首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nolan WG  Smillie RM 《Plant physiology》1977,59(6):1141-1145
The effect of temperature on Hill activity has been compared in chilling-sensitive and chilling-resistant plants. The Arrhenius activation energy (Ea) for the photoreduction of 2,6-dichlorophenolindophenol by chloroplasts isolated from two chilling-sensitive plants, mung bean (Vigna radiata L. var. Mungo) and maize (Zea mays L. cv. PX 616), increased at low temperatures, below 17 C for mung bean and below 11 C for maize. However, the Ea for this reaction in pea (Pisum sativum L. cv. Massay Gem), a chilling-resistant plant, likewise increased at temperatures below 14 C. A second change in Ea occurred at higher temperatures. The Ea decreased above about 28 C for mung bean, 30 C for maize, and 25 C for pea. At temperatures approaching 40 C, thermal inactivation of Hill activity occurred. These results, when taken together with previous results obtained with the chilling-resistant plant barley, indicate that chloroplasts from both chilling-sensitive and chilling-resistant plants can undergo a change in chloroplast membrane activity at low temperatures above freezing and that the presence of such a change in chloroplast membranes is not necessarily correlated with chilling sensitivity.  相似文献   

2.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

3.
Severe photoinactivation of catalase (EC 1.11.1.6) and a decline of variable fluorescence (Fv), indicating photoinhibition of photosynthesis, were observed as rapid and specific symptoms in leaves exposed to a high heat-shock temperature of 40°C as well as in leaves exposed to low chilling temperatures in white light of only moderately high photosynthetic photon flux density of 520 μE m−2 s−1. Other parameters, such as peroxidase (EC 1.11.1.7), glycolate oxidase (EC 1.1.3.1), glutathione reductase (EC 1.6.4.2), or the chlorophyll content, were hardly affected under these conditions. At a compatible temperature of 22°C, the applied light intensity did not induce severe photoinactivations. In darkness, exposures to high or low temperatures did not affect catalase levels. Also, decline of Fv in light was not related to temperature sensitivity in darkness. The effective low-temperature ranges inducing photoinactivation of catalase differed significantly for chilling-tolerant and chilling-sensitive plants. In leaves of rye (Secale cereale L.) and pea (Pisum sativum L.), photoinactivation occurred only below 15°C, whereas inactivation occurred at 15°C in cucumber (Cucumis sativus L.) and maize (Zea mays L.). The behavior of Fv was similar, but the difference between chilling-sensitive and chilling-tolerant plants was less striking. Whereas the catalase polypeptide, although photoinactivated, was not cleaved at 0 to 4°C, the D1 protein of photosystem II was greatly degraded during the low-temperature treatment of rye leaves in light. Rye leaves did not exhibit symptoms of any major general photodamage, even when they were totally depleted of catalase after photoinactivation at 0 to 4°C, and catalase recovered rapidly at normal temperature. In cucumber leaves, the decline of catalase after exposures to bright light at 0 to 4°C was accompanied by bleaching of chlorophyll, and the recovery observed at 25°C was slow and required several days. Similar to the D1 protein of photosystem II, catalase differs greatly from other proteins by its inactivation and high turnover in light. Inasmuch as catalase and D1 protein levels depend on continuous repair synthesis, preferential and rapid declines are generally to be expected in light whenever translation is suppressed by stress actions, such as heat or chilling, and recovery will reflect the repair capacity of the plants.  相似文献   

4.
The effects of exposure to low temperature on photosynthesis and protein phosphorylation in chilling-sensitive and cold-tolerant plant species were compared. Chilling temperatures resulted in light-dependent loss of photosynthetic electron transport in chilling-sensitive rice (Oryza sativa L.) but not in cold-tolerant barley (Hordeum vulgare L.). Brief exposure to chilling temperatures (0-15°C, 10 min) did not cause a significant difference in photosynthetic O2 evolution capacity in vivo between rice and barley. Analysis of in vivo chlorophyll fluorescence in chilling-sensitive rice suggests that low temperatures cause an increased reduction of the plastoquinone pool that could result in photoinhibitory damage to the photosystem II reaction centers. Analysis of 32P incorporation into thylakoid proteins both in vivo and in vitro demonstrated that chilling temperature inhibited protein phosphorylation in rice, but not in barley. Low temperature (77 K) fluorescence analysis of isolated thylakoid membranes indicated that state I to state II transitions occurred in barley, but not in rice subjected to chilling temperatures. These observations suggest that protein phosphorylation may play an important role in protection against photoinhibition caused by exposure to chilling temperatures.  相似文献   

