首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism ofNi2+ block of theNa+/Ca2+exchanger was examined in Sf 9 cells expressing the human heartNa+/Ca2+exchanger (NCX1-NACA1). As predicted from the reported actions ofNi2+, its application reducedextracellular Na+-dependentchanges in intracellular Ca2+concentration (measured by fluo 3 fluorescence changes). However, contrary to expectation, the reduced fluorescence was accompanied bymeasured63Ni2+entry. The63Ni2+entry was observed in Sf 9 cells expressing theNa+/Ca2+exchanger but not in control cells. The established sequential transport mechanism of theNa+/Ca2+exchanger could be compatible with these results if one of the two iontranslocation steps is blocked byNi2+ and the other permitsNi2+ translocation. We concludethat, because Ni2+ entry wasinhibited by extracellular Ca2+and enhanced by extracellular Na+,the Ca2+ translocation step movedNi2+, whereas theNa+ translocation step wasinhibited by Ni2+. A model ispresented to discuss these findings.  相似文献   

2.
Physiologicalfunctions of the intracellular regulatory domains of theNa+/Ca2+ exchanger NCX1 were studied byexamining Ca2+ handling in CCL39 cells expressing alow-affinity Ca2+ regulatory site mutant (D447V/D498I), anexchanger inhibitory peptide (XIP) region mutant displaying noNa+ inactivation (XIP-4YW), or a mutant lacking most of thecentral cytoplasmic loop (246-672). We found that D447V/D498Iwas unable to efficiently extrude Ca2+ from the cytoplasm,particularly during a small rise in intracellular Ca2+concentration induced by the physiological agonist -thrombin orthapsigargin. The same mutant took up Ca2+ much lessefficiently than the wild-type NCX1 in Na+-free medium whentransfectants were not loaded with Na+, although itappeared to take up Ca2+ normally in transfectantspreloaded with Na+. XIP-4YW and, to a lesser extent,246-672, but not NCX1 and D447V/D498I, markedly accelerated theloss of viability of Na+-loaded transfectants. Furthermore,XIP-4YW was not activated by phorbol ester, whereas XIP-4YW andD447V/D498I were resistant to inhibition by ATP depletion. The resultssuggest that these regulatory domains play important roles in thephysiological and pathological Ca2+ handling by NCX1, aswell as in the regulation of NCX1 by protein kinase C or ATP depletion.

  相似文献   

3.
The cardiac Na+/Ca2+ exchanger (NCX1) is almost certainly the major Ca2+ extrusion mechanism in cardiac myocytes, although the driving force for Ca2+ extrusion is quite small. To explain multiple recent results, it is useful to think of the exchanger as a slow Ca2+ buffer that can reverse its function multiple times during the excitation-contraction cycle (ECC). An article by the group of John Reeves brings new insights to this function by analyzing the role of regulatory domains of NCX1 that mediate its activation by a rise of cytoplasmic Ca2+. It was demonstrated that the gating reactions are operative just in the physiological range of Ca2+ changes, a few fold above resting Ca2+ level, and that they prevent the exchanger from damping out the influence of mechanisms that transiently increase Ca2+ levels. Furthermore, exchangers with deleted regulatory domains are shown to reduce resting Ca2+ to lower levels than achieved by wild-type exchangers. A study by the group of Kenneth Philipson demonstrated that the NCX1 regulatory domain can bind and respond to Ca2+ changes on the time scale of the ECC in rat myocytes. At the same time, studies of transgenic mice and NCX1 knockout mice generated by the Philipson group revealed that large changes of NCX1 activity have rather modest effects on ECC. Simple simulations predict these results very well: murine cardiac ECC is very sensitive to small changes of the Na+ gradient, very sensitive to changes of the sarcoplasmic reticulum Ca2+ pump activity, and very insensitive to changes of NCX1 activity. It is speculated that the NCX1 gating reactions not only regulate coupled 3Na+:1Ca2+ exchange but also control the exchanger’s Na+ leak function that generates background Na+ influx and depolarizing current in cardiac myocytes. excitation-contraction cycle  相似文献   

