首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R E Jacobs  J Singh  L E Vickery 《Biochemistry》1987,26(14):4541-4545
Water proton relaxation rates of various complexes of cholesterol side chain cleavage cytochrome P-450 (-450scc) were investigated to gain information about the structure and dynamics of the steroid binding site. In all cases bulk water protons were found to be in rapid exchange with protons near the paramagnetic Fe3+ center, and the long electron spin relaxation time of the heme iron, tau s approximately 0.3 ns, resulted in fast relaxation rates. For the steroid-free enzyme, the closest approach of exchangeable protons is approximately 2.5 A, a distance consistent with a water molecule binding directly to the heme iron or rapidly exchanging with a coordinated ligand. When cholesterol was bound, the distance increased to approximately 4 A, indicative of displacement of water from the immediate coordination sphere of the heme but still in close proximity to the active site. For the complex with (22R)-22-hydroxycholesterol, a distance of approximately 2.7 A is observed, suggesting a reorganization of the active site when this intermediate is formed from cholesterol. Complexes of P-450scc with the competitive inhibitors (22R)-22-aminocholesterol, 22-amino-23,24-bisnor-5-cholen-3 beta-ol, or (20R)-20-phenyl-5-pregnene-3 beta,20-diol, also yielded distances of approximately 2.5 A and reveal no effect of side chain size on access of protons to the heme. In the nitrogen-coordinated amino-steroid complexes, the distances observed indicate solvent proton exchange with the heme-bound nitrogen ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ehanced spin-lattice relaxation (1/t1) of water protons induced by the heme iron of human aquomethemoglobin is exchanged-limited (koff = 1.4 times 10-4 per s at 30 degrees, H+ =7.5 Cal per mol) as indicated by the temperature and frequencey dependencies. A comparison of deuteron and proton relaxation rates revealed an order of magnitude primary isotope effect and a small inverse secondary isotope effect on the escape rate of protons from the heme iron into bulk water establishing the exchange of protons and not the exchange of the entire water molecule to be the chemical mechanism of the entire water molecule to be the chemical mechanism of the exchange process. With fluoromethemoglobin, the relaxation rate is in the fast exchange region. The results can be understood in terms of a water molecule interacting with the heme iron at an iron to proton distance less than 3.4 A in aquomethemoglobin and a single proton at a distance of 4.11 A assignable to the NH proton of the distal histidine imidazole group in fluoromethemoglobin. The relaxation rates are pH-dependent and normal titrations with Hill coefficients n = 1 are observed. The pKa is less than or equal to 6. 7 with aquomethemoglobin and 8.5 with fluoromethemoglobin at 30 degrees C. The binding of inositol hexaphosphate in stoichiometric amounts has no significant effect on the magnetic susceptibility of solutions of aquomethemoglobin and fluoromethemoglobin, but in the former case it increases koff to 3.8 times 10-4 per s by lowering the H+ barrier to 6.8 Cal per mol. In fluoromethemoglobin, inositol hexaphosphate decreases the iron to distal histidine NH distance by 0.17 A and the electron relaxation time taus by 10% as determined by the frequency dependence of 1/T1. In the aquomethemoglobin system, inositol hexaphosphate induces a Bohr effect, raising the pKa of the ionization responsible for the 1/T1 titration to 7.2, and induces cooperativity in the pH titration with a Hill coeffocoemt n = 2.8 plus or minus 0.1. With fluoromethemoglobin, the normal pH titration curve is unaffected by inositol hexaphosphate (n approximately equal to 1). Further, relaxivity titrations with varying amounts of azide and fluoride near neutral pH show normal behavior (n = 1) with and without inositol hexaphosphate. These results indicated that inositol hexaphosphate alters the quaternary structure of methemoglobin to the deoxy conformation without causing a change in the spin state of the heme iron...  相似文献   

