首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In PC12 pheochromocytoma cells whose phospholipids had been prelabelled with [3H]palmitic acid, bradykinin increased the production of [3H]phosphatidic acid. The increase in [3H]phosphatidic acid occurred within 1-2 min. before the majority of the increase in [3H]diacylglycerol. When the phospholipids were prelabeled with [3H]choline, bradykinin increased the intracellular release of [3H]choline. The production of phosphatidic acid and choline suggests that bradykinin was increasing the activity of phospholipase D. Transphosphatidylation is a unique property of phospholipase D. In cells labeled with [3H]palmitic acid, bradykinin stimulated the transfer of phosphatidyl groups to both ethanol and propanol to form [3H]phosphatidylethanol and [3H]phosphatidylpropanol, respectively. The effect of bradykinin on [3H]phosphatidic acid and [3H]phosphatidylethanol formation was partially dependent on extracellular Ca2+. In cells treated with nerve growth factor, carbachol also increased [3H]phosphatidylethanol formation. To investigate the substrate specificity of phospholipase D, cells were labeled with [14C]stearic acid and [3H]palmitic acid, and then incubated with ethanol in the absence or presence of bradykinin. The 14C/3H ratio of the phosphatidylethanol that accumulated in response to bradykinin was almost identical to the 14C/3H ratio of phosphatidylcholine. The 14C/3H ratio in phosphatidic acid and diacylglycerol was higher than the ratio in phosphatidylcholine. These data provide additional support for the idea that bradykinin activates a phospholipase D that is active against phosphatidylcholine. The hydrolysis of phosphatidylcholine by phospholipase D accounts for only a portion of the phosphatidic acid and diacylglycerol that accumulates in bradykinin-stimulated cells: bradykinin evidently stimulates several pathways of phospholipid metabolism in PC12 cells.  相似文献   

2.
Cultured endothelial cells from human umbilical vein were incubated for 20 h at 37 degrees C in the presence of [U-14C]arachidonic acid. Around 60-70% of the radioactive fatty acid was incorporated into cell lipids and was predominantly found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and triacylglycerol (39%, 33%, 13% and 6.5% of total incorporated radioactivity, respectively). Stimulation of the cells with human thrombin (2 U/ml) or calcium ionophore A23187 (5 microM) promoted the release into supernatants of arachidonic acid, 6-ketoprostaglandin F1 alpha, prostaglandins E2 and F2 alpha, in decreasing order of importance. The amount of secreted material was 4-fold higher with A23187, compared to thrombin. Parallel to the liberation process, phosphatidylcholine underwent a rapid decrease of radioactivity with both agonists, suggesting the involvement of a Ca2+-dependent phospholipase A2. Phosphatidylethanolamine displayed a minor decrease with A23187, whereas some reacylation was observed at 10 min with thrombin. Phosphatidylinositol was non-significantly affected in thrombin-stimulated cells, whereas A23187 promoted an early but minor decrease, followed by resynthesis. In contrast to A23187, thrombin was also able to promote a significant hydrolysis of triacylglycerol, which might thus be implicated in the process of arachidonate liberation. Finally, radioactive phosphatidic acid and diacylglycerol appeared in endothelial cells, in response to the two agonists. However, diacylglycerol formation did not parallel that of phosphatidic acid, especially with A23187. Determination of the 14C/3H ratio of the different lipids upon cell labelling with both [14C]arachidonic acid and [3H]palmitic acid revealed that diacylglycerol and phosphatidic acid are hardly derived from inositol-phospholipid breakdown by phospholipase C. Other possible pathways involving for instance phospholipase C splitting of phosphatidylcholine are discussed.  相似文献   

3.
Rat renal medullary slices prelabeled with [14C]arachidonic acid generate [14C]diacylglycerol within 1 min of exposure to bradykinin action. Production of [14C]diacylglycerol is transient. 2 min after the addition of bradykinin, the levels of metabolite reach the maximum, but decrease thereafter. Simultaneously, bradykinin induces a parallel decrease of the radioactivity in phosphatidylinositol. No degradation of other phospholipids is observed, and triacylglycerol is not affected. The degradation of [14C]phosphatidylinositol to [14C]diacylglycerol indicated the presence of phospholipase C activity. Preincubation of prelabeled slices with 2 mM dibutyryl cyclic AMP prevents both the generation of diacylglycerol and the degradation of phosphatidylinositol. Neither mepacrine nor indomethacin block diacylglycerol production and phosphatidylinositol breakdown. We conclude that, when rat renal medullary slices are stimulated with bradykinin, phosphatidylinositol-specific phospholipase C is activated.  相似文献   

