首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

2.
Summary To identify the mildew resistance locus Mla in barley with molecular markers, closely linked genomic RFLP clones were selected with the help of near-isogenic lines having the Pallas and Siri background. Out of 22 polymorphic clones 3 were located around the Mla locus on chromosome 5 with a distance of 5.1 + 2.9 cM (MWG 1H068), 4.2±1.7 cM (MWG 1H060) and 0.7 ± 0.7 cM (MWG 1H036), respectively. The polymorphic clone MWG 1H036 displayed the same RFLP pattern in both Pallas and Siri near-isogenic lines and in different varieties digested with six restriction enzymes possessing the same mildew resistance gene. The alleles of the Mla locus were grouped in 11 classes according to their specific RFLP patterns; 3 of these groups contain the majority of Mla alleles already used in barley breeding programs in Europe.  相似文献   

3.
Summary The complex structure of the multigene family at the Mla locus conferring powdery mildew resistance in barley was studied by making diallel crosses between several near-isogenic lines carrying different Mla alleles. The mode of inheritance of the Mla alleles investigated was determined to be dominant for Mla1, Mla6, Mla7 and Mla13 and semidominant for Mla3, Mla12 and Mla20. F1 plants were backcrossed to the susceptible recurrent parent in order to identify susceptible and double-resistant recombinants in the BC1F1 generation. Out of 17605 progenies tested in the BC1F1 generation, two susceptible recombinants, one between Mla1 and Mla12 and one between Mla13 and Mla20 were confirmed. The former was also verified by RFLP analysis.  相似文献   

4.
The chromosomal location of a suppressor for the powdery mildew resistance genes Pm8 and Pm17 was determined by a monosomic set of the wheat cultivar Caribo. This cultivar carries a suppressor gene inhibiting the expression of Pm8 in cv Disponent and of Pm17 in line Helami-105. In disease resistance assessments, monosomic F1 hybrids (2n=41) of Caribo x Disponent and Caribo x Helami-105 lacking chromosome 7D were resistant, whereas monosomic F1 hybrids involving the other 20 chromosomes, as well as disomic F1 hybrids (2n=42) of all cross combinations, were susceptible revealing that the suppressor gene for Pm8 and Pm17 is localized on chromosome 7D. It is suggested that genotypes without the suppressor gene be used for the exploitation of genes Pm8 and Pm17 in enhancing powdery mildew resistance in common wheat.  相似文献   

5.
Pm6 in bread wheat (Triticum aestivum L.), which was transferred from Triticum. timopheevii L., is a gene conferring resistance to the powdery mildew disease caused by Erysiphe graminis f. sp. tritici. Six near-isogenic lines ( NILs ) of Pm6 in a cultivar ’Prins’ background were analyzed to map this gene using restriction fragment length polymorphism (RFLP). Each of the six NILs possessed a T. timopheevii-derived segment, varying in length, and associated with powdery mildew resistance. Lines IGV1–465 (FAO163b/ 7*Prins) and IGV1–467 (Idaed 59B/7*Prins) had the shortest introgressed segments, which were detected only by DNA probes BCD135 and PSR934, respectively. The polymorphic loci detected by both probes were mapped to the long arm of chromosome 2B. Lines IGV1–458 (CI13250/7*Prins) and IGV1–456 (CI12559/8*Prins) contained the longest T. timopheevii segments involving both arms of donor chromosome 2G across the centromere. All these introgressed segments had an overlapping region flanked by the loci xpsr934 and xbcd135 on 2BL. Thus, Pm6 was located in this region since the powdery mildew resistance in all the NILs resulted from the introgressed fragments. Using the F2 mapping population from a cross of IGV1–463 (PI170914/7*Prins)×Prins, Pm6 was shown to be closely linked to the loci xbcd135 and xbcd266 at a genetic distance of 1.6 cM and 4.8 cM, respectively. BCD135 was successfully used in detecting the presence of Pm6 in different genetic backgrounds. Received: 29 June 1999 / Accepted: 6 July 1999  相似文献   

