首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kato M  Chuang JL  Tso SC  Wynn RM  Chuang DT 《The EMBO journal》2005,24(10):1763-1774
The human pyruvate dehydrogenase complex (PDC) is regulated by reversible phosphorylation by four isoforms of pyruvate dehydrogenase kinase (PDK). PDKs phosphorylate serine residues in the dehydrogenase (E1p) component of PDC, but their amino-acid sequences are unrelated to eukaryotic Ser/Thr/Tyr protein kinases. PDK3 binds to the inner lipoyl domains (L2) from the 60-meric transacetylase (E2p) core of PDC, with concomitant stimulated kinase activity. Here, we present crystal structures of the PDK3-L2 complex with and without bound ADP or ATP. These structures disclose that the C-terminal tail from one subunit of PDK3 dimer constitutes an integral part of the lipoyl-binding pocket in the N-terminal domain of the opposing subunit. The two swapped C-terminal tails promote conformational changes in active-site clefts of both PDK3 subunits, resulting in largely disordered ATP lids in the ADP-bound form. Our structural and biochemical data suggest that L2 binding stimulates PDK3 activity by disrupting the ATP lid, which otherwise traps ADP, to remove product inhibition exerted by this nucleotide. We hypothesize that this allosteric mechanism accounts, in part, for E2p-augmented PDK3 activity.  相似文献   

2.
Pyruvate dehydrogenase kinase isoforms (PDK1-4) are the molecular switch that down-regulates activity of the human pyruvate dehydrogenase complex through reversible phosphorylation. We showed previously that binding of the lipoyl domain 2 (L2) of the pyruvate dehydrogenase complex to PDK3 induces a "cross-tail" conformation in PDK3, resulting in an opening of the active site cleft and the stimulation of kinase activity. In the present study, we report that alanine substitutions of Leu-140, Glu-170, and Glu-179 in L2 markedly reduce binding affinities of these L2 mutants for PDK3. Unlike wildtype L2, binding of these L2 mutants to PDK3 does not preferentially reduce the affinity of PDK3 for ADP over ATP. The inefficient removal of product inhibition associated with ADP accounts for the decreased stimulation of PDK3 activity by these L2 variants. Serial truncations of the PDK3 C-terminal tail region either impede or abolish the binding of wild-type L2 to the PDK3 mutants, resulting in the reduction or absence of L2-enhanced kinase activity. Alanine substitutions of residues Leu-27, Phe-32, Phe-35, and Phe-48 in the lipoyl-binding pocket of PDK3 similarly nullify L2 binding and L2-stimulated PDK3 activity. Our results indicate that the above residues in L2 and residues in the C-terminal region and the lipoyl-binding pocket of PDK3 are critical determinants for the cross-talk between L2 and PDK3, which up-regulates PDK3 activity.  相似文献   

3.
A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies established that Nterm-E1p specifically competes with E1p for binding to the dihydrolipoyl transacetylase component (E2p) of PDHC. Moreover, the experiments show that the N-terminal region of E1p forms an independent folding domain that functions as a binding domain. CD measurements, two-dimensional (2D) (1)H NMR analysis, and secondary structure prediction all indicate that Nterm-E1p has a high alpha-helical content. Here a structural model of the N-terminal domain is proposed. The peptide is present in two conformations, the population of which depends on the sample conditions. The conformations are designated "unfolded" at pH > or =6 and "folded" at pH <5. The 2D (1)H TOCSY spectrum of a mixture of folded and unfolded Nterm-E1p shows exchange cross-peaks that "link" the folded and unfolded state of Nterm-E1p. The rate of exchange between the two species is in the range of 0.5-5 s(-1). Sharp resonances in the NMR spectra of wild-type E1p demonstrate that this 200 kDa enzyme contains highly flexible regions. The observed dynamic character of E1p and of Nterm-E1p is likely required for the binding of the E1p dimer to the two different binding sites on E2p. Moreover, the flexibility might be essential in sustaining the allosteric properties of the enzyme bound in the complex.  相似文献   

