首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the role of the bone morphogenetic protein (BMP) pathway during neural tissue formation in the ascidian embryo. The orthologue of the BMP antagonist, chordin, was isolated from the ascidian Halocynthia roretzi. While both the expression pattern and the phenotype observed by overexpressing chordin or BMPb (the dpp-subclass BMP) do not suggest a role for these factors in neural induction, BMP/CHORDIN antagonism was found to affect neural patterning. Overexpression of BMPb induced ectopic sensory pigment cells in the brain lineages that do not normally form pigment cells and suppressed pressure organ formation within the brain. Reciprocally, overexpressing chordin suppressed pigment cell formation and induced ectopic pressure organ. We show that pigment cell formation occurs in three steps. (1) During cleavage stages ectodermal cells are neuralized by a vegetal signal that can be substituted by bFGF. (2) At the early gastrula stage, BMPb secreted from the lateral nerve cord blastomeres induces those neuralized blastomeres in close proximity to adopt a pigment cell fate. (3) At the tailbud stage, among these pigment cell precursors, BMPb induces the differentiation of specifically the anterior type of pigment cell, the otolith; while posteriorly, CHORDIN suppresses BMP activity and allows ocellus differentiation.  相似文献   

2.
The 40 notochord cells of the ascidian tadpole invariably arise from two different lineages: the primary (A-line) and the secondary (B-line) lineages. It has been shown that the primary notochord cells are induced by presumptive endoderm blastomeres between the 24-cell and the 64-cell stage. Signaling through the fibroblast growth factor (FGF) pathway is required for this induction. We have investigated the role of the bone morphogenetic protein (BMP) pathway in ascidian notochord formation. HrBMPb (the ascidian BMP2/4 homologue) is expressed in the anterior endoderm at the 44-cell stage before the completion of notochord induction. The BMP antagonist Hrchordin is expressed in a complementary manner in all surrounding blastomeres and appears to be a positive target of the BMP pathway. Unexpectedly, chordin overexpression reduced formation of both primary and secondary notochord. Conversely, primary notochord precursors isolated prior to induction formed notochord in presence of BMP-4 protein. While bFGF protein had a similar activity, notochord precursors showed a different time window of competence to respond to BMP-4 and bFGF. Our data are consistent with bFGF acting from the 24-cell stage, while BMP-4 acts during the 44-cell stage. However, active FGF signaling was also required for induction by BMP-4. In the secondary lineage, notochord specification also required two inducing signals: an FGF signal from anterior and posterior endoderm from the 24-cell stage and a BMP signal from anterior endoderm during the 44-cell stage.  相似文献   

3.
The expression patterns of region-specific neuroectodermal genes and fate-map analyses in zebrafish gastrulae suggest that posterior neural development is initiated by nonaxial signals, distinct from organizer-derived secreted bone morphogenetic protein (BMP) antagonists. This notion is further supported by the misexpression of a constitutively active form of zebrafish BMP type IA receptor (CA-BRIA) in the zebrafish embryos. It effectively suppressed the anterior neural marker, otx2, but not the posterior marker, hoxb1b. Furthermore, we demonstrated that the cells in the presumptive posterior neural region lose their neural fate only when CA-BRIA and Xenopus dominant-negative fibroblast growth factor (FGF) receptors (XFD) are coexpressed. The indications are that FGF signaling is involved in the formation of the posterior neural region, counteracting the BMP signaling pathway within the target cells. We then examined the functions of Fgf3 in posterior neural development. Zebrafish fgf3 is expressed in the correct place (dorsolateral margin) and at the correct time (late blastula to early gastrula stages), the same point that the most precocious posterior neural marker, hoxb1b, is first activated. Unlike other members of the FGF family, Fgf3 had little mesoderm-inducing activity. When ectopically expressed, Fgf3 expands the neural region with suppression of anterior neural fate. However, this effect was mediated by Chordino (zebrafish Chordin), because Fgf3 induces chordino expression in the epiblast and Fgf3-induced neural expansion was substantially suppressed in dino mutants with mutated chordino genes. The results obtained in the present study reveal multiple actions of the FGF signal on neural development: it antagonizes BMP signaling within posterior neural cells, induces the expression of secreted BMP antagonists, and suppresses anterior neural fate.  相似文献   