6.
A set of differential isolates of Blumeria graminis f.sp. tritici was used to identify 10 alleles at the Pm3 locus on the short arm of chromosome 1A. Three F3 populations were used to map Pm3h in Abessi, Pm3i in line N324, and Pm3j alleles in GUS 122 relative to microsatellite markers. In total, 13 marker loci were mapped on chromosome 1AS and 1 marker on 1AL. The order of marker loci in the 3 mapping populations is consistent with previously published maps. All 3 alleles were mapped in the distal region of chromosome 1AS. The present study indicated that microsatellite markers are an ideal marker system for comparative mapping of alleles at the same gene locus in different mapping populations. The linkage distances of the closest microsatellite marker, Xgwm905-1A, to Pm3h, Pm3i, and Pm3j were 3.7 cM, 7.2 cM, and 1.2 cM, respectively. The microsatellite marker Xgwm905-1A cannot be used to distinguish between Pm3 alleles. The development of specific markers for individual Pm3 alleles is discussed on the basis of the recently cloned Pm3b allele.  相似文献   

7.
Summary Restriction fragment length polymorphism (RFLP) markers linked to genes controlling Hessian fly resistance from Triticum tauschii (Coss.) Schmal. were identified for two wheat (Triticum aestivum L.) germ plasm lines KS89WGRC3 (C3) and KS89WGRC6 (C6). Forty-six clones with loci on chromosomes of homoeologous group 3 and 28 clones on those of group 6 were surveyed for polymorphisms. Eleven and 12 clones detected T. tauschii loci in the two lines, respectively. Analysis of F2 progenies indicated that the Hessian fly resistance gene H23 identified in C3 is linked to XksuH4 (6.9 cM) and XksuG48 (A) (15.6 cM), located on 6D. The resistance gene H24 in C6 is linked to XcnlBCD451 (5.9 cM), XcnlCD0482 (5.9 cM) and XksuG48 (B) (12.9 cM), located on 3DL.Paper No. 810 of the Cornell Plant Breeding Series  相似文献   

8.
Total DNAs of plants regenerated from immature embryo-derived 2-month-old embryogenic calli of wheat (cultivars Florida 302, Chris, Pavon, RH770019) were probed with six maize mitochondrial genes (atpA, atp6, apt9, coxI, coxII, rrn18-rrn5), three hypervariable wheat mitochondrial clones (K, K3, X2), five random pearl millet mitochondrial clones (4A9, 4D1, 4D12, 4E1, 4E11) and the often-used wheat Nor locus probe (pTA71), in order to assess the molecular changes induced in vitro. In addition, protoplast-derived plants, and 24-month-old embryogenic and non-embryogenic calli and cell suspension cultures of Florida 302 were also analyzed. No variation was revealed by the wheat or millet mitochondrial clones. Qualitative variation was detected in the nonembryogenic suspension culture by three maize mitochondrial genes (coxI, rrn18-rrn5, atp6). A callus-specific 3.8-kb Hind III fragment was detected in all four cultivars after hybridization with the coxI gene. The organization of the Nor locus of the plants regenerated from Florida 302 and Chris was stable when compared to their respective control plants and calli. The Nor locus in regenerants of Pavon and RH, on the other hand, was found to be variable. However, Nor locus variability was not observed in 14 individual seed-derived control plants from either Pavon or RH sources. In Pavon, a 3.6-kb Taq I or a 5.6-kb Bam HI+ Eco RI fragment was lost after regeneration. In one of the RH regenerants, which lost a fragment, an additional fragment was observed.  相似文献   

9.
Summary In the progeny of a hybrid between monotelosomic line 3B of Chinese Spring wheat and Chinese Spring — Aegilops longissima ditelosomic addition line G a cytologically stable strain was selected consisting of 20 wheat chromosome pairs, one pair of telosomic chromosome 3BL and one pair of telosomic longissima chromosome G. Inoculating Chinese Spring — Aegilops longissima addition and substitution lines with ten different powdery mildew isolates, partial resistance was observed. The infection grade as well as the number of spores/cm2 leaf area were significantly reduced.  相似文献   

10.
Nullisomic analysis of waxy (Wx) protein of hexaploid wheat (Triticum aestivum L.) cv. “Chinese Spring” using two-dimensional polyacrylamide gel electrophoresis revealed that threeWx loci,Wx-A1, Wx-B1, andWx-D1, located on chromosome arms 7AS, 4AL, and 7DS, produce three distinct Wx subunit groups, subunit group-A (SGA), SGB, and SGD, respectively. SGA has a higher molecular weight and a more basic isoelectric point (pI) than the other two. SGB and SGD have the same molecular weight but a slightly different pI range. Owing to the detection of these three subunit groups, we were able to identify the expression of three waxy genes in wheat endosperm and to find two types of mutants among Japanese wheat cultivars, one lacking SGA and the others SGB. These results suggest the possibility of breeding a waxy wheat.  相似文献   