4.
We compared the properties of three mammalianNa+/Ca2+exchanger isoforms, NCX1, NCX2, and NCX3, by analyzing the effects of Ni2+ and other cations as well asthe recently identified inhibitor isothiourea derivatives onintracellular Na+-dependent45Ca2+uptake into CCL-39 (Dede) fibroblasts stably expressingeach isoform. All these NCX isoforms had similar affinities for the extracellular transport substratesCa2+ andNa+.Ni2+ inhibited45Ca2+uptake by competing with Ca2+ forthe external transport site, with 10-fold less affinity in NCX3 than inNCX1 or NCX2. Ni2+ andCo2+ were most efficient in suchdiscrimination of NCX isoforms, although their inhibitory potencieswere less than those of La3+ andCd2+. The monovalent cationLi+ stimulated45Ca2+uptake rate by all NCX isoforms similarly with low affinity, althoughthe extent of stimulation was somewhat smaller in NCX1. On the otherhand, the isothiourea derivative KB-R7943 was threefold more inhibitoryto NCX3 than to NCX1 or NCX2. Thus distinct differences in the kineticand pharmacological properties were detected between NCX3 and the othertwo isoforms.

  相似文献   

5.
Antisense oligodeoxynucleotides (AS-oligos) targeted to theNa+/Ca2+exchanger (NCX) inhibit NCX-mediatedCa2+ influx in mesenteric artery(MA) myocytes [Am. J. Physiol.269 (Cell Physiol. 38):C1340-C1345, 1995]. Here, we show AS-oligo knockdown ofNCX-mediated Ca2+ efflux. Ininitial experiments, the cytosolic freeCa2+ concentration([Ca2+]cyt)was raised, and sarcoplasmic reticulum (SR)Ca2+ sequestration was blockedwith caffeine and cyclopiazonic acid; the extracellularNa+-dependent (NCX) component ofCa2+ efflux was then selectivelyinhibited in AS-oligo-treated cells but not in controls (no oligos ornonsense oligos). In contrast, theLa3+-sensitive (plasmalemmaCa2+ pump) component ofCa2+ efflux was unaffected inAS-oligo-treated cells. Knockdown of NCX activity was reversed byincubating AS-oligo-treated cells in normal media for 5 days. Transient[Ca2+]cytelevations evoked by serotonin (5-HT) at 15-min intervals inAS-oligo-treated cells were indistinguishable from those in controls.When cells were stimulated every 3 min, however, the peak amplitudes ofthe second and third responses were larger, and[Ca2+]cytreturned to baseline more slowly, in AS-oligo-treated cells than incontrols. Peak 5-HT-evoked responses in the controls, but notAS-oligo-treated cells, were augmented more than twofold inNa+-free media. This implies thatNCX is involved in Na+ gradientmodulation of SR Ca2+ stores andcell responsiveness. The repetitive stimulation data suggest that theNCX may be important during tonic activation of arterial myocytes.

  相似文献   

6.
Three distinctmammalianNa+/Ca2+exchangers have been cloned: NCX1, NCX2, and NCX3. We have undertaken adetailed functional comparison of these three exchangers. Eachexchanger was stably expressed at high levels in the plasma membranesof BHK cells. Na+/Ca2+exchange activity was assessed using three different complementary techniques: Na+ gradient-dependent45Ca2+uptake into intact cells, Na+gradient-dependent45Ca2+uptake into membrane vesicles isolated from the transfected cells, andexchange currents measured using giant patches of excised cellmembrane. Apparent affinities for the transported ionsNa+ andCa2+ were markedly similar for thethree exchangers at both membrane surfaces. Likewise, generally similarresponses to changes in pH, chymotrypsin treatment, and application ofvarious inhibitors were obtained. Depletion of cellular ATP inhibitedNCX1 and NCX2 but did not affect the activity of NCX3. Exchangeactivities of NCX1 and NCX3 were modestly increased by agents thatactivate protein kinases A and C. All exchangers were regulated byintracellular Ca2+. NCX1-inducedexchange currents were especially large in excised patches and, likethe native myocardial exchanger, were stimulated by ATP. Results may beinfluenced by our choice of expression system and specific splicevariants, but, overall, the three exchangers appear to have verysimilar properties.