4.
The sensory vesicle of ascidians is thought to be homologous to the vertebrate forebrain and midbrain (Development 125 (1998) 1113). Here we report the isolation of two sensory vesicle markers in the ascidian Ciona intestinalis, which are homologs of vertebrate otx and gsx homeobox genes. By using these markers to analyze the induction of anterior neural tissue in Ciona, we find that the restriction of anterior neural fate to the progeny of the anterior animal blastomeres is due to a combination of two factors. The vegetal blastomeres show a differential inducing activity along the anterior-posterior axis, while the competence to respond to this inducing signal is markedly higher in the anterior animal blastomeres than in the posterior animal blastomeres. This differential competence to respond is also observed in response to bFGF, a candidate neural inducer in ascidians (J. Physiol. 511.2 (1998) 347) and can be detected by the gastrula stage. Our results, however, indicate that bFGF can only induce a subset of the responses of the endogenous inducer, suggesting that additional signals in the embryo are necessary to induce a fully patterned nervous system.  相似文献   

5.
We have isolated a novel secreted dorsalizing factor of the neural tube, Xenopus Tiarin, which belongs to the olfactomedin-related family. Tiarin expression starts at the late gastrula stage in the nonneural ectoderm adjacent to the anterior neural plate. Overexpression of Tiarin in the embryo causes expansion of dorsal neural markers and suppression of ventral markers. In the eye-forming field, Tiarin overexpression induces the retinal markers and represses optic stalk markers. Tiarin directly dorsalizes neural tissues in the absence of mesodermal tissues and antagonizes the ventralizing activity of Sonic hedghog (Shh). Unlike BMP4, another dorsalizing factor, Tiarin does not display antineuralizing activity on the ectoderm or mesoderm-ventralizing activity. These findings show that Tiarin is a novel patterning signal candidate acting in the specification of the dorsal neural tube.  相似文献   

6.
7.
The sensory vesicle of ascidians is thought to be homologous to the vertebrate forebrain and midbrain (Development 125 (1998) 1113). Here we report the isolation of two sensory vesicle markers in the ascidian Ciona intestinalis, which are homologs of vertebrate otx and gsx homeobox genes. By using these markers to analyze the induction of anterior neural tissue in Ciona, we find that the restriction of anterior neural fate to the progeny of the anterior animal blastomeres is due to a combination of two factors. The vegetal blastomeres show a differential inducing activity along the anterior-posterior axis, while the competence to respond to this inducing signal is markedly higher in the anterior animal blastomeres than in the posterior animal blastomeres. This differential competence to respond is also observed in response to bFGF, a candidate neural inducer in ascidians (J. Physiol. 511.2 (1998) 347) and can be detected by the gastrula stage. Our results, however, indicate that bFGF can only induce a subset of the responses of the endogenous inducer, suggesting that additional signals in the embryo are necessary to induce a fully patterned nervous system.  相似文献   

8.
Ascidian tadpole larvae have a similar dorsal tubular nervous system as vertebrates. The induction of brain formation from a4.2-derived (a-line) cells requires signals from the A4.1-derived (A-line) cells. However, little is known about the mechanism underlying the development of the larval peripheral nervous system due to the lack of a suitable molecular marker. Gelsolin, an actin-binding protein, is specifically expressed in epidermal sensory neurons (ESNs) that mainly constitute the entire peripheral nervous system of the ascidian young tadpoles. Here, we address the role of cell interactions in the specification of ESNs using immunostaining with an anti-gelsolin antibody. Animal half (a4.2- and b4.2-derived) embryos did not give rise to any gelsolin-positive neurons, indicating that differentiation of ESNs requires signals from vegetal cells. Cell isolation experiments showed that A4.1 blastomeres induce gelsolin-positive neurons from a-line cells but not from b4.2-derived (b-line) cells. On the other hand, B4.1 blastomeres induce gelsolin-positive neurons both from b-line cells and a-line cells. This is in sharp contrast to the specification of brain cells which is not affected by the ablation of B4.1-derived (B-line) cells. Furthermore, basic fibroblast growth factor (bFGF) induced ESNs from the a-line cells and b-line cells in the absence of vegetal cells. Their competence to form ESNs was lost between the 110-cell stage and the neurula stage. Our results suggested that the specification of the a-line cells and b-line cells into ESNs is controlled by distinct inducing signals from the anterior and posterior vegetal blastomeres. ESNs in the trunk appear to be derived from the a8.26 blastomeres aligning on the edge of presumptive neural region where ascidian homologue of Pax3 is expressed. These findings highlight the close similarity of ascidian ESNs development with that of vertebrate placode and neural crest.  相似文献   