4.
We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of [3H]choline and [3H]phosphorylcholine ([3H]Pchol) from cells containing [3H]choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of [3H]phosphatidic acid ([3H]PA) in cells containing [3H]myristate-labeled PC. [3H]Diacylglycerol ([3H]DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with [3H]myristate and [14C]arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol. By analyzing the increase in 3H versus 14C in DAG, we estimate that the DAG that is formed in response to PMA arises largely from PC. Muscarinic receptor activation also causes formation of DAG from PC, but approximately 20% of carbachol-stimulated DAG appears to arise from hydrolysis of the phosphoinositides.  相似文献   

5.
The involvement of endogenous diacylglycerol production in the stimulation of phosphatidylcholine synthesis by exogenous phospholipase C was examined using a neuroblastoma (LA-N-2) cell line. Phospholipase C treatment (0.1 unit/ml) of intact cells stimulated CTP:phosphocholine cytidylyltransferase activity significantly more effectively than did maximally effective concentrations of the synthetic diacylglycerol sn-1,2-dioctanoylglycerol (1 mM). When added to cells together with phospholipase C, oleic acid, but not dioctanoylglycerol, further increased cytidylyltransferase activity with respect to phospholipase C treatment alone, indicating that the enzyme was not maximally activated by the lipase. This suggests that the lack of additivity of diacylglycerol and phospholipase C reflects a common mechanism of action. The time course of activation of cytidylyltransferase by phospholipase C paralleled that of [3H]diacylglycerol production in cells prelabeled for 24 h with [3H]oleic acid. Diacylglycerol mass was similarly increased. Significant elevations of [3H]oleic acid and total fatty acids occurred later than did the increases in cytidylyltransferase activity and diacylglycerol levels. No significant reduction in total or [3H]phosphatidylcholine was elicited by this concentration of phospholipase C, but higher concentrations (0.5 unit/ml) significantly reduced phosphatidylcholine content. The stimulation of cytidylyltransferase activity by phospholipase C or dioctanoylglycerol was also associated with enhanced incorporation of [methyl-14C]choline into phosphatidylcholine. Dioctanoylglycerol was more effective than phospholipase C at stimulating the formation of [14C]phosphatidylcholine, and the effects of the two treatments were additive. However, further analysis revealed that dioctanoylglycerol served as a precursor for [14C]dioctanoylphosphatidylcholine as well as an activator of cytidylyltransferase; and when corrections were made for this effect, the apparent additivity disappeared. The results indicate that the generation of diacylglycerol by exogenous phospholipase C (and possibly the subsequent production of fatty acids via diacylglycerol metabolism) activates cytidylyltransferase activity in neuronal cells under conditions in which membrane phosphatidylcholine content is not measurably reduced.  相似文献   

6.
Saturated phosphatidylcholine and phosphatidylglycerol are important components of pulmonary surface active material, but the relative contributions of different pathways for the synthesis of these two classes of phospholipids by alveolar type II cells are not established. We purified freshly isolated rat type II cells by centrifugal elutriation and incubated them with [1-14C]palmitate as the sole exogenous fatty acid in one series of experiments or with [9,10-3H]palmitate, mixed fatty acids (16:0, 18:1 and 18:2), and [U-14C]glucose in another series of experiments. Type II cells readily incorporated [1-14C]palmitate into saturated phosphatidic acid (55-59% of total phosphatidic acid), saturated diacylglycerol (82-87% of total diacylglycerol), saturated phosphatidylcholine (69-76% of total phosphatidylcholine), and saturated phosphatidylglycerol (55-59% of total phosphatidylglycerol). Saturated phosphatidic acid, diacylglycerol and phosphatidylglycerol were nearly equally labeled in the sn-1 and sn-2 positions, whereas saturated phosphatidylcholine was preferentially labeled in the sn-2 position. With [9,10-3H]palmitate and [U-14C]glucose, the labeling patterns of phosphatidic acid, diacylglycerol and phosphatidylglycerol were similar to each other but different from that of phosphatidylcholine. The glucose label was found predominantly in the unsaturated phosphatidylcholines at early times (3-10 min) and in the saturated phosphatidylcholines at later times (30-90 min). Similarly, the 3H/14C ratio was very high in saturated phosphatidylcholine and always above that in saturated diacylglycerol. We conclude that freshly isolated type II cells synthesize saturated phosphatidic acid, diacylglycerol, phosphatidylcholine and phosphatidylglycerol and that under our in vitro conditions the deacylation-reacylation pathway is important for the synthesis of saturated phosphatidylcholine but is less important for the synthesis of saturated phosphatidylglycerol. By the assumptions stated in the text during the pulse chase experiment de novo synthesis of saturated phosphatidylcholine from saturated diacylglycerol accounted for 25% of the total synthesis of saturated phosphatidylcholine.  相似文献   