  相似文献   

7.
The role of theNa+/Ca2+exchanger in intracellular Ca2+regulation was investigated in freshly dissociated catfish retinalhorizontal cells (HC).Ca2+-permeable glutamate receptorsand L-type Ca2+ channels as wellas inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitiveintracellular Ca2+ stores regulateintracellular Ca2+ in these cells.We used the Ca2+-sensitive dyefluo 3 to measure changes in intracellularCa2+ concentration([Ca2+]i)under conditions in whichNa+/Ca2+exchange was altered. In addition, the role of theNa+/Ca2+exchanger in the refilling of the caffeine-sensitiveCa2+ store followingcaffeine-stimulated Ca2+ releasewas assessed. Brief applications of caffeine (1-10 s) producedrapid and transient changes in[Ca2+]i.Repeated applications of caffeine produced smallerCa2+ transients until no furtherCa2+ was released. Store refillingoccurred within 1-2 min and required extracellularCa2+. Ouabain-induced increases inintracellular Na+ concentration([Na+]i)increased both basal free[Ca2+]iand caffeine-stimulated Ca2+release. Reduction of external Na+concentration([Na+]o)further and reversibly increased[Ca2+]iin ouabain-treated HC. This effect was not abolished by the Ca2+ channel blocker nifedipine,suggesting that increases in[Na+]ipromote net extracellular Ca2+influx through aNa+/Ca2+exchanger. Moreover, when[Na+]owas replaced by Li+, caffeine didnot stimulate release of Ca2+ fromthe caffeine-sensitive store afterCa2+ depletion. TheNa+/Ca2+exchanger inhibitor 2',4'-dimethylbenzamil significantlyreduced the caffeine-evoked Ca2+response 1 and 2 min after store depletion.

  相似文献   

8.
The intestinal brush border (BB) Na+/H+ exchanger isoform 3 (NHE3) is acutely inhibited by elevation in the concentration of free intracellular Ca2+ ([Ca2+]i) by the cholinergic agonist carbachol and Ca2+ ionophores in a protein kinase C (PKC)-dependent manner. We previously showed that elevating [Ca2+]i with ionomycin rapidly inhibited NHE3 activity and decreased the amount of NHE3 on the plasma membrane in a manner that depended on the presence of the PDZ domain-containing protein E3KARP (NHE3 kinase A regulatory protein, also called NHERF2). The current studies were performed in PS120 fibroblasts (NHE-null cell line) stably transfected with NHE3 and E3KARP to probe the mechanism of PKC involvement in Ca2+ regulation of NHE3. Pretreatment with the general PKC inhibitor, GF109203X prevented ionomycin inhibition of NHE3 without altering basal NHE3 activity. Similarly, the Ca2+-mediated inhibition of NHE3 activity was blocked after pretreatment with the conventional PKC inhibitor Gö-6976 and a specific PKC pseudosubstrate-derived inhibitor peptide. [Ca2+]i elevation caused translocation of PKC from cytosol to membrane. PKC bound to the PDZ1 domain of GST-E3KARP in vitro in a Ca2+-dependent manner. PKC and E3KARP coimmunoprecipitated from cell lysates; this occurred to a lesser extent at basal [Ca2+]i and was increased with ionomycin exposure. Biotinylation studies demonstrated that [Ca2+]i elevation induced oligomerization of NHE3 in total lysates and decreased the amount of plasma membrane NHE3. Treatment with PKC inhibitors did not affect the oligomerization of NHE3 but did prevent the decrease in surface amount of NHE3. These results suggest that PKC is not necessary for the Ca2+-dependent formation of the NHE3 plasma membrane complex, although it is necessary for decreasing the membrane amounts of NHE3, probably by stimulating NHE3 endocytosis. Na absorption; PDZ domains; signal complex  相似文献   