9.
Notch signaling plays crucial roles during embryogenesis in various metazoans. HrNotch, a Notch homologue in the ascidian Halocynthia roretzi, has been previously cloned, and its expression pattern suggests that HrNotch signaling is involved in nervous system formation. To determine the function of HrNotch signaling, in the present study we examined the effects of the constitutively activated forms of HrNotch. Overexpression resulted in larvae with defects in neural tube closure and brain vesicle formation. In embryos expressing the activated HrNotch, the expression of a neural marker gene, HrETR-1, was enhanced and expanded in the central nervous system, although ectopic expression decreased during the tailbud stage. The activated HrNotch also suppressed the formation of the adhesive organ (palps) and the peripheral nervous system, which consists of ciliary mechanosensory neurons, whereas it promoted epidermal differentiation. The suppression and promotion of the formation of these respective cell types were confirmed by examination of the expression of relevant tissue-specific markers. We also cloned Hrdelta, an ascidian homologue of DSL family genes, which encode ligands for which Notch acts as a receptor. The expression of Hrdelta was observed in the precursors of palps and peripheral neurons in addition to the CNS. These results suggest that Notch signaling is important for ascidian nervous system formation and that it affects the fate choice between palps and epidermis and between peripheral neurons and epidermis within the neurogenic regions of the surface ectoderm by suppressing the formations of palps and peripheral neurons and promoting epidermal differentiation.  相似文献   

10.
11.
Specification of germ layers is a crucial event in early embryogenesis. In embryos of the ascidian, Halocynthia roretzi, endoderm cells originate from two distinct lineages in the vegetal hemisphere. Cell dissociation experiments suggest that cell interactions are required for posterior endoderm formation, which has hitherto been thought to be solely regulated by localized egg cytoplasmic factors. Without cell interaction, every descendant of posterior-vegetal blastomeres, including endoderm precursors, assumed muscle fate. Cell interactions are required for suppression of muscle fate and thereby promote endoderm differentiation in the posterior endoderm precursors. The cell interactions take place at the 16- to 32-cell stage. Inhibition of cell signaling by FGF receptor and MEK inhibitor also supported the requirement of cell interactions. Consistently, FGF was a potent signaling molecule, whose signaling is transduced by MEK-MAPK. By contrast, such cell interactions are not required for formation of the anterior endoderm. Our results suggest that another redundant signaling molecule is also involved in the posterior endoderm formation, which is likely to be mediated by BMP. Suppression of the function of macho-1, a muscle determinant in ascidian eggs, by antisense oligonucleotide was enough to allow autonomous endoderm specification. Therefore, the cell interactions induce endoderm formation by suppressing the function of macho-1, which is to promote muscle fate. These findings suggest the presence of novel mechanisms that suppress functions of inappropriately distributed maternal determinants via cell interactions after embryogenesis starts. Such cell interactions would restrict the regions where maternal determinants work, and play a key role in marking precise boundaries between precursor cells of different tissue types.  相似文献   

12.
Two axial structures, a neural tube and a notochord, are key structures in the chordate body plan and in understanding the origin of chordates. To expand our knowledge on mechanisms of development of the neural tube in lower chordates, we have undertaken isolation and characterization of HrzicN, a new member of the Zic family gene of the ascidian, Halocynthia roretzi. HrzicN expression was detected by whole-mount in situ hybridization in all neural tube precursors, all notochord precursors, anterior mesenchyme precursors and a part of the primary muscle precursors. Expression of HrzicN in a- and b-line neural tube precursors was detected from early gastrula stage to the neural plate stage, while expression in other lineages was observed between the 32-cell and the 110-cell stages. HrzicN function was investigated by disturbing translation using a morpholino antisense oligonucleotide. Embryos injected with HrzicN morpholino ('HrzicN knockdown embryos') exhibited failure of neurulation and tail elongation, and developed into larvae without a neural tube and notochord. Analysis of neural marker gene expression in HrzicN knockdown embryos revealed that HrzicN plays critical roles in distinct steps of neural tube formation in the a-line- and A-line precursors. In particular HrzicN is required for early specification of the neural tube fate in A-line precursors. Involvement of HrzicN in the neural tube development was also suggested by an overexpression experiment. However, analysis of mesodermal marker gene expression in HrzicN knockdown embryos revealed unexpected roles of this gene in the development of mesodermal tissues. HrzicN knockdown led to loss of HrBra (Halocynthia roretzi Brachyury) expression in all of the notochord precursors, which may be the cause for notochord deficiency. Hrsna (Halocynthia roretzi snail) expression was also lost from all the notochord and anterior mesenchyme precurosrs. By contrast, expression of Hrsna and the actin gene was unchanged in the primary muscle precursors. These results suggest that HrzicN is responsible for specification of the notochord and anterior mesenchyme. Finally, regulation of HrzicN expression by FGF-like signaling was investigated, which has been shown to be involved in induction of the a- and b-line neural tube, the notochord and the mesenchyme cells in Halocynthia embryos. Using an inhibitor of FGF-like signaling, we showed that HrzicN expression in the a- and b-line neural tube, but not in the A-line lineage and mesodermal lineage, depends on FGF-like signaling. Based on these data, we discussed roles of HrzicN as a key gene in the development of the neural tube and the notochord.  相似文献   