5.
The effect of chilling temperatures (5°C) on chlorophyll fluorescence transients was used to study chilling-induced inhibition of photosynthesis in plant species with differing chilling sensitivities. A Brancker SF-20 fluorometer was used to measure induced fluorescence transients from both attached and detached leaves of chilling-sensitive cucumber (Cucumis sativus L. cv Ashley) and chilling-resistant pea (Pisum sativum L. cv Alaska). The rate of reappearance of the variable component of fluorescence (Fv), following a period of illumination at 25°C, was dependent on the temperature at which the leaf was allowed to dark adapt in chilling-sensitive cucumber, but not in chilling-resistant pea. In cucumber, dark adaptation at 25°C following illumination resulted in a much faster return of Fv than dark adaptation at 5°C following illumination. However, Fv reappearance during the dark adaptation period in chilling-resistant pea was temperature independent. The difference in the temperature response of Fv following illumination correlated with temperature sensitivity of these two species. The process responsible for the difference in Fv may represent a site of chilling sensitivity in the photosynthetic apparatus.  相似文献   

6.
The effects of chilling on ethylene production by leaf discs and whole plants of bean (chilling-sensitive) and pea (chilling-tolerant) were studied. When pea or bean leaf discs were excised and incubated at 25°C, transient increases in ethylene production and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation were observed. Both pea and bean discs kept at 5°C evolved little ethylene, but levels of ACC increased in pea discs and not in bean discs. When discs of either species were chilled at 5°C immediately after excision and then transferred to 25°C 9 h later, increases in their ACC levels and ethylene production rates were observed. Discs were also incubated at 25°C for 12 h to allow excision-induced ethylene production to subside and then chilled at 5°C. Nine hours later, these discs were transferred to 25°C, and an increase in ethylene production was observed. These data indicate that chilling suppresses excision-induced ethylene production and enhances the production of ethylene after transfer to 25°C. Chilling of whole plants resulted in increased production of ethylene and ACC in the chilling-sensitive bean but not in the chilling-tolerant pea. Treatment of bean plants with the ethylene antagonists silver thiosulfate, norbornadiene, or aminooxyacetic acid, or of pea plants with ethylene, did not affect the appearance of chilling injury symptoms, indicating that ethylene does not induce injury symptoms and may not have an adaptive role in chilling stress.  相似文献   

7.
Photoinhibition was examined in paraquat-resistant and paraquat-susceptible biotypes of Hordeum glaucum Steud., Hordeum leporinum Link., Arctotheca calendula (L.) Levyns., and Conyza bonariensis (L.) Cronq. Plants were photoinhibited at low temperature, and the extent of photoinhibition determined by O2 evolution and 77 K fluorescence. No difference in the degree of photoinhibition was detected between paraquat-resistant and paraquat-susceptible biotypes for any of the species examined. C. bonariensis plants were also photoinhibited by treatment without CO2 at either 21% (volume/volume) O2 or 4% (volume/volume) O2, and again no difference was observed between the paraquat-resistant and paraquat-susceptible biotypes in reduction of the ratio of variable fluorescence to maximal fluorescence. This is in contrast to a recent report (MAK Jansen, Y Shaaltiel, D Kazzes, O Canaani, S Malkin, J Gressel, [1989] Plant Physiol 91: 1174-1178 in which it was claimed that a paraquat-resistant biotype of C. bonariensis was more tolerant of photoinhibition than a paraquat-susceptible biotype. We conclude that paraquat-resistant biotypes of these plant species are not more tolerant of photoinhibition when compared with the paraquat-susceptible biotypes.  相似文献   