9.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

10.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a trigger for pulmonary vasoconstriction and a stimulus for PASMC proliferation and migration. Multiple mechanisms are involved in regulating [Ca2+]cyt in human PASMC. The resting [Ca2+]cyt and Ca2+ entry are both increased in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH), which is believed to be a critical mechanism for sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in these patients. Here we report that protein expression of NCX1, an NCX family member of Na+/Ca2+ exchanger proteins is upregulated in PASMC from IPAH patients compared with PASMC from normal subjects and patients with other cardiopulmonary diseases. The Na+/Ca2+ exchanger operates in a forward (Ca2+ exit) and reverse (Ca2+ entry) mode. By activating the reverse mode of Na+/Ca2+ exchange, removal of extracellular Na+ caused a rapid increase in [Ca2+]cyt, which was significantly enhanced in IPAH PASMC compared with normal PASMC. Furthermore, passive depletion of intracellular Ca2+ stores using cyclopiazonic acid (10 µM) not only caused a rise in [Ca2+]cyt due to Ca2+ influx through store-operated Ca2+ channels but also mediated a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. The upregulated NCX1 in IPAH PASMC led to an enhanced Ca2+ entry via the reverse mode of Na+/Ca2+ exchange, but did not accelerate Ca2+ extrusion via the forward mode of Na+/Ca2+ exchange. These observations indicate that the upregulated NCX1 and enhanced Ca2+ entry via the reverse mode of Na+/Ca2+ exchange are an additional mechanism responsible for the elevated [Ca2+]cyt in PASMC from IPAH patients. transient receptor potential channel; reverse and forward mode; proliferation  相似文献   

11.
Isoform 1 of the cardiacNa+/Ca2+exchanger (NCX1) is an important regulator of cytosolicCa2+ concentration in contractionand relaxation. Studies with trout heart sarcolemmal vesicles haveshown NCX to have a high level of activity at 7°C, and this uniqueproperty is likely due to differences in protein structure. In thisstudy, we describe the cloning of an NCX (NCX-TR1) from a Lambda ZAPII cDNA library constructed from rainbow trout(Oncorhynchus mykiss) heart RNA. TheNCX-TR1 cDNA has an open reading frame that codes for a protein of 968 amino acids with a deduced molecular mass of 108 kDa. A hydropathy plotindicates the protein contains 12 hydrophobic segments (of which thefirst is predicted to be a cleaved leader peptide) and a largecytoplasmic loop. By analogy to NCX1, NCX-TR1 is predicted to have ninetransmembrane segments. The sequences demonstrated to be the exchangerinhibitory peptide site and the regulatoryCa2+ binding site in thecytoplasmic loop of mammalian NCX1 are almost completely conserved inNCX-TR1. NCX-TR1 cRNA was injected into Xenopus oocytes, and after 3-4days currents were measured by the giant excised patch technique.NCX-TR1 currents measured at ~23°C demonstratedNa+-dependent inactivation andCa2+-dependent activation in amanner qualitatively similar to that for NCX1 currents.

  相似文献   

12.
Mammalian Na+/Ca2+ (NCX) and Na+/Ca2+-K+ exchangers (NCKX) are polytopic membrane proteins that play critical roles in calcium homeostasis in many cells. Although hydropathy plots for NCX and NCKX are very similar, reported topological models for NCX1 and NCKX2 differ in the orientation of the three C-terminal transmembrane segments (TMS). NCX1 is thought to have 9 TMS and a re-entrant loop, whereas NCKX2 is thought to have 10 TMS. The current topological model of NCKX2 is very similar to the 10 membrane spanning helices seen in the recently reported crystal structure of NCX_MJ, a distantly related archaebacterial Na+/Ca2+ exchanger. Here we reinvestigate the orientation of the three C-terminal TMS of NCX1 and NCKX2 using mass-tagging experiments of substituted cysteine residues. Our results suggest that NCX1, NCKX2 and NCX_MJ all share the same 10 TMS topology.  相似文献   