7.
RHC 80267, on inhibitor of diacylglycerol lipase, was used to investigate the role of diacylglycerol in acid secretion by isolated rat gastric parietal cells. Unexpectedly, RHC 80267 stimulated the production of inositol phosphates in [3H]inositol-prelabeled cells and increased levels of 32P-labeled phosphatidic acid to the same degree as did carbachol. RHC 80267 increased diacylglycerol to a greater extent than did carbachol, and additionally decreased levels of [3H]arachidonic acid. This suggests that RHC 80267 stimulated phospholipase C and inhibited diacylglycerol lipase in parietal cells. RHC inhibited [14C]aminopyrine uptake, a measure of acid secretion, stimulated by carbachol or by simultaneous addition of carbachol and dibutyryl-cAMP. These data support the model that the diacylglycerol/protein kinase C branch of the phosphoinositide system is inhibitory to acid secretion.  相似文献   

8.
Stimulation of rabbit polymorphonuclear leucocytes with A23187 causes phospholipase C mediated breakdown of polyphosphoinositides, as evidenced by accumulation of [3H]inositol-labelled inositol bisphosphate and inositol trisphosphate. At the same time the polyphosphoinositides and the products of their breakdown, diacylglycerol and phosphatidic acid, label rapidly with radioactive arachidonic acid. Enhancement of polyphosphoinositide labelling is not as great as enhancement of diacylglycerol or phosphatidic acid labelling, suggesting additional early activation of a second independent synthetic pathway to the last named lipids. Experiments using double (3H/14C) labelling, to distinguish pools with different rates of turnover, suggest the major pool of arachidonic acid used for synthesis of lipoxygenase metabolites turns over more slowly than arachidonic acid in diacylglycerol, but at about the same rate as arachidonic acid esterified in phosphatidylcholine or phosphatidylinositol. Further, when cells are prelabelled with [14C]arachidonic acid, then stimulated for 5 min, it is only from phosphatidylcholine, and to a lesser extent phosphatidylinositol, that radiolabel is lost. Release of arachidonic acid is probably via phospholipase A2, since it is blocked by the phospholipase A2 inhibitor manoalide. The absence of accumulated lysophosphatides can be explained by reacylation and, in the case of lysophosphatidylinositol, deacylation. The importance of phospholipase A2 in phosphatidylinositol breakdown contrasts with the major role of phospholipase C in polyphosphoinositide hydrolysis. Measurements of absolute free fatty acid levels, as well as studies showing a correlation between production of radiolabelled hydroxyeicosatetraenoic acids and release of radiolabel from the phospholipid pool, both suggest that hydrolysis of arachidonic acid esterified into phospholipids is the limiting factor regulating formation of lipoxygenase metabolites. By contrast with A23187, fMet-Leu-Phe (a widely used polymorphonuclear leucocyte activator) is a poor stimulant for arachidonic acid release unless a 'second signal' (e.g. cytochalasin B, or a product of A23187-stimulated cells) is also present. In the presence of cytochalasin B, fMet-Leu-Phe, like A23187, stimulates release of radiolabelled arachidonic acid principally from phosphatidylcholine.  相似文献   