8.
The effects of chilling on the photosynthesis of a chilling-resistant species, pea (Pisum sativum L. cv Alaska) and a chilling-sensitive species, cucumber (Cucumis sativus L. cv Ashley) were compared in order to determine the differences in the photosynthetic chilling sensitivity of these two species. For these experiments, plants were chilled (5°C) for different lengths of time in the dark or light. Following a 1 hour recovery period at 25°C, photosynthetic activity was measured by gas exchange (CO2 uptake and H2O release), quantum yield, and induced chlorophyll fluorescence. The results show that pea photosynthesis was largely unaffected by two consecutive nights of chilling in the dark, or by chilling during a complete light and dark cycle (15 hours/9 hours). Cucumber gas exchange was reduced by one night of chilling, but its quantum yield and variable fluorescence were unaffected by dark chilling. However, chilling cucumber in the light led to reduced CO2 fixation, increased internal leaf CO2 concentration, decreased quantum yield, and loss of variable fluorescence. These results indicate that chilling temperatures in conjunction with light damaged the light reactions of photosynthesis, while chilling in the dark did not.  相似文献   

9.
The leaves of chilling-sensitive pumpkin (Cucurbita pepo L.) showed symptoms reminiscent of photoinhibition when kept for 4 days at 5°C in moderate light. A decrease was observed in the variable part of chlorophyll α fluorescence, apparent quantum yield, and maximum rate of O2 evolution. Chloroplast whole-chain electron transport activity measured from chloroplast thylakoids had decreased to 51% of the control value. Photosystem II (PSII) activity decreased by only 9%, suggesting that photoinhibition was not responsible for the loss of electron transport activity. An increase in the proportion of PSIIβ (measured as a βmax value) was observed after the chilling treatment. Fractionation of thylakoid membranes showed a 42% increase in PSII activity in the nonappressed region while that in the appressed region decreased slightly. This was accompanied by a decrease in the ratio of the length of appressed to nonappressed thylakoid membranes. Leaf photosynthesis largely recovered within 24 hours of returning to the original growth conditions. We suggest that the increase in the proportion of PSIIβ during chilling in light plays a role in protecting PSII from photoinhibitory damage.  相似文献   

10.
The effect of a chilling stress, at a moderate photon flux density for a few hours, on the peroxidation of membrane lipids and on superoxide dismutase (SOD) activity was compared in leaf slices of chilling-sensitive and chilling-insensitive plants. The aim was to determine if susceptibility to chill-temperature photoinhibition could be related to either damage to membrane lipids by superoxide and-or a decrease in activity of chloroplast SOD. Plants used were Nerium oleander L., grown at 45° C, and Cucumis sativus L., both susceptible to chill-temperature photoinhibition, and N. oleander, grown at 20° C and Spinacia oleracea L., both insensitive to chill-temperature photoinhibition. Lipid peroxidation was assessed by measuring the concentration of malondialdehyde (MDA). Leaf slices from all plants showed a basal level of MDA which decreased by about 15% when the leaf slices were chilled in the light. The level of MDA was not increased by the addition of either KHCO3 or methyl viologen during chilling but it was increased, up to threefold, by the addition of Rose Bengal, which produces singlet oxygen. Chloroplast SOD activity was assessed in leaf extracts as the cyanide-sensitive production of H2O2 in a system which produced superoxide. Activity of SOD was similar in all the plants and was altered little by chilling. The results show that for the plants tested, chilling at a moderate photon flux density for 5 h does not increase the susceptibility of cell membranes to peroxidative damage nor does it decrease the activity of SOD. It was concluded that the susceptibility of chilling-sensitive plants to chill-temperature photoinhibition cannot be explained on the basis of differences in the vulnerability of membrane lipids to damage by superoxide or differences in SOD activity.Abbreviations Chl chlorophyll - MDA malondialdehyde - MV methyl viologen - O 2 - superoxide - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density - SOD superoxide dismutase Deceased  相似文献   