4.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

5.
Activity of the mammalian pyruvate dehydrogenase complex is regulated by phosphorylation-dephosphorylation of three specific serine residues (site 1, Ser-264; site 2, Ser-271; site 3, Ser-203) of the alpha subunit of the pyruvate dehydrogenase (E1) component. Phosphorylation is carried out by four pyruvate dehydrogenase kinase (PDK) isoenzymes. Specificity of the four mammalian PDKs toward the three phosphorylation sites of E1 was investigated using the recombinant E1 mutant proteins with only one functional phosphorylation site present. All four PDKs phosphorylated site 1 and site 2, however, with different rates in phosphate buffer (for site 1, PDK2 > PDK4 approximately PDK1 > PDK3; for site 2, PDK3 > PDK4 > PDK2 > PDK1). Site 3 was phosphorylated by PDK1 only. The maximum activation by dihydrolipoamide acetyltransferase was demonstrated by PDK3. In the free form, all PDKs phosphorylated site 1, and PDK4 had the highest activity toward site 2. The activity of the four PDKs was stimulated to a different extent by the reduction and acetylation state of the lipoyl moieties of dihydrolipoamide acetyltransferase with the maximum stimulation of PDK2. Substitution of the site 1 serine with glutamate, which mimics phosphorylation-dependent inactivation of E1, did not affect phosphorylation of site 2 by four PDKs and of site 3 by PDK1. Site specificity for phosphorylation of four PDKs with unique tissue distribution could contribute to the tissue-specific regulation of the pyruvate dehydrogenase complex in normal and pathophysiological states.  相似文献   

6.
7.
Hengeveld AF  de Kok A 《FEBS letters》2002,518(1-3):173-176
The psp (phage-shock protein) operon of Escherichia coli is induced when the bacteria are infected by filamentous phage and under several other stress conditions. The physiological role of the individual Psp proteins is still not known. We demonstrate here that the last gene of the operon, pspE, encodes a thiosulfate:cyanide sulfurtransferase (EC 2.8.1.1; rhodanese). Kinetic analysis revealed that catalysis occurs via a double displacement mechanism as described for other rhodaneses. The K(m)s for SSO3(2-) and CN- were 4.6 and 27 mM, respectively.  相似文献   

8.
Klyuyeva A  Tuganova A  Popov KM 《Biochemistry》2005,44(41):13573-13582
Pyruvate dehydrogenase kinase 2 (PDK2) is a prototypical mitochondrial protein kinase that regulates the activity of the pyruvate dehydrogenase complex. Recent structural studies have established that PDK2 consists of a catalytic core built of the B and K domains and the relatively long amino and carboxyl tails of unknown function. Here, we show that the carboxy-terminal truncation variants of PDK2 display a greatly diminished capacity for phosphorylation of holo-PDC. This effect is due largely to the inability of the transacetylase component of PDC to promote the phosphorylation reaction catalyzed by the truncated PDK2 variants. Furthermore, the truncated forms of PDK2 bind poorly to the lipoyl-bearing domain(s) provided by the transacetylase component. Taken together, these data strongly suggest that the carboxyl tails of PDK isozymes contribute to the lipoyl-bearing domain-binding site of the kinase molecule. We also show that the carboxyl tails derived from isozymes PDK1, PDK3, and PDK4 are capable of supporting the kinase activity of the kinase core derived from PDK2 as well as binding of the respective PDK2 chimeras to the lipoyl-bearing domain. Furthermore, the chimera carrying the carboxyl tail of PDK3 displays a stronger response to the addition of the transacetylase component along with a better binding to the lipoyl-bearing domain, suggesting that, at least in part, the differences in the amino acid sequences of the carboxyl tails account for the differences between PDK isozymes.  相似文献   

9.
The N-terminal domain of thrombospondin-1 (TSPN-1) mediates the protein's interaction with (1) glycosaminoglycans, calreticulin, and integrins during cellular adhesion, (2) low-density lipoprotein receptor-related protein during uptake and clearance, and (3) fibrinogen during platelet aggregation. The crystal structure of TSPN-1 to 1.8 A resolution is a beta sandwich with 13 antiparallel beta strands and 1 irregular strand-like segment. Unique structural features of the N- and C-terminal regions, and the disulfide bond location, distinguish TSPN-1 from the laminin G domain and other concanavalin A-like lectins/glucanases superfamily members. The crystal structure of the complex of TSPN-1 with heparin indicates that residues R29, R42, and R77 in an extensive positively charged patch at the bottom of the domain specifically associate with the sulfate groups of heparin. The TSPN-1 structure and identified adjacent linker region provide a structural framework for the analysis of the TSPN domain of various molecules, including TSPs, NELLs, many collagens, TSPEAR, and kielin.  相似文献   