11.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

12.
Summary Using thin-layer chromatography and nulli-tetrasomic and ditellosomic series of Triticum aestivum L. cv. Chinese Spring, it has been possible to relate the phenolic compounds found in adult plant leaves and 12 day-old seedling leaves with the chromosomes or chromosome arms 1 B, 2 BL, 3 BL, 5 A, 6 AL, 7 B and 7 DS.  相似文献   

13.
The present investigation was undertaken in order to select the surface-sterilization technique most efficient for eliminating epiphytes, to document the spectrum of endophytes of healthy leaves from three wheat cultivars in Buenos Aires Province (Argentina) and to determine their infection frequencies at three growth stages. Surface-sterilization with undiluted commercial solution of sodium hypochlorite was reaffirmed as adequate for removing epiphytes on wheat leaves. From the 450 wheat leaf segments incubated, three bacterial isolates and 130 fungal isolates were obtained. From all the isolates, 19 fungal species were identified. Bacterial isolates were characterized as Bacillus sp. There were significant differences between microorganisms, stages of growth, and stages × microorganisms interaction. Differences between cultivars, stages × cultivars, microorganisms × cultivars and for the triple interaction were not significant. Frequency of microorganisms isolated increased with crop age, but it was statistically similar for the three wheat cultivars tested (Klein Centauro, Klein Dragón and Buck Ombú). Rhodotorula rubra, Alternaria alternata, Cladosporium herbarum and Epicoccum nigrum were isolated in the highest frequency. The other microorganisms were present at intermediate or low values. The species isolated may be assigned to three groups: (a) well-known and economically important pathogens of wheat, (b) commonly abundant phylloplane fungi considered to be primary saprobic and minor pathogens and (c) species occasionally present in wheat.  相似文献   

14.
Genetic characterization of powdery mildew resistance genes were conducted in common wheat cultivars Hope and Selpek possessing resistance gene Pm5, cvs. Ibis and Kormoran expressing resistance gene Mli, a backcross-derived line IGV 1–455 and a Triticum sphaerococcum var. rotundatum Perc. line Kolandi. Monosomic analyses revealed that one major recessive gene is located on chromosome 7B in the lines IGV 1–455 and Kolandi. Allelism tests of the F2 and F3 populations involving the tested resistant lines crossed with either cv. Hope or Selpek indicated that their resistance genes are alleles at the Pm5 locus. The alleles are now designated Pm5a in Hope and Selpek, Pm5b in Ibis and Kormoran, Pm5c in T. sphaerococcum var. rotundatum line Kolandi, and Pm5d in backcross-derived line IGV 1–455, respectively. Received: 5 November 1999 / Accepted: 14 April 2000  相似文献   

15.
Molecular analysis of the transgenes bar and gus was carried out over successive generations in six independent transgenic lines of wheat, until the plants attained homozygosity. Data on expression and integration of the transgenes is presented. Five of the lines were found to be stably transformed, duly transferring the transgenes to the next generation. The copy number of the transgenes varied from one to five in the different lines. One line was unstable, first losing expression of and then eliminating both the transgenes in R3 plants. Although the gus gene was detected in all the lines, GUS expression had been lost in R2 plants of all but one line. Rearrangement of transgene sequences was observed, but it had no effect on gene expression. All the stable lines were found to segregate for transgene activity in a Mendelian fashion.  相似文献   

16.
Phosphoglucoisomerase from cytosol of immature wheat endosperm was purified 650-fold by ammonium sulphate fractionation, isopropyl alcohol precipitation, DEAE-cellulose chromatography and gel filtration through Sepharose CL-6B. The enzyme, with a molecular weight of about 130,000, exhibited maximum activity at pH 8.1. It showed typical hyperbolic kinetics with both fructose 6-P and glucose 6-P withK m of 0.18 mM and 0.44mM respectively. On either side of the optimum pH, the enzyme had lower affinity for the substrates. Using glucose 6-P as the substrate, the equilibrium was reached at 27% fructose 6-P and 73% glucose 6-P with an equilibrium constant of 2.7. The ΔF calculated from the apparent equilibrium constant was +597 cal mol-1. The activation energy calculated from the Arrhenius plot was 5500 cal mol-1. The enzyme was completely inhibited by ribose 5-P, ribulose 5-P and 6-phosphogluconate, withK i values of 0.17, 0.25 and 0.14 mM respectively. The probable role of the enzyme in starch biosynthesis is discussed.  相似文献   