11.
Chilling-induced photooxidation was studied in detached leaves of chilling-sensitive (CS) cucumber (Cucumis sativus L.) and chilling resistant (CR) pea (Pisum sativum L.). The rates of photosynthesis and respiration, measured as O2 exchange, were found to be comparable in the two species over a temperature range of 5 to 35°C. Chilling at 5°C for 12 hours in high light (1000 microeinsteins per square meter per second) decreased CO2 uptake 75% in detached pea leaves whereas CO2 uptake by cucumber was reduced to zero within 2 hours. Respiration was unaffected in either species by the chilling and light treatment. Although ultrastructural alterations were apparent in chloroplasts of both species, cucumber's were affected sooner and more severely. The mechanism of photooxidative lipid peroxidation was investigated by following the production of ethane gas under a variety of conditions. Maximum ethane production occurred in the CS cucumber at low temperature (5°C) and high light (1000 microeinsteins per square meter per second). Atrazine, an inhibitor of photosynthetic electron transport, almost completely halted this chilling- and light-induced ethane production. These data, taken with those reported in an accompanying article (RR Wise, AW Naylor 1986 Plant Physiol 83: 278-282) suggest that the superoxide anion radical is generated in cucumber chloroplasts (probably via a Mehler-type reaction) during chilling-enhanced photooxidation. Parallel experiments were conducted on pea, a CR species. Detached pea leaves could only be made to generate ethane in the cold and light if they were pretreated with the herbicide parquat, a known effector of O2 production. Even so, pea showed no lipid peroxidation for 6 hours, at which time ethane production began and was at a rate equal to that for the chilled and irradiated cucumber leaves. The results indicate that pea has an endogenous mechanism(s) for the removal of toxic oxygen species prior to lipid peroxidation. This mechanism breaks down in pea after 6 hours in the cold, light, and the presence of paraquat.  相似文献   

12.
1. Photochemical activities as a function of temperature have been compared in chloroplasts isolated from chilling-sensitive (below approximately 12 °C) and chilling-resistant plants.2. An Arrhenius plot of the photoreduction of NADP+ from water by chloroplasts isolated from tomato (Lycopersicon esculentum var. Gross Lisse), a chilling-sensitive plant, shows a change in slope at about 12 °C. Between 25 and 14 °C the activation energy for this reaction is 8.3 kcal·mole?1. Between 11 and 3 °C the activation energy increases to 22 kcal·mole?1. Photoreduction of NADP+ by chloroplasts from another chilling-sensitive plant, bean (Phaseolus vulgaris var. brown beauty), shows an increase in activation energy from 5.9 to 17.5 kcal·mole?1 below about 12 °C.3. The photoreduction of NADP+ by chloroplasts isolated from two chilling-resistant plants, lettuce (Lactuca sativa var. winter lake) and pea (Pisum sativum var. greenfeast), shows constant activation energies of 5.4 and 8.0 kcal·mole?1, respectively, over the temperature range 3–25 °C.4. The effect of temperature on photosynthetic electron transfer in the chloroplasts of chilling-sensitive plants is localized in Photosystem I region of photosynthesis. Both the photoreduction of NADP+ from reduced 2,6-dichlorophenol-indophenol and the ferredoxin-NADP+ reductase (EC 1.6.99.4) activity of choroplasts of chilling-sensitive plants show increases in activation energies at approximately 12 °C whereas Photosystem II activity of chloroplasts of chilling-sensitive plants shows a constant activation energy over the temperature range 3–25 °C. The photoreduction of Diquat (1,1′-ethylene-2,2′-dipyridylium dibromide) from water by bean chloroplasts, however, does not show a change in activation energy over the same temperature range. The activation energies of each of these reactions in chilling-resistant plants is constant between 3 and 25 °C.5. The effect of temperature on the activation energy of these reactions in chloroplasts from chilling-sensitive plants is reversible.6. In chilling-sensitive plants, the increased activation energies below approximately 12 °C, with consequent decreased rates of reaction for the photoreduction of NADP+, would result in impaired photosynthetic activity at chilling temperatures. This could explain the changes in chloroplast structure and function when chilling-sensitive plants are exposed to chilling temperatures.  相似文献   

13.
Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.  相似文献   

14.
Phosphatidylglycerol and chilling sensitivity in plants   总被引:15,自引:6,他引:9       下载免费PDF全文
The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures.

`Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment.

Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol.

Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus.

  相似文献   

15.

Key message

The overexpression of tomato GDP- l -galactose phosphorylase gene enhanced tolerance to chilling stress and reduced photoinhibition of photosystems I and II in transgenic tobacco.