10.
The dihydrolipoyl acetyltransferase (E2) has an enormous impact on pyruvate dehydrogenase kinase (PDK) phosphorylation of the pyruvate dehydrogenase (E1) component by acting as a mobile binding framework and in facilitating and mediating regulation of PDK activity. Analytical ultracentrifugation (AUC) studies established that the soluble PDK2 isoform is a stable dimer. The interaction of PDK2 with the lipoyl domains of E2 (L1, L2) and the E3-binding protein (L3) were characterized by AUC. PDK2 interacted very weakly with L2 (Kd approximately 175 microM for 2 L2/PDK2) but much tighter with dimeric glutathione S-transferase (GST)-L2 (Kd approximately 3 microM), supporting the importance of bifunctional binding. Reduction of lipoyl groups resulted in approximately 8-fold tighter binding of PDK2 to GST-L2red, which was approximately 300-fold tighter than binding of 2 L2red and also much tighter than binding by GST-L1red and GST-L3red. The E2 60-mer bound approximately 18 PDK2 dimers with a Kd similar to GST-L2. E2.E1 bound more PDK2 (approximately 27.6) than E2 with approximately 2-fold tighter affinity. Lipoate reduction fostered somewhat tighter binding at more sites by E2 and severalfold tighter binding at the majority of sites on E2.E1. ATP and ADP decreased the affinity of PDK2 for E2 by 3-5-fold and adenosine 5'-(beta,gamma-imino)triphosphate or phosphorylation of E1 similarly reduced PDK2 binding to E2.E1. Reversible bifunctional binding to L2 with the mandatory singly held transition fits the proposed "hand-over-hand" movement of a kinase dimer to access E1 without dissociating from the complex. The gain in binding interactions upon lipoate reduction likely aids reduction-engendered stimulation of PDK2 activity; loosening of binding as a result of adenine nucleotides and phosphorylation may instigate movement of lipoyl domain-held kinase to a new E1 substrate.  相似文献   

11.
A homodimer of pyruvate dehydrogenase kinase (PDHK) is an integral part of pyruvate dehydrogenase complex (PDC) to which it is anchored primarily through the inner lipoyl-bearing domains (L2) of transacetylase component. The catalytic cycle of PDHK and its translocation over the PDC surface is thought to be mediated by the "symmetric" and "asymmetric" modes, in which the PDHK dimer binds to two and one L2-domain(s), respectively. Whereas the structure of the symmetric PDHK/L2 complex was reported, the structural organization and functional role of the asymmetric complex remain obscure. Here, we report the crystal structure of the asymmetric PDHK3/L2 complex that reveals several functionally important features absent from the previous structures. First, the PDHK3 subunits have distinct conformations: one subunit exhibits "open" and the other "closed" configuration of the putative substrate-binding cleft. Second, access to the closed cleft is additionally restricted by local unwinding of the adjacent alpha-helix. Modeling indicates that the target peptide might gain access to the PDHK active center through the open but not through the closed cleft. Third, the ATP-binding loop in one PDHK3 subunit adopts an open conformation, implying that the nucleotide loading into the active site is mediated by the inactive "pre-insertion" binding mode. Altogether our data suggest that the asymmetric complex represents a physiological state in which binding of a single L2-domain activates one of the PDHK protomers while inactivating another. Thus, the L2-domains likely act not only as the structural anchors but also modulate the catalytic cycle of PDHK.  相似文献   

12.
The calcium ionophore properties of A23187 and of two lysophosphatidic acid (LPA) analogs (1-palmitoyl- and 1-hexadecyl-sn-glycero-3-phosphate or P-GPA and H-GPA, respectively) were compared using platelet membrane vesicles loaded with 45Ca. Half maximal effect (HME) was obtained at 5 microM and 10 microM for H-GPA and P-GPA, respectively, against 0.7 microM for A23187, which released 2 times more Ca. The three compounds also induced platelet aggregation with a HME at 0.5 microM, 0.3 microM and 0.01 microM for A23187, P-GPA and H-GPA, respectively. The clear dissociation between the two effects appearing for both LPA raises some doubt about the general idea that (lyso) PA participate in cell activation through their calcium ionophore properties.  相似文献   

13.
PDHK is a highly specific enzyme, which inhibits PDC thereby reducing the conversion of pyruvate to AcetylCoA leading to increased glucose and lactate level contributing to various pathological disease states. 3D-QSAR CoMFA studies were performed on diverse PDHK inhibitors based on maximum common substructural alignments of different classes of molecules with the selected reference molecule using a divide and conquer strategy. Statistically robust CoMFA model was obtained with a cross-validated correlation coefficient of 0.561 and conventional correlation coefficient of 0.990. Predictive correlation coefficient r2(pred) was found to be 0.875.  相似文献   

14.
Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. Previously, the cloning of a PDHK cDNA from Arabidopsis thaliana and the effects of constitutively down-regulating its expression on plant growth and development has been reported. The first detailed analyses of the biochemical and physiological effects of partial silencing of the mtPDHK in A. thaliana using antisense constructs driven by both constitutive and seed-specific promoters are reported here. The studies revealed an increased level of respiration in leaves of the constitutive antisense PDHK transgenics; an increase in respiration was also found in developing seeds of the seed-specific antisense transgenics. Both constitutive and seed-specific partial silencing of the mtPDHK resulted in increased seed oil content and seed weight at maturity. Feeding 3-(14)C pyruvate to bolted stems containing siliques (constitutive transgenics), or to isolated siliques or immature seeds (seed-specific transgenics) confirmed a higher rate of incorporation of radiolabel into all seed lipid species, particularly triacylglycerols. Neither constitutive nor seed-specific partial silencing of PDHK negatively affected overall silique and seed development. Instead, oil and seed yield, and overall plant productivity were improved. These findings suggest that a partial reduction of the repression of the mtPDC by antisense PDHK expression can alter carbon flux and, in particular, the contribution of carbon moieties from pyruvate to fatty acid biosynthesis and storage lipid accumulation in developing seeds, implicating a role for mtPDC in fatty acid biosynthesis in seeds.  相似文献   

