordering structures, and the filum terminale were investigated in the bovine spinal cord by use of transmission electron microscopy, histochemical methods and light-microscopic immunocytochemistry. The primary antisera were raised against the bovine RF, or the SCO proper. Comparative immunocytochemical studies were also performed on the lumbo-sacral region of the rat, rabbit, dog and pig.At all levels of the bovine spinal cord, RF was strongly immunoreactive with both antisera. From cervical to upper sacral levels of the bovine spinal cord there was an increasing number of ependymal cells immunostainable with both antisera. The free surface of the central canal was covered by a layer of immunoreactive material. At sacral levels small subependymal immunoreactive cells were observed. From all these structures sharing the same immunoreactivity, only RF was stained by the paraldehyde-fuchsin and periodicacid-Schiff methods.At the ultrastructural level, ependymal cells with numerous protrusions extending into the central canal were seen in the lower lumbar segments, whereas cells displaying signs of secretory activity were principally found in the ependyma of the upper sacral levels. A few cerebrospinal fluid-contacting neurons were observed at all levels of the spinal cord; they were immunostained with an anti-tubulin serum.The lumbo-sacral segments of the dog, rat and rabbit, either fixed by vascular perfusion or in the same manner as the bovine material, did not show any immunoreactive structure other than RF.The possibilities that the immunoreactive ependymal cells might play a secretory or an absorptive role, or be the result of post-mortem events, are discussed.Supported by Grant I/38259 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RS-82-18 from the Dirección de Investigaciones, Universidad Austral de ChileThe authors wish to thank Dr. Enrique Romeny from the Valdivia abattoir for kindly providing the bovine spinal cords  相似文献   

16.
The present investigation was designed to clarify the role of the subcommissural organ (SCO) in the pathogenesis of hydrocephalus occurring in the HTx rat. The brains of non-affected and hydrocephalic HTx rats from embryonic day 15 (E15) to postnatal day 10 (PN10) were processed for electron microscopy, lectin binding and immunocytochemistry by using a series of antibodies. Cerebrospinal fluid (CSF) samples of non-affected and hydrocephalic HTx rats were collected at PN1, PN7 and PN30 and analysed by one- and two-dimensional electrophoresis, immunoblotting and nanoLC-ESI-MS/MS. A distinct malformation of the SCO is present as early as E15. Since stenosis of the Sylvius aqueduct (SA) occurs at E18 and dilation of the lateral ventricles starts at E19, the malformation of the SCO clearly precedes the onset of hydrocephalus. In the affected rats, the cephalic and caudal thirds of the SCO showed high secretory activity with all methods used, whereas the middle third showed no signs of secretion. At E18, the middle non-secretory third of the SCO progressively fused with the ventral wall of SA, resulting in marked aqueduct stenosis and severe hydrocephalus. The abnormal development of the SCO resulted in the permanent absence of Reissner’s fibre (RF) and led to changes in the protein composition of the CSF. Since the SCO is the source of a large mass of sialilated glycoproteins that form the RF and of those that remain CSF-soluble, we hypothesize that the absence of this large mass of negatively charged molecules from the SA domain results in SA stenosis and impairs the bulk flow of CSF through the aqueduct.  相似文献   

17.

Background

Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation.

Methods

We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test.

Results

We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2?>?apoE3?>?apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state.

Conclusions

Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.
  相似文献   

18.
Melatonin content of the cerebrospinal fluid (CSF), serum and choroid plexus was measured in untreated and melatonin-injected cats using the Xenopus laevis melanophore-contracting bioassay. CSF and choroid plexus had a considerable melanophore contracting activity in the untreated animals. Intravenously injected melatonin considerably enhanced the melanophore-contracting activity of the CSF and choroid plexus. Two hours later, melatonin was still present at high concentrations in these tissues, whereas it had considerably diminished in the blood. It is concluded that the choroid plexus concentrates and secretes melatonin into the CSF in a bioactive form.  相似文献   

19.
The osmotic stress is a potent stimulus that can trigger several peripheral as well as central impairments. The brain is a vulnerable target of the osmotic stress and particularly circumventricular organs (CVOs) regarding their strategic localization as sensory organs of biochemical changes in the blood and cerebrospinal fluid circulations. The subcommissural organ (SCO) is a CVO which releases doubly in the CSF and blood circulation a glycoprotein called Reissner's fiber (RF) that has been associated to several functions including electrolyte and water balances. The present work was aimed on the assessment of the secretory activity of the SCO and its serotoninergic innervation following 2 weeks of total water restriction in Wistar rat. Using the immunohistochemistry of RF and serotonin (5HT), our data showed a significant overall reduction of RF immunoreactivity within both ependymal and hypendymal cells of the SCO of dehydrated rats compared to their corresponding controls, this decrease was concomitant with an enhancement of fibers 5HT immunoreactivity in the SCO as well as in the classical ependyma and in the dorsal raphe nucleus (DRN), constituting the origin of this innervation. The present findings support the possible involvement of the SCO in the response to prolonged water deprivation by decreasing its secretory materials which may result from either a direct peripheral hormonal control and/or the consequence of the enhanced 5HT innervation of the SCO.  相似文献   

20.
Summary Ependymal cells in the ventricular wall and in several circumventricular organs of the rat were compared by means of freeze-fracturing. In principle, tight junctions and orthogonal arrays of particles (OAP) do not coexist in the cells bordering the ventricular wall: (1) Ordinary ependymal cells of the rat possess OAP and are devoid of tight junctions. (2) Epithelial cells of the rat choroid plexus are connected by tight junctions; OAP are lacking here. In some cases, however, tight junctions and OAP coexist in the same cell. In the boundary zone between choroid plexus and ependyma of the rat, the density of OAP is very low, whereas the tight junctions are well developed. In the subfornical and the subcommissural organ (SCO) of the rat both structures are poorly developed; in the SCO they occur segregated in different membranous areas. An overview of the literature confirms that tight junctions and OAP mostly exclude each other. The possibility that in astrocytes and ependymal cells tight junctions may have been replaced by OAP during phylogeny is briefly discussed.Dedicated to Professor A. Bohle on the occasion of his 65th birthdayPresent address: Dept. of Biol., Univ. of Oregon, Eugene, Oregon, 97403, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号