17.
Summary The ability of immature embryos of wheat (Triticum aestivum L.) to respond in cell culture was examined in crosses between the Wichita monosomic series and a highly regenerable line, ND7532. Segregation in disomic controls and 13 monosomic families showed a good fit to a monogenic ratio indicating a qualitative mode of inheritance. Segregation in the cross involving monosomic 2D showed a high frequency of regeneration (93.6%) and high callus growth rate (1.87 g/90 days) indicating that 2D is a critical chromosome. Modifying genes may be located on other chromosomes. Substitution of chromosomes from a low regenerable cultivar Vona further indicated that the group 2 chromosomes, in particular chromosome 2D, possess genetic factors promoting callus growth and regeneration.  相似文献   

18.
Zinc (Zn) is an essential micronutrient for human beings. However, Zn malnutrition has become a major problem throughout the world. Wheat is the most important food crop in the world, therefore, developing Zn-enriched wheat varieties provides an effective approach to reduce Zn malnutrition in human beings. The aim of this study was to understand the genetic control of grain Zn density in wheat and hence, to provide genetic basis for breeding wheat with high grain Zn density using molecular approach. A doubled haploid (DH) population developed from a cross between winter wheat varieties Hanxuan10 and Lumai 14 was used to identify quantitative trait loci (QTLs) for Zn concentration and content in wheat grains. In addition, phosphorus (P) concentration and content in wheat grain were also investigated to examine possible interactions between these two nutrients. The wheat grains used in this study were harvested from the plants grown under normal condition in a field trial. We found the grain Zn concentrations of the DH population varied from 25.9 to 50.5 mg/kg and the Zn content varied from 0.90 to 2.21 μg/seed. The grain P concentrations of the DH population varied from 0.258 to 0.429 mg/kg, and the P contents varied from 0.083 to 0.186 mg/seed. A significant positive correlation was observed between Zn and P density in this experiment. The results showed that both grain Zn and P densities were controlled by polygenes. Four and seven QTLs for Zn concentration and Zn content were detected, respectively. All the four QTLs for Zn concentration co-located with the QTLs for Zn content, suggesting a possibility to improve both grain Zn concentration and content simultaneously. Four and six QTLs for P concentration and P content were detected, respectively. The two QTLs for grain Zn concentration on chromosomes 4A and 4D co-located with the QTLs for P concentration. The four QTLs for grain Zn content on chromosome 2D, 3A and 4A co-located with the QTLs for P contents, reflecting the positive correlations between the grain Zn and P density, and providing possibility of improving grain micro- and macronutrient density simultaneously in wheat. In order to improve human health, the effect of P–Zn relation in grain on the Zn bioavailability should also be considered in the future work.  相似文献   

19.
The aims of this study were to describe the distribution of magnesium (Mg) and its retranslocation within wheat, in order to develop diagnostic procedures for Mg deficiency. Plants were grown in solution culture with both constant supply (0, 5, 10, 20, 40, 80, 160 MMg) and discontinued supply (40 M and 160 M decreased to nil).Magnesium was depleted from old leaves when Mg supply to the roots was halted. However, initial deficiency symptoms occurred on young leaves under constant but inadequate supply, contrasting with previous reports. Magnesium concentrations were also lower in young leaves compared to old leaves. Symptoms of yellowing and necrosis occurred if the leaf tissue contained <1194 gg–1, irrespective of leaf age. The minimum Mg concentration in whole shoots associated with maximum shoot weight was 932 gg–1; for the youngest emerged blade (YEB) it was 861 gg–1. Symptoms were apparent on the young leaf before a reduction in shoot weight was measurable. The concentration of Mg in the YEB and whole shoot were better related to solution Mg concentration than was the Mg concentration in the old leaf.  相似文献   

20.
Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号