3.
The proton nuclear magnetic resonance spectra of several chloroperoxidase-inhibitor complexes have been investigated. Titrations of chloroperoxidase with azide, thiocyanate, cyanate, or nitrite ions indicate that only the chloroperoxidase-thiocyanate complex exhibits slow ligand exchange on the 360-MHz NMR time scale. The temperature dependence of the proton NMR spectra of the complexes suggests that, although the complexes are predominantly low-spin ferric heme iron, a spin equilibrium is present presumably between S = 1/2 and S = 5/2 states. The pH dependence of the proton NMR spectra of the psuedo-halide-chloroperoxidase complexes was examined at 360 and 90 MHz. Chloroperoxidase complexes with azide and cyanate show similar behavior; 360-MHz proton spectra are readily observed at low pH (less than 5.0) but not at high pH. At high pH, the ligand exchange rate falls in an intermediate time range. When the complexes are examined at 90 MHz, however, spectra consisting of averaged signals are observed. The chloroperoxidase-thiocyanate complex does not form at high pH values; the proton NMR spectrum observed is that of native chloroperoxidase. The pKa for the chloroperoxidase-thiocyanate heme-linked ionizable amino acid residue falls between 4.2 and 5.0. Only an averaged azide signal was observed in the nitrogen-15 NMR spectra for solutions that contained the azide complex of chloroperoxidase, horseradish peroxidase, and myoglobin.  相似文献   

4.
Measurements of the longitudinal relaxation rates of water protons in aqueous solutions of ferricytochrome c and their temperature dependence, were used for the elucidation of the heme iron ligands at acid pH. The relaxation rates increased with a decrease in pH and pK values of 2.5 and 4.48 were evaluated for the aqueous and 6 m urea solutions, respectively. The results at acid pH are compatible with a structure in which two water molecules exchange rapidly between the coordination sphere of high spin heme iron and the bulk. They suggest that concomitantly with the low-high spin transition the histidine-18 and methionine-80 iron bonds break simultaneously. Addition of various anions, including methanesulfonate at pH 1.95 caused a 85% decrease in the net longitudinal relaxation rate. However, neither the chemical shift nor the width of the methyl proton nmr line of methanesulfonate in solution of acid ferricytochrome c were affected indicating that the effect of anions is not due to a direct binding to the heme iron. The relaxation mechanism of the water molecules in the first coordination sphere of the ferric ion in acid cytochrome c is discussed. It appears that the longitudial relaxation rate is modulated by the electronic correlation time of the ferric ion which was calculated to be τs = 6 × 10?11 sec at 60 MHz.  相似文献   

5.
The electron spin relaxation time of high spin Fe(III), taus, was determined from the frequency dependence (5-100 MHz) of the longitudinal proton relaxation rates of water in solutions of catalase, metmyoglobin and acid ferricytochrome c. In all three high-spin heme proteins the relaxation rates incrased below 25 MHz, while no frequency dependence was observed above that frequency. The results are interpreted by assuming that taus, which modulates the dipolar interaction between the unpaired electrons of the iron and the water protons, is frequently independent. Its value was determined to be (6 +/- 1) - 10(-11) s.  相似文献   

6.
The met-cyano complex of elephant myoglobin has been investigated by high field 1H NMR spectroscopy, with special emphasis on the use of exchangeable proton resonances in the heme cavity to obtain structural information on the distal glutamine. Analysis of the distance dependence of relaxation rates and the exchange behavior of the four hyperfine shifted labile proton resonances has led to the assignment of the proximal His-F8 ring and peptide NHs and the His-FG3 ring NH and the distal Gln-E7 amide NH. The similar hyperfine shift patterns for both the apparent heme resonances as well as the labile proton peaks of conserved resonances in elephant and sperm whale met-cyano myoglobins support very similar electronic/molecular structures for their heme cavities. The essentially identical dipolar shifts and dipolar relaxation times for the distal Gln-E7 side chain NH and the distal His-E7 ring NH in sperm whale myoglobin indicate that those labile protons occupy the same geometrical position relative to the iron and heme plane. This geometry is consistent with the distal residue hydrogen bonding to the coordinated ligand. The similar rates and identical mechanisms of exchange with bulk water of the labile protons for the three conserved residues in the elephant and sperm whale heme cavity indicate that the dynamic stability of the proximal side of the heme pocket is unaltered upon the substitution (His----Gln). The much slower exchange rate (by greater than 10(4] of the distal NH in elephant relative to sperm whale myoglobin supports the assignment of the resonance to the intrinsically less labile amide side chain.  相似文献   