9.
In an attempt to gain insight into the physiological role of phosphatidylinositol turnover enhanced by extracellular stimuli, the physical properties of artificial membranes (egg yolk phosphatidylcholine/bovine brain phosphatidylserine) containing phosphatidylinositol or diacylglycerol were studied by ESR using spin probes and freeze-fracture electron microscopy. Diacylglycerol lost both the ability to form lipid bilayer structures and its susceptibility to calcium ions. Yeast phosphatidylinositol included in dipalmitoylphosphatidylcholine liposomes lowered the phase transition temperature of dipalmitoylphosphatidylcholine and expanded the temperature range of phase transition. However, diacylglycerol at the same concentration did not undergo the effects caused by phosphatidylinositol but the phase transition temperature was slightly raised. Phase separation of phosphatidylserine induced by calcium ions was enhanced when the phosphatidylinositol was replaced by diacylglycerol in phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) mixtures. The mobility of phosphatidylcholine spin probe was decreased in phosphatidylcholine/phosphatidylserine/diacylglycerol (3:5:2, by molar ratio) liposomes compared with phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) liposomes. An additional component from protonated stearic acid spin probes was observed in phosphatidylcholine/phosphatidylinositol (8:2, by molar ratio) liposomes at 40 degrees C, whereas the component was not seen in phosphatidylcholine/diacylglycerol (8:2, by molar ratio) liposomes. This may indicate the alteration of surface charge induced by the replacement of phosphatidylinositol by diacylglycerol. Indeed, in the presence of 1 mM Ca2+, the additional component was removed by an electrostatic interaction between Ca2+ and phosphatidylinositol molecules in phosphatidylcholine/phosphatidylinositol liposomes at 40 degrees C. These results support the hypothesis that the enhanced turnover of phosphatidylinositol may play a triggering role for various cellular responses to exogenous stimuli by altering membrane physical states.  相似文献   

10.
Although it is well-established that inositol-containing lipids serve as precursors of intracellular second messenger molecules in chromaffin cells, we describe some findings that show the formation of diacylglycerol from phosphatidylcholine in response to agonist-mediated stimulation. Stimulation of chromaffin cells by acetylcholine produced a high turnover of phosphatidylcholine, as suggested by the release of [3H]choline derived from [3H]-phosphatidylcholine in experiments performed with [3H]choline chloride-prelabeled cells. An enhanced breakdown of phosphatidylcholine was also inferred from the finding of an increased formation of [3H]diacylglycerol in chromaffin cells prelabeled with [3H]glycerol. The diacylglycerol mass that accumulated after stimulation showed a distinct temporal course and seemed to exceed the mass that has been reported to be derived from phosphatidylinositol. In keeping with the purported origin from phosphatidylcholine, diacylglycerol showed a high content in [3H]oleate molecular species. Phospholipase D activity measurements and experiments performed in the presence of propranolol (an inhibitor of phosphatidic acid:phosphohydrolase) suggested that phosphatidylcholine is hydrolyzed by a phospholipase D activity, producing phosphatidic acid, which is subsequently degraded to diacylglycerol, rather than by a phospholipase C. Incubation of chromaffin cells in the presence of atropine before addition of acetylcholine showed complete inhibition of the increased formation of [3H]-diacylglycerol, whereas d-tubocurarine failed to do so. Taken together, these results suggest that acetylcholine activates phosphatidylcholine breakdown and diacylglycerol formation in chromaffin cells via a muscarinic-type receptor.  相似文献   