13.
The generation of distinct classes of motor neurons underlies the development of complex motile behavior in all animals and is well characterized in chordates. Recent molecular studies indicate that the ascidian larval central nervous system (CNS) exhibits anteroposterior regionalization similar to that seen in the vertebrate CNS. To extend the understanding about the diversity of motor neurons in the ascidian larva, we have identified the number, position, and projection of individual motor neurons in Halocynthia roretzi, using a green fluorescent protein under the control of a neuron-specific promoter. Three pairs of motor neurons, each with a distinct shape and innervation pattern, were identified along the anteroposterior axis of the neural tube: the anterior and posterior pairs extend their axons toward dorsal muscle cells, whereas the middle pair project their axons toward ventral muscle. Overexpression of a dominant-negative form of a potassium channel in these cells resulted in paralysis on the injected side, thus these cells must constitute the major population of motor neurons responsible for swimming behavior. Lim class homeobox genes have been known as candidate genes that determine subtypes of motor neurons. Therefore, the expression pattern of Hrlim, which is a Lim class homeobox gene, was examined in the motor neuron precursors. All three motor neurons expressed Hrlim at the tailbud stage, although each down-regulated Hrlim at a different time. Misexpression of Hrlim in the epidermal lineage led to ectopic expression of TuNa2, a putative voltage-gated channel gene normally expressed predominantly in the three pairs of motor neurons. Hrlim may control membrane excitability of motor neurons by regulating ion channel gene expression.  相似文献   

14.
The neuroectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be regionalized into forebrain, midbrain, hindbrain and spinal cord by a two-step process. In the activation step, the Spemann gastrula organizer induces neuroectoderm with anterior character, followed by posteriorization by a transforming signal. Recently, simultaneous inhibition of BMP and Wnt signaling was shown to induce head formation in frog embryos. However, how the inhibition of BMP and Wnt signaling pathways specify a properly patterned head, and how they are regulated in vivo, is not understood. Here we demonstrate that the loss of anterior neural fates observed in zebrafish bozozok (boz) mutants occurs during gastrulation due to a reduction and subsequent posteriorization of neuroectoderm. The neural induction defect was correlated with decreased chordino expression and consequent increases in bmp2b/4 expression, and was suppressed by overexpression of BMP antagonists. Whereas expression of anterior neural markers was restored by ectopic BMP inhibition in early boz gastrulae, it was not maintained during later gastrulation. The posteriorization of neuroectoderm in boz was correlated with ectopic dorsal wnt8 expression. Overexpression of a Wnt antagonist rescued formation of the organizer and anterior neural fates in boz mutants. We propose that boz specifies formation of anterior neuroectoderm by regulating BMP and Wnt pathways in a fashion consistent with Nieuwkoop's two-step neural patterning model. boz promotes neural induction by positively regulating organizer-derived chordino and limiting the antineuralizing activity of BMP2b/4 morphogens. In addition, by negative regulation of Wnt signaling, boz promotes organizer formation and limits posteriorization of neuroectoderm in the late gastrula.  相似文献   

15.
The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian Ciona intestinalis. The tail PNS of Ciona is made of sensory neurons located within the epidermis midlines and extending processes in the overlying tunic median fin. We show that each midline corresponds to a single longitudinal row of epidermal cells and neurons sharing common progenitors. This simple organization is observed throughout the tail epidermis, which is made of only eight single-cell rows, each expressing a specific genetic program. We next demonstrate that the epidermal neurons are specified in two consecutive steps. During cleavage and gastrula stages, the dorsal and ventral midlines are independently induced by FGF9/16/20 and the BMP ligand ADMP, respectively. Subsequently, Delta/Notch–mediated lateral inhibition controls the number of neurons formed within these neurogenic regions. These results provide a comprehensive overview of PNS formation in ascidian and uncover surprising similarities between the fate maps and embryological mechanisms underlying formation of ascidian neurogenic epidermis midlines and the vertebrate median fin.  相似文献   