Abstract

Chilling stress is a crucial factor that limits the geographical distribution and yield of chilling-sensitive plants. Ascorbate (AsA) protects plants by scavenging reactive oxygen species and reduces photoinhibition by promoting the conversion of violaxanthin to zeaxanthin in the xanthophyll cycle to dissipate excess excitation energy. Possible mechanisms of AsA for plant photoprotection under chilling stress were investigated by isolating the tomato GDP-l-galactose phosphorylase gene (SlGGP) and producing transgenic tobacco plants with overexpression of SlGGP. The transgenic plants subjected to chilling stress accumulated less H2O2, demonstrated lower levels of ion leakage and malondialdehyde, and acquired higher net photosynthetic rate, higher maximum photochemical efficiency of PSII, and higher D1 protein content compared with the wild-type (WT) plants. The transgenic plants subjected to chilling stress also showed higher GDP-l-galactose phosphorylase activity, increased AsA content as well as ascorbate peroxidase and oxidizable P700 activities than WT plants. Thus, SlGGP overexpression is crucial in promoting AsA synthesis and alleviating photoinhibition of two photosystems.  相似文献   

16.
Laboratory studies with Neomegalotomus parvus(Westwood) (Hemiptera: Alydidae) with one nymph per Petri dish in multiple-choice tests indicated that seeds of pigeon pea [Cajanus cajan(L.) Mills.], lablab (Dolichos lablabL.), and soybean [Glycine max(L.) Merrill] were visited before seeds of common bean (Phaseolus vulgarisL.) and rice (Oryza sativaL.). The percentage of individuals engaging in dabbing/antennation resulting in probing, and percentage probing resulting in feeding, were higher on common bean (97%) and pigeon pea (87%) seeds than on lablab (55%), soybean (50%), or rice (5%) seeds. No significant differences were found in preference (number of flanges) among pigeon pea, common bean, and lablab, and preference (insects on foods) varied throughout the assessment period (5 d). In tests using 10 nymphs per dish, pigeon pea was the preferred food (number of flanges and insects on plants) throughout the period (5 d). In no-choice tests, the average duration of a feeding session and the longest feeding session were greater on lablab and common bean than on pigeon pea, soybean, or rice seeds. The number of feeding sessions was greater on seeds of common bean, pigeon pea, and soybean than on those of lablab or rice. Laboratory tests with N. parvusadults indicated that pigeon pea seeds were located faster, followed by common bean, soybean, and rice. When pods were tested, dabbing/antennation time was shorter on pigeon pea than on soybean, and probing time was longer on soybean than on pigeon pea or common bean. On pigeon pea, 100% of the insects probed the host, while on common bean and soybean pods, and on rice panicles, these values dropped to 71.8%, 46.0%, and 10.5%, respectively. Adults showed similar feeding times on pigeon pea, common bean, and soybean pods, but did not feed on rice panicles. Electronmicroscopical analysis showed the presence of two apical lobes with 12 peg sensilla on the labial tip. Sensillum tips were stained with silver nitrate solution, indicating a permeability of the cuticle and, therefore, their function as taste receptors.  相似文献   

17.
Photoinhibition was studied in osmotically broken chloroplasts isolated from spinach leaves (Spinacia oleracea L.). Both whole chain electron transport (measured as ferricyanide-dependent O2 evolution in the presence of NH4Cl) and photosystem II activity (measured as O2 evolution in the presence of either silicomolybdate plus 3-(3,4-diphenyl)-1,1 dimethylurea or parabenzoquinone) showed similar decreases in activity in response to a photoinhibitory treatment (8 minutes of high light given in the absence of an electron acceptor other than O2). Photosystem I activity was less affected. Photoinhibition of silicomolybdate reduction was largely reversible by an 8 minute dark incubation following the light treatment. Decreasing the O2 concentration during photoinhibition below 2% increased photoinhibition of whole chain electron transport. Addition of superoxide dismutase to the reaction medium did not affect photoinhibition. Photoinhibition of both photosystem I and photosystem II activity increased as the rate of electron transfer during the treatment increased, and was largely prevented when 3-(3,4-diphenyl)-1,1-dimethylurea was present during the photoinhibition period. Noncyclic photophosphorylation was decreased as a consequence of whole chain electron transfer photoinhibition. Since diphenyl carbazide added after light treatment did not relieve photoinhibition of dichlorophenol indophenol reduction, we conclude that the site of inhibition is located within or near the photosystem II reaction center.  相似文献   