11.
Addition of platelet-activating factor (PAF) to cells doubly labeled with [14C]glycerol plus [3H]arachidonic acid resulted in a transient decrease of [14C]glycerol-labeled phosphatidylinositol (PI) and a transient increase of [14C]glycerol-labeled lysophosphatidylinositol (LPI). [3H]Arachidonate-labeled PI, on the other hand, decreased in a time-dependent manner. The radioactivity in phosphatidylethanolamine, phosphatidylcholine, sphingomyelin, and phosphatidylserine did not change significantly. The 3H/14C ratio decreased in PI in a time-dependent manner, suggesting the involvement of a phospholipase A2 activity. Although PAF also induced a gradual increase of diacylglycerol (DG), the increase of [14C]glycerol-labeled DG paralleled the loss of triacyl [14C]glycerol and the 3H/14C ratio of DG was 16 times smaller than that of PI. Thus, DG seemed not to be derived from PI. In myo- [3H]inositol-prelabeled cells, PAF induced a transient decrease of [3H]phosphatidylinositol-4,5-bis-phosphate (TPI) and [3H]phosphatidylinositol-4-phosphate (DPI) at 1 min. PAF stimulation of cultured hepatocytes prelabeled with 32Pi induced a transient decrease of [32P]polyphosphoinositides at 20 sec to 1 min. [32P]LPI appeared within 10 sec after stimulation and paralleled the loss of [32P]PI. [3H]Inositol triphosphate, [3H]inositol diphosphate, and [3H]inositol phosphate, which increased in a time-dependent manner upon stimulation with adrenaline, did not accumulate with the stimulation due to PAF. These observations indicate that PAF causes degradation of inositol phospholipids via phospholipase A2 and induces a subsequent resynthesis of these phospholipids.  相似文献   

12.
Microsomal membrane preparations from the immature cotyledons of safflower (Carthamus tinctorius) catalysed the interconversion of the neutral lipids, mono-, di-, and triacylglycerol. Membranes were incubated with neutral lipid substrates, 14C-labelled either in the acyl or glycerol moiety, and the incorporation of radioactivity into other complex lipids determined. It was clear that diacylglycerol gave rise to triacylglycerol and monoacylglycerol as well as phosphatidylcholine. Radioactivity from added [14C] triacylglycerol was to a small extent transferred to diacylglycerol whereas added [14C] monoacylglycerol was rapidly converted to diacylglycerols and triacylglycerols. The formation of triacylglycerol from diacylglycerol occurred in the absence of acyl-CoA and hence did not involve diacylglycerol acyltransferase (DAGAT) activity. Monoacylglycerol was not esterified by direct acylation from acyl-CoA. We propose that these reactions were catalyzed by a diacylglycerol: diacylglycerol transacylase which yielded triacylglycerol and monoacylglycerol, the reaction being freely reversible. The specific activity of the transacylase was some 25% of the diacylglycerol acyltransferase activity and, hence, during the net accumulation of oil, substantial newly formed triacylglycerol equilibrated with the diacylglycerol pool. In its turn the diacylglycerol rapidly interconverted with phosphatidylcholine, the major complex lipid substrate for Δ12 desaturation. Hence, the oleate from triacylglycerols entering phosphatidylcholine via this route could be further desaturated to linoleate. A model is presented which reconciles these observations with our current understanding of fatty acid desaturation in phosphatidylcholine and oil assembly in oleaceous seeds. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

13.
Diacylglycerol accumulation has been examined in secretagogue-stimulated pancreatic islets with a newly developed negative ion chemical ionization mass spectrometric method. The muscarinic agonist carbachol induces islet accumulation of diacylglycerol rich in arachidonate and stearate, and a parallel accumulation of 3H-labeled diacylglycerol occurs in carbachol-stimulated islets that had been prelabeled with [3H]glycerol. Islets so labeled do not accumulate 3H-labeled diacylglycerol in response to D-glucose, but D-glucose does induce islet accumulation of diacylglycerol by mass. This material is rich in palmitate and oleate and contains much smaller amounts of arachidonate. Neither secretagogue influences triacylglycerol labeling, and neither induces release of [3H]choline or [3H]phosphocholine from islets prelabeled with [3H]choline. These observations indicate that the diacylglycerol that accumulates in islets in response to carbachol arises from hydrolysis of glycerolipids, probably including phosphoinositides. The bulk of the diacylglycerol which accumulates in response to glucose does not arise from glycerolipid hydrolysis and must therefore reflect de novo synthesis. The endogenous diacylglycerol which accumulates in secretagogue-stimulated islets may participate in insulin secretion because exogenous diacylglycerol induces insulin secretion from islets, and an inhibitor of diacylglycerol metabolism to phosphatidic acid augments glucose-induced insulin secretion.  相似文献   