13.
The cDNAencoding theNa+/H+exchanger (NHE) from Amphiumaerythrocytes was cloned, sequenced, and found to be highly homologous to the human NHE1 isoform (hNHE1), with 79% identity and 89%similarity at the amino acid level. Sequence comparisons with otherNHEs indicate that the Amphiumatridactylum NHE isoform 1 (atNHE1) islikely to be a phylogenetic progenitor of mammalian NHE1. The atNHE1protein, when stably transfected into the NHE-deficient AP-1 cell line(37), demonstrates robustNa+-dependent proton transportthat is sensitive to amiloride but not to the potent NHE1 inhibitorHOE-694. Interestingly, chimeric NHE proteins constructed by exchangingthe amino and carboxy termini between atNHE1 and hNHE1 exhibited drugsensitivities similar to atNHE1. Based on kinetic, sequence, andfunctional similarities between atNHE1 and mammalian NHE1, we proposethat the Amphiuma exchanger shouldprove to be a valuable model for studying the control of pH and volumeregulation of mammalian NHE1. However, low sensitivity of atNHE1 to theNHE inhibitor HOE-694 in both nativeAmphiuma red blood cells (RBCs) and intransfected mammalian cells distinguishes this transporter from itsmammalian homologue.  相似文献   

14.
NHE1/SLC9A1 is a ubiquitous isoform of vertebrate Na+/H+ exchangers (NHEs) functioning in maintaining intracellular concentrations of Na+ and H+ ions. Calcineurin homologous protein-1 (CHP1) binds to the hydrophilic region of NHE1 and regulates NHE1 activity but reportedly does not play a role in translocating NHE1 from the endoplasmic reticulum to the plasma membrane. However, an antiport function of NHE1 requiring CHP1 remains to be clarified. Here we established CHP1-deficient chicken B lymphoma DT40 cells by gene targeting to address CHP1 function. CHP1-deficient cells showed extensive decreases in Na+/H+ activities in intact cells. Although NHE1 mRNA levels were not affected, NHE1 protein levels were significantly reduced not only in the plasma membrane but in whole cells. The expression of a CHP1 transgene in CHP1-deficient cells rescued NHE1 protein expression. Expression of mutant forms of CHP1 defective in Ca2+ binding or myristoylation also partially decreased NHE1 protein levels. Knockdown of CHP1 also caused a moderate decrease in NHE1 protein in HeLa cells. These data indicate that CHP1 primarily plays an essential role in stabilization of NHE1 for reaching of NHE1 to the plasma membrane and its exchange activity. membrane protein; transporter; antiporter; quality control; degradation  相似文献   

15.
The Na+/Ca2+ exchanger provides a major Ca2+ extrusion pathway in excitable cells and plays a key role in the control of intracellular Ca2+ concentrations. In Canis familiaris, Na+/Ca2+ exchanger (NCX) activity is regulated by the binding of Ca2+ to two cytosolic Ca2+‐binding domains, CBD1 and CBD2, such that Ca2+‐binding activates the exchanger. Despite its physiological importance, little is known about the exchanger's global structure, and the mechanism of allosteric Ca2+‐regulation remains unclear. It was found previously that for NCX in the absence of Ca2+ the two domains CBD1 and CBD2 of the cytosolic loop are flexibly linked, while after Ca2+‐binding they adopt a rigid arrangement that is slightly tilted. A realistic model for the mechanism of the exchanger's allosteric regulation should not only address this property, but also it should explain the distinctive behavior of Drosophila melanogaster's sodium/calcium exchanger, CALX, for which Ca2+‐binding to CBD1 inhibits Ca2+ exchange. Here, NMR spin relaxation and residual dipolar couplings were used to show that Ca2+ modulates CBD1 and CBD2 interdomain flexibility of CALX in an analogous way as for NCX. A mechanistic model for the allosteric Ca2+ regulation of the Na+/Ca2+ exchanger is proposed. In this model, the intracellular loop acts as an entropic spring whose strength is modulated by Ca2+‐binding to CBD1 controlling ion transport across the plasma membrane. Proteins 2016; 84:580–590. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Proteases,glycosidases, and impermeant biotin derivatives were used incombination with antibodies to analyze the subcellular distribution andtransmembrane disposition of