18.
Changes in the levels of superoxide anion radical and total peroxides were studied immediately after the chilling of 7–11-day-old seedlings of maize (Zea mays L.), cucumber (Cucumis sativus L.), millet (Panicum miliaceum L.), and etiolated potato (Solanum tuberosum L.) shoots at 2°C for 1–24 h and one day after 24-h chilling. A short-term (1 h) chilling of chilling-sensitive plants resulted in the 2.4–7.5-fold acceleration of the O 2 generation. A longer chilling period reduced somewhat the rate of O 2 generation, but this rate did not achieve the control level. The highest level of H2O2 was observed after 2-h chilling with its subsequent lowering. In the cold-tolerant potato, the levels of O 2 and peroxides reduced after chilling. The rate of lipid peroxidation (an index characterizing cold-induced membrane damage) increased gradually with the lengthening of the chilling period. Reactive oxygen species are supposed to be involved in the induction of the oxidative stress during chilling of chilling-sensitive plants and in the triggering of cold-induced damage.  相似文献   

19.
Abstract The leaves of olive are long lived and likely to experience both chilling and high temperature stress during their life. Changes in photosynthetic CO2 assimilation resulting from chilling and high temperature stress, in both dim and high light, are investigated. The quantum yield (φ) of photosynthesis at limiting light levels was reduced following chilling (at 5°C for 12 h), in dim light by approximately 10%, and in high light by 75%; the difference being attributed to photoinhibition. Similar reductions were observed in the light-saturated rate of CO2 uptake (Amax). Decrease in Amax correlated with a halving of the leaf internal CO2 concentration (ci), suggesting an increased limitation by stomata following photoinhibition. Leaves were apparently more susceptible to photoinhibitory damage if the whole plant, rather than the leaf alone, was chilled. On return to 26 °C, I he photosynthetic capacity recovered to pre-stress levels within a few hours if leaves had been chilled in high light for 8 h or less, but did not fully recover from longer periods of chilling when loss of chlorophyll occurred. Leaves which were recovering from chilling in high light showed far more damage on being chilled a second time in high light. Three hours in high light at 38 °C reduced φ by 80%, but φ recovered within 4h of return to 26 °C. Although leaves of Olive are apparently less susceptible to photoinhibitory damage during chilling stress than the short-lived leaves of chilling-sensitive annual? crops, the results nevertheless show that photoinhibition during temperature stress is potentially a major factor influencing the photosynthetic productivity of Olive in the field.  相似文献   

20.
Experiments comparing the photosynthetic responses of a chilling-resistant species (Pisum sativum L. cv Alaska) and a chilling-sensitive species (Cucumis sativus L. cv Ashley) have shown that cucumber photosynthesis is adversely affected by chilling temperatures in the light, while pea photosynthesis is not inhibited by chilling in the light. To further investigate the site of the differential response of these two species to chilling stress, thylakoid membranes were isolated under various conditions and rates of photosynthetic electron transfer were determined. Preliminary experiments revealed that the integrity of cucumber thylakoids from 25°C-grown plants was affected by the isolation temperature; cucumber thylakoids isolated at 5°C in 400 millimolar NaCl were uncoupled, while thylakoids isolated at room temperature in 400 millimolar NaCl were coupled, as determined by addition of gramicidin. The concentration of NaCl in the homogenization buffer was found to be a critical factor in the uncoupling of cucumber thylakoids at 5°C. In contrast, pea thylakoid membranes were not influenced by isolation temperatures or NaCl concentrations. In a second set of experiments, thylakoid membranes were isolated from pea and cucumber plants at successive intervals during a whole-plant light period chilling stress (5°C). During wholeplant chilling, thylakoids isolated from cucumber plants chilled in the light were uncoupled even when the membranes were isolated at warm temperatures. Pea thylakoids were not uncoupled by the whole-plant chilling treatment. The difference in integrity of thylakoid membrane coupling following chilling in the light demonstrates a fundamental difference in photosynthetic function between these two species that may have some bearing on why pea is a chilling-resistant plant and cucumber is a chilling-sensitive plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号