14.
In an attempt to gain insight into the physiological role of phosphatidylinositol turnover enhanced by extracellular stimuli, the physical properties of artificial membranes (egg yolk phosphatidylcholine/bovine brain phosphatidylserine) containing phosphatidylinositol or diacylglycerol were studied by ESR using spin probes and freeze-fracture electron microscopy. Diacylglycerol lost both the ability to form lipid bilayer structures and its susceptibility to calcium ions. Yeast phosphatidylinositol included in dipalmitoylphosphatidylcholine liposomes lowered the phase transition temperature of dipalmitoylphosphatidylcholine and expanded the temperature range of phase transition. However, diacylglycerol at the same concentration did not undergo the effects caused by phosphatidylinositol but the phase transition temperature was slightly raised. Phase separation of phosphatidylserine induced by calcium ions was enhanced when the phosphatidylinositol was replaced by diacylglycerol in phosphatidylcholine/ phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) mixtures. The mobility of phosphatidylcholine spin probe was decreased in phosphatidylcholine/ phosphatidylserine/diacylglycerol (3:5:2, by molar ratio) liposomes compared with phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) liposomes. An additional component from protonated stearic acid spin probes was observed in phosphatidylcholine/phosphatidylinositol (8:2, by molar ratio) liposomes at 40°C, whereas the component was not seen in phosphatidylcholine/diacylglycerol (8:2, by molar ratio) liposomes. This may indicate the alteration of surface charge induced by the replacement of phosphatidylinositol by diacylglycerol. Indeed, in the presence of 1 mM Ca2+, the additional component was removed by an electrostatic interaction between Ca2+ and phosphatidylinositol molecules in phosphatidylcholine/phosphatidylinositol liposomes at 40°C. These results support the hypothesis that the enhanced turnover of phosphatidylinositol may play a triggering role for various cellular responses to exogenous stimuli by altering membrane physical states.  相似文献   

15.
Intracerebral administration of [3H]arachidonic acid ([3H]ArA) into 19-20-day-old rat embryos, resulted in a rapid incorporation of label into brain lipids. One hour after injection, 55.6 +/- 8.2, 18.0 +/- 3.4, and 13.7 +/- 1.3% of the total radioactivity was associated with phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, respectively. Approximately 10% of radioactivity was found acylated in neutral lipids of which free ArA comprised only 1.5 +/- 0.2% of the total radioactivity. Complete restriction of the maternal-fetal circulation for < or = 40 min did not affect the rate of [3H]ArA incorporation (t1/2 = 2 min) into fetal brain lipids, suggesting an effective acylation mechanism that proceeds irrespective of the impaired blood flow. After a short restriction period (5 min), the radioactivity in diacylglycerol was elevated by 50%. After a longer restriction period (20 min), the radioactivity in the free fatty acid and diacylglycerol fractions increased to values of 130 and 87%, respectively. Polyphosphoinositides prelabeled with either [3H]ArA or 32P were rapidly degraded after 5 min of ischemia. After 20 min, the decrease in phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate radioactivity was 47 and 70%, respectively. Double labeling of phospholipids with [14C]palmitic acid and [3H]ArA indicated a preferential loss of [3H]ArA within the polyphosphoinositide species after 20 min, but not after 5 min of ischemia. The specific activity of [14C]palmitate remained unchanged. The current data suggest phospholipase C-mediated diacylglycerol formation at the beginning of the insult followed by a phospholipase A2-mediated ArA liberation at a later time, both enzymes presumably acting preferentially on polyphosphoinositide species.  相似文献   

16.
The effect of divalent cation ionophore, A23187, on the incorporation of [1-14C]palmitic acid, [1-14C]linoleic acid and [U-14C]glycerol into glycerolipids of polymorphonulcear leukocytes was examined. Ionophore A23187 stimulated the labeling of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and diacylglycerol by both labeled fatty acids and glycerol. [1-14C]Palmitic acid and [1-14C]linoleic acid incorporation into phosphatidylcholine and triacylglycerol was reduced by the presence of the ionophore in the incubation medium, while [U-14C]glycerol labeling of these lipids was not significantly changed under identical conditions. These data reflect that the acylation of sn-glycerol 3-phosphate is activated, and the acylations of lysophosphatidyl-choline and endogenous diacylglycerol are inhibited in cells incubated with ionophore A23187. External calcium was not required for the ionophore effect on the incorporation of labeled fatty acids and glycerol. It is suggested that the ionophore alters the metabolism of the fatty acid and glycerol moieties of glycerolipids by changing the distribution of intracellular calcium of leukocytes.  相似文献   