7.
The T1 and T2 relaxation times of water protons in two cell types in culture derived from Syrian hamster fetuses (normal primary or secondary fetal cells vs BP6T tumor cells derived from the normal cells transformed by carcinogens) were measured at 7.05 Tesla magnetic field (proton frequency = 300 MHz). The T1/T2 ratios and the correlation time, tau c, calculated from the T1/T2 ratio of cellular water protons, are significantly different in these two fibroblastic cell types of the same biological origin and with similar morphologies and growth rates in culture.  相似文献   

8.
The NMR spin-grouping technique is applied to low hydration oriented fibers of NaDNA to study the role of exchange in determining the apparent (observed) spin relaxation of the system. The analysis proceeds in three steps: first, the apparent proton relaxation is measured at high fields, with both selective and nonselective inversion pulse sequences, and in the rotating frame. The spin-grouping technique is used in all spin-lattice relaxation measurements to provide the optimum apparent relaxation characterization of the sample. Next, all apparent results are analyzed for exchange. In this analysis the results from the high field and rotating frame experiments (which probe the exchange at two different time scales) are correlated to determine the inherent (or true) spin relaxation parameters of each of the proton groups in the system. The results of selective inversion T1 measurements are also incorporated into the exchange analysis. Finally, the dynamics of each spin group are inferred from the inherent relaxation characterization. The low hydration NaDNA structure is such that the exchange between the protons on the water and those on the NaDNA is limited, a priori, to dipolar mixing. The results of the exchange analysis indicate that the dipolar mixing between water and NaDNA protons is faster than the spin diffusion within the NaDNA proton group itself. The spin-diffusion on the macromolecule is the bottleneck for the exchange between the water protons and the NaDNA protons. The water protons serve as the relaxation sink both at high fields and in the rotating frame for the total NaDNA-water spin bath. The inherent relaxation of the water is characteristic of water undergoing anisotropic motion with a fast reorientational correlation time about one axis (5 X 10(-10) less than or equal to tau r less than or equal to 8 X 10(-9)S) which is about three orders of magnitude slower than that of water in the bulk; and a slow tumbling correlation time for this axis (1.5 x 10(-7) less than or equal to tau t less than or equal to 8 x 10(-7)S) which is two orders of magnitude slower yet.  相似文献   

9.
The pH and temperature dependences of the 270-MHz proton nuclear magnetic resonance and resonance Raman spectra of Thermus thermophilus cytochrome c-552 were studied. Observation of the NMR methyl signal of the iron-bound methionine indicates that a methionine residue is the sixth ligand of heme iron in both ferric and ferrous states, although the environment of this methionine is not similar to that in mitochondrial cytochrome c. The NMR methyl signal of the coordinated methionine in the ferrous state was observed even at 87 degrees C, indicating the retention of the methionine ligand at the sixth coordination position. None of resonance Raman lines in ferrous cytochrome c-552 at higher temperatures showed a prominant temperature-dependent frequency shift, which implies that the heme iron was still bound with strong ligands and retained the low-spin state. In either redox state overall thermal denaturation did not occur even at 87 degrees C, although the ferric form existed in thermal spin mixture of the low-spin and high-spin species at higher temperatures. The hyperfine-shifted NMR resonances of the ferric form indicated rapid exchange of the sixth ligand at alkaline pH in the process of a single-step alkaline isomerization.  相似文献   

10.
Spin-lattice (T1) and spin-spin (T2) relaxation times of proton, deuteron, and oxygen-17 in muscle water have been measured at 9.21 MHz in the temperature range of 0 degree--40 degrees C. The values of the apparent activation energy for the three nuclei are (in kJ . mol-1) 9.1, 19, and 18 for 1/T1, and -1.3, 4.2, and 14 for 1/T2, respectively. The relatively small values for T2 for 1H and 2H and their low apparent activation energies are attributed to hydrogen exchange between water and proteins; this exchange does not affect the 17O relaxation. Quantitative calculations on deuteron T1 and oxygen-17 T1 and T2 have been made. The effect of surface-induced anisotropy on a minor fraction of water molecules is considered in some detail, and a new expression for its spectral density similar to that of liquid crystalline systems is applied in the calculation. It is suggested that water on the surfaces of macromolecules has a rotational correlation time of tau c approximately 1 x 10(-9) S, with a time constant of tau x approximately 3 x 10(-7) S, which is characteristic of the relaxation of the local structure.  相似文献   