15.
Tuganova A  Klyuyeva A  Popov KM 《Biochemistry》2007,46(29):8592-8602
Pyruvate dehydrogenase kinase 2 (PDHK2) is a unique mitochondrial protein kinase that regulates the activity of the pyruvate dehydrogenase multienzyme complex (PDC). PDHK2 is an integral component of PDC tightly bound to the inner lipoyl-bearing domains (L2) of the dihydrolipoyl transacetylase component (E2) of PDC. This association has been reported to bring about an up to 10-fold increase in kinase activity. Despite the central role played by E2 in the maintenance of PDHK2 functionality in the PDC-bound state, the molecular mechanisms responsible for the recognition of L2 by PDHK2 and for the E2-dependent PDHK2 activation are largely unknown. In this study, we used a combination of molecular modeling and site-directed mutagenesis to identify the amino acid residues essential for the interaction between PDHK2 and L2 and for the activation of PDHK2 by E2. On the basis of the results of site-directed mutagenesis, it appears that a number of PDHK2 residues located in its R domain (P22, L23, F28, F31, F44, L45, and L160) and in the so-called "cross arm" structure (K368, R372, and K391) are critical in determining the strength of the interaction between PDHK2 and L2. The residues of L2 essential for recognition by PDHK2 include L140, K173, I176, E179, and to a lesser extent D164, D172, and A174. Importantly, certain PDHK2 residues forming interfaces with L2, i.e., K17, P22, F31, F44, R372, and K391, are also critical for the maintenance of enhanced PDHK2 activity in the E2-bound state. Finally, evidence that the blood glucose-lowering compound AZD7545 disrupts the interactions between PDHK2 and L2 and thereby inhibits PDHK2 activity is presented.  相似文献   

16.
17.
根据酪氨酸激酶EphB2受体的碱基序列,用PCR方法扩增其结合配体的关键结构域N端球状区,定向克隆到融合表达质粒载体rRSET A中,转化大肠杆菌JM109(DE3)。阳性克隆经IPTG诱导,由T7启动子调控表达了氨基端带6个连续组氨酸残基的融合蛋白。电泳分析表明,表达的融合蛋白主要以包含体的形式存在,约占细菌总蛋白的14%。Western印迹确证,利用Ni-NTA金属螯合亲和色谱法在变性条件下对  相似文献   

18.
c-Fms, a member of the Platelet-derived Growth Factor (PDGF) receptor family of receptor tyrosine kinases (RTKs), is the receptor for macrophage colony stimulating factor (CSF-1) that regulates proliferation, differentiation and survival of cells of the mononuclear phagocyte lineage. Abnormal expression of c-fms proto-oncogene is associated with a significant number of human pathologies, including a variety of cancers and rheumatoid arthritis. Accordingly, c-Fms represents an attractive therapeutic target. To further understand the regulation of c-Fms, we determined the 2.7 A resolution crystal structure of the cytosolic domain of c-Fms that comprised the kinase domain and the juxtamembrane domain. The structure reveals the crucial inhibitory role of the juxtamembrane domain (JM) that binds to a hydrophobic site immediately adjacent to the ATP binding pocket. This interaction prevents the activation loop from adopting an active conformation thereby locking the c-Fms kinase into an autoinhibited state. As observed for other members of the PDGF receptor family, namely c-Kit and Flt3, three JM-derived tyrosine residues primarily drive the mechanism for autoinhibition in c-Fms, therefore defining a common autoinhibitory mechanism within this family. Moreover the structure provides an understanding of c-Fms inhibition by Gleevec as well as providing a platform for the development of more selective inhibitors that target the inactive conformation of c-Fms kinase.  相似文献   

19.
Klyuyeva A  Tuganova A  Popov KM 《FEBS letters》2007,581(16):2988-2992
Dichloroacetate (DCA) is a promising anticancer and antidiabetic compound targeting the mitochondrial pyruvate dehydrogenase kinase (PDHK). This study was undertaken in order to map the DCA-binding site of PDHK2. Here, we present evidence that R114, S83, I157 and, to some extent, H115 are essential for DCA binding. We also show that Y80 and D117 are required for the communication between the DCA-binding site and active site of PDHK2. These observations provide important insights into the mechanism of DCA action that may be useful for the design of new, more potent therapeutic compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号