17.
In microsomes of rat lung, labeled diacylglycerol was synthesized from sn-[3H]glycerol 3-phosphate, which had been added, and from the endogenous free fatty acids. In these microsomes containing biosynthesized [3H]diacylglycerol as well as endogenous nonlabeled diacylglycerol, the synthesis of phosphatidylcholine was measured from added [14C]CDPcholine. The incorporation of [methyl-14C]choline and of [3H]diacylglycerol into phosphatidylcholine showed an entirely different progress in the time-course of incubation. The 14C label of phosphatidylcholine increased continuously, whereas the 3H label remained constant after 2 min up to the end of the incubation period of 20 min. From this result we concluded that the diacylglycerols, synthesized in vitro from glycerol 3-phosphate over an incubation period of 20 min, constitute a separate substrate pool for the biosynthesis of phosphatidylcholine, and are not mixed with the endogenous diacylglycerol pool.  相似文献   

18.
We studied the effects of platelet-activating factor (PAF-acether) on phospholipase activity in renal epithelial cells. When platelet-activating factor was added to renal cells prelabeled with [3H]arachidonic acid, it induced the rapid hydrolysis of phospholipids. Up to 26% of incorporated [3H]arachidonic acid was released into the medium from renal cells. After the addition of PAF-acether, the degradation of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine were observed. The amount of [3H]arachidonic acid released were comparable to the losses of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine. In renal cells biosynthetically labeled by incorporation of [3H]choline into cellular phosphatidylcholine, lysophosphatidylcholine and sphingomyelin, the range of concentrations of PAF-acether-induced hydrolysis of labeled phosphatidylcholine were approximately equal to the amounts of lysophosphatidylcholine produced. We also observed a transient rise of diacylglycerol after the addition of platelet-activating factor to these cells. To test for action of phospholipase C, the accumulations of [3H]choline, [3H]inositol and [3H]ethanolamine were determined. The radioactivities in choline and ethanolamine showed little or no change. An increase in inositol was detectable within 1 min and it peaked at 3 min. These results indicate that platelet-activating factor stimulates phospholipase A2 and phosphatidylinositol-specific phospholipase C activity in renal epithelial cells. These phospholipase activities were Ca2+ dependent. Moreover, PAF-acether enhanced changes in cell-associated Ca2+. These results suggest that the increased Ca2+ permeability of cell membrane stimulates phospholipases A2 and C in renal epithelial cells. Prostaglandin biosynthesis was also enhanced in these cells by platelet-activating factor.  相似文献   

19.
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.  相似文献   

20.
Incubation of washed human sperm with [3H]- or [14C]arachidonic acid allowed a major incorporation of the label into phospholipids, provided that the final concentration of the fatty acid did not exceed 20 microM. A further challenge with calcium ionophore A23187 of spermatozoa suspended in a calcium-containing medium led to phospholipid hydrolysis, which could account for 10-12% of total cell radioactivity. Degradation products were identified as free, unconverted arachidonic acid, occurring with some diacylglycerol. Phospholipid hydrolysis was significant after 15 min of incubation and became maximal after 120 min. It was found to be calcium dependent, diacylglycerol and free arachidonate production occurring maximally at 2 mM and 5 mM CaCl2, respectively. Phosphatidylcholine and phosphatidylinositol were the most significantly degraded phospholipids after 60 min of incubation. Similar incubations conducted with 32P-labeled sperm confirmed the selective hydrolysis of phosphatidylcholine and revealed an increase production of phosphatidic acid probably due to a phosphorylation of diacylglycerol. Under the same conditions, one third of the cells remained motile and electron microscopy revealed that acrosome reaction was completed in 40% of the cells and displayed an intermediary state in 40-50% of the spermatozoa. Furthermore, a good parallelism was observed between the extent of the acrosome reaction and the extent of phospholipid hydrolysis promoted by increasing concentrations of A23187. It is concluded that calcium entry into the cells activates both a phospholipase A2 and a phospholipase C, leading to the production of substances, like lysophospholipid, diacylglycerol or phosphatidic acid, which may or may not be involved in acrosome reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号