11.
The solvent proton spin-lattice relaxation time of high spin Fe3+ (S=5/2) human A fluoromethaemoglobin aqueous solutions was measured at 14 Larmor frequencies in the range from 2.2 to 96 MHz. The observed paramagnetic relaxation rates are analysed in terms of the Solomon-Bloembergen theory, with the g-tensor value of 2 based on the consideration of the protein tertiary structure. From the H2O (pH 6) haemoprotein solution relaxation data, tau(c) =(9.3+/-0.3) X 10(-10) sec. If the total relaxation rates are corrected for the "outer-sphere" paramagnetic contribution, tau(c)=(6.5+/-0.4) X 10(-10) sec. The latter correction is obtained from the p.m.r. of the non-exchangeable aliphatic protons of C2H4(OD)2 added to the D2O-solution of fluoromethaemoglobin. Assuming that single proton transfer is taking place through the protein channel along the axis normal to the haem (g=2), the protein "binding" site is at a distance of 3.93 to 3.98 A from the haem Fe3+ ion.  相似文献   

12.
The longitudinal relaxation of the C2 protons of surface histidyl residues as well as other aromatic protons of human normal adult deoxyhemoglobin investigated at 360 MHz is discussed in terms of the theory proposed by Kalk and Berendsen for the proton longitudinal relaxation in proteins (Kalk, A., and H.J.C. Berendsen. 1976. J. Magn. Reson. 24:343-366). The role of the four paramagnetic iron atoms of deoxyhemoglobin as fast-relaxing sinks for the overall proton longitudinal relaxation is evaluated according to the model proposed by Bloembergen for the relaxation of nuclei in crystals containing paramagnetic centers (Bloembergen, N. 1949. Physica. 15:386-426). The results suggest that the effectiveness of the paramagnetic iron atoms of deoxyhemoglobin for the overall proton longitudinal relaxation is reduced as a result of slower spin diffusion and wide distribution of methyl groups within the hemoglobin molecule. Thus, deoxyhemoglobin provides a good model for investigating the influence of cross relaxation on proton longitudinal relaxation in proteins at the slow motion limit and in the presence of paramagnetic centers. For the C2 protons of surface histidyl residues, we show that the cross relaxation resulting from the interresidue dipolar interaction makes an important contribution to their longitudinal relaxation.  相似文献   

13.
Proton NMR spin grouping and exchange in dentin.   总被引:2,自引:0,他引:2       下载免费PDF全文
The nuclear magnetic resonance spin-grouping technique has been applied to dentin from human donors of different ages. The apparent T2, T1, and T1 rho have been determined for natural dentin, for dentin which has been dried in vacuum, and for dried dentin which has been rehydrated in an atmosphere with 75% relative humidity. All apparent spin relaxation has been analyzed for exchange between the spin groups in which the dentin protons exist; the analyses incorporate the results of selective inversion recovery T1 measurements which better probe the effects of exchange. The exchange analyses of the high fields and rotating frame spin-lattice relaxation have also been correlated to determine uniquely the inherent relaxation parameters of the proton spin groups constituting the dentin magnetization. The natural dentin contains protons on water, protein, and hydroxy apatite; these spins contribute 50%, 45%, and 5% to the total dentin proton magnetization, respectively. The water exists in three distinct environments, the dynamics of each environment has been modeled. In the natural dentin 30% of the water undergoes uni-axial reorientation. 52% of the water has similar relaxation characteristics to bound water hydrating a large molecule, and the majority of the remaining water acts as bulk water undergoing isotropic reorientation. The results are independent of the age of the donor.  相似文献   