16.
17.
In contrast to the classical assumption that neural crest cells are induced in chick as the neural folds elevate, recent data suggest that they are already specified during gastrulation. This prompted us to map the origin of the neural crest and dorsal neural tube in the early avian embryo. Using a combination of focal dye injections and time-lapse imaging, we find that neural crest and dorsal neural tube precursors are present in a broad, crescent-shaped region of the gastrula. Surprisingly, static fate maps together with dynamic confocal imaging reveal that the neural plate border is considerably broader and extends more caudally than expected. Interestingly, we find that the position of the presumptive neural crest broadly correlates with the BMP4 expression domain from gastrula to neurula stages. Some degree of rostrocaudal patterning, albeit incomplete, is already evident in the gastrula. Time-lapse imaging studies show that the neural crest and dorsal neural tube precursors undergo choreographed movements that follow a spatiotemporal progression and include convergence and extension, reorientation, cell intermixing, and motility deep within the embryo. Through these rearrangement and reorganization movements, the neural crest and dorsal neural tube precursors become regionally segregated, coming to occupy predictable rostrocaudal positions along the embryonic axis. This regionalization occurs progressively and appears to be complete in the neurula by stage 7 at levels rostral to Hensen's node.  相似文献   

18.
We previously showed that FGF was capable of inducing Xenopus gastrula ectoderm cells in culture to express position-specific neural markers along the anteroposterior axis in a dose-dependent manner. However, conflicting results have been obtained concerning involvement of FGF signaling in the anterior neural induction in vivo using the same dominant-negative construct of Xenopus FGF receptor type-1 (delta XFGFR-1 or XFD). We explored this issue by employing a similar construct of receptor type-4a (XFGFR-4a) in addition, since expression of XFGFR-4a was seen to peak between gastrula and neurula stages, when the neural induction and patterning take place, whereas expression of XFGFR-1 had not a distinct peak during that period. Further, these two FGFRs are most distantly related in amino acid sequence in the Xenopus FGFR family. When we injected mRNA of a dominant-negative version of XFGFR-4a (delta XFGFR-4a) into eight animal pole blastomeres at 32-cell stage, anterior defects including loss of normal structure in telencephalon and eye regions became prominent as examined morphologically or by in situ hybridization. Overexpression of delta XFGFR-1 appeared far less effective than that of delta XFGFR-4a. Requirement of FGF signaling in ectoderm for anterior neural development was further confirmed in culture: when ectoderm cells that were overexpressing delta XFGFR-4a were cocultured with intact organizer cells from either early or late gastrula embryos, expression of anterior and posterior neural markers was inhibited, respectively. We also showed that autonomous neuralization of the anterior-type observed in ectoderm cells that were subjected to prolonged dissociation was strongly suppressed by delta XFGFR-4a, but not as much by delta XFGFR-1. It is thus indicated that FGF signaling in ectoderm, mainly through XFGFR-4, is required for the anterior neural induction by organizer. We may reconcile our data to the current "neural default model," which features the central roles of BMP4 signaling in ectoderm and BMP4 antagonists from organizer, simply postulating that the neural default pathway in ectoderm includes constitutive FGF signaling step.  相似文献   

19.
20.
The nodal-related genes are well known for their fundamental roles during vertebrate development, including mesoderm induction, neural induction, and left-right axis formation, as several nodal-related genes show left-sided expression in mesodermal lineages. We have isolated the first non-vertebrate nodal-related gene, HrNodal, from the ascidian Halocynthia roretzi. During the late cleavage and gastrula stages, HrNodal is transiently and bilaterally expressed in several different cell lineages. Expression at the tailbud stage is observed asymmetrically in the left side, but unexpectedly only in the epidermis of the embryo. We also demonstrate the relationship of HrNodal with HrPitx, a Halocynthia homologue of the Pitx2 gene. HrNodal overexpression results in the disturbance of left-sided HrPitx expression. Our results demonstrate that left-right specification during ascidian embryogenesis involves the HrNodal gene, and that the left-sidedness of the expression is evolutionarily conserved throughout the chordate clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号