14.
Hmu O, a heme degradation enzyme in Corynebacterium diphtheriae, forms a stoichiometric complex with iron protoporphyrin IX and catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. Using a multitude of spectroscopic techniques, we have determined the axial ligand coordination of the heme-Hmu O complex. The ferric complex shows a pH-dependent reversible transition between a water-bound hexacoordinate high spin neutral pH form and an alkaline form, having high spin and low spin states, with a pK(a) of 9. (1)H NMR, EPR, and resonance Raman of the heme-Hmu O complex establish that a neutral imidazole of a histidine residue is the proximal ligand of the complex, similar to mammalian heme oxygenase. EPR of the deoxy cobalt porphyrin IX-Hmu O complex confirms this proximal histidine coordination. Oxy cobalt-Hmu O EPR reveals a hydrogen-bonding interaction between the O(2) and an exchangeable proton in the Hmu O distal pocket and two distinct orientations for the bound O(2). Mammalian heme oxygenase has only one O(2) orientation. This difference and the mixed spin states at alkaline pH indicate structural differences in the distal environment between Hmu O and its mammalian counterpart.  相似文献   

15.
With pulsed nuclear magnetic resonance techniques, the effects of various complexes of ferric cytochrome P-450 on the relaxation rate of bulk solution water protons have been determined. For the camphor, metyrapone, and 4-phenylimidazole complexes, the experimental results are consistent with outer sphere relaxation effects. However, for the substrate-free enzyme, the magnitude and temperature dependence of the paramagnetic relaxation effects indicate the presence of exchangeable protons in the coordination sphere of the heme iron atom. The exchange rate (9.3 x 10(4) S-1 at 25 degrees) and the thermodynamic activation parameters for the exchange process are very similar to those of acid metmyoglobin and acid methemoglobin, suggesting that a water molecule, and not an amino acid residue of the protein, coordinates to the ferric cation of the enzyme in the absence of added substrate or ligands. From the equations appropriate for coordination sphere protons, the distance between these protons and the ferric heme cation was evaluated as 2.1 A, which further supports the interpretation. These experimental results demonstrate that the solvent accessibility of the ferric cation of substrate-free cytochrome P-450 is significantly reduced by the binding of substrate or nitrogenous ligands to the hemeprotein.  相似文献   

16.
Interaction of thiocyanate with horseradish peroxidase (HRP) was investigated by relaxation rate measurements (at 50.68 MHz) of the 15N resonance of thiocyanate nitrogen and by following the hyperfine shifted ring methyl proton resonances (at 500 MHz) of the heme group of SCN-.HRP solutions. At pH 4.0, the apparent dissociation constant (KD) for thiocyanate binding to HRP was deduced to be 158 mM from the relaxation rate measurements. Chemical shift changes of 1- and 8-ring methyl proton resonances in the presence of various amounts of thiocyanate at pH 4.0 yielded KD values of 166 and 136 mM, respectively. From the pH dependence of KD and the 15N resonance line width, it was observed that thiocyanate binds to HRP only under acidic conditions (pH less than 6). The binding was found to be facilitated by protonation of an acid group on the enzyme with pKa 4.0. The pH dependence of the 15N line width as well as the apparent dissociation constant were quantitatively analyzed on the basis of a reaction scheme in which thiocyanate in deprotonated ionic form binds to the enzyme in protonated acidic form. The KD for thiocyanate binding to HRP was also evaluated in the presence of an excess of exogenous substrates such as resorcinol, cyanide, and iodide ions. It was found that the presence of cyanide (which binds to heme iron at the sixth coordination position) and resorcinol did not have any effect on the binding of thiocyanate, indicating that the binding site of the thiocyanate ion is located away from the ferric center as well as from the aromatic donor binding site. The KD in the presence of iodide, however, showed that iodide competes with thiocyanate for binding at the same site. The distance of the bound thiocyanate ion from the ferric center was deduced from the 15N relaxation time measurements and was found to be a 6.8 A. From the distance as well as the change in the chemical shifts and line width of 1- and 8-methyl proton resonances, it is suggested that the binding site of thiocyanate may be located near heme, placed symmetrically with respect to 1- and 8-methyl groups of the heme of HRP. Similarity in the modes of binding of iodide and thiocyanate suggests that the oxidation of thiocyanate ion by H2O2 may also proceed via the two-electron transfer pathway under acidic conditions, as is the case for iodide.  相似文献   

17.
P A Mirau  R W Behling  D R Kearns 《Biochemistry》1985,24(22):6200-6211
Proton NMR relaxation measurements are used to compare the molecular dynamics of 60 base pair duplexes of B- and Z-form poly(dG-dC).poly(dG-dC). The relaxation rates of the exchangeable guanine imino protons (Gim) in H2O and in 90% D2O show that below 20 degrees C spin-lattice relaxation is exclusively from proton-proton magnetic dipolar interactions while proton-nitrogen interactions contribute about 30% to the spin-spin relaxation. The observation that the spin-lattice relaxation is nonexponential and that the initial spin-lattice relaxation rate of the Gim, G-H8 and C-H6 protons depends on the selectivity of the exciting pulse shows that spin-diffusion dominates the spin-lattice relaxation. The relaxation rates of the Gim, C-H5, and C-H6 in B- and Z-form poly(dG-dC).poly(dG-dC) cannot be explained by assuming the DNA behaves as a rigid rod. The data can be fit by assuming large-amplitude out of plane motions (+/- 30-40 degrees, tau = 1-100 ns) and fast, large-amplitude local torsional motions (+/- 25-90 degrees, tau = 0.1-1.5 ns) in addition to collective torsional motions. The results for the B and Z forms show that the rapid internal motions are similar and large in both conformations although backbone motions are slightly slower, or of lower amplitude, in Z DNA. At high temperatures (greater than 60 degrees C), imino proton exchange with solvent dominates the spin-lattice relaxation of B-form poly(dG-dC).poly(dG-dC), but in the Z form no exchange contribution (less than 2 s-1) is observed at temperatures as high as 85 degrees C. Conformational fluctuations that expose the imino protons to the solvent are strikingly different in the B and Z forms. The results obtained here are compared with those previously reported for poly(dA-dT).poly(dA-dT).  相似文献   

18.
L P Yu  G M Smith 《Biochemistry》1990,29(12):2920-2925
The 15N-enriched ferricytochrome c2 from Rhodospirillum rubrum has been studied by 15N and 1H NMR spectroscopy as a function of pH. The 15N resonances of the heme and ligand tau nitrogen are broadened beyond detection because of paramagnetic relaxation. The 15N resonance of the ligand histidine phi nitrogen was unambiguously identified at 184 ppm (pH 5.6). The 15N resonances of the single nonligand histidine are observed only at low pH, as in the ferrocytochrome because of the severe broadening caused by tautomerization. The dependence of the 15N and 1H spectra of the ferricytochrome on pH indicated that the ligand histidine tau NH does not dissociate in the neutral pH range and is involved in a hydrogen bond, similar to that in the reduced state. Because neither deprotonated nor non-hydrogen-bonded forms of the ligand histidine are observed in the spectra of either oxidation state, the participation of such forms in producing heterogeneous populations having different electronic g tensors is ruled out. Transitions having pKa's of 6.2, 8.6, and 9.2 are observed in the ferricytochrome. The localized conformational change around the omega loops is observed in the neutral pH range, as in the ferrocytochrome. Structural heterogeneity leads to multiple resonances of the heme ring methyl at position 8. The exchange rate between the conformations is temperature dependent. The transition with a pKa of 6.2 is assigned to the His-42 imidazole group. The displacement of the ligand methionine, which occurs with a pKa of 9.2, causes gross conformational change near the heme center.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Proton NMR spectra at 270 MHz have been measured for horseradish peroxidase and turnip peroxidase isoenzymes (P1, P2, P3 and P7) in both their high spin ferric native states and as the low spin ferric cyanide complexes. Resonances of amino acids near the heme have been identified and used to investigate variations in the structure of the heme crevice amongst the enzymes. Ligand proton resonances have been resolved in spectra of the cyanide complexes of the peroxidases and these provide information on the heme electronic structure. The electronic structure of the heme and the tertiary structure of the heme crevice are essentially the same in the acidic turnip isoenzymes, P1, P2 and, to a lesser extent, P3 but differ in the basic turnip enzyme, P7. The heme electronic structure and nature of the iron ligands in peroxidases are discussed. Further evidence is presented for histidine as the proximal ligand. A heme-linked ionizable group with a pK of 6.5 has been detected by NMR in the cyanide complex of horseradish peroxidase.  相似文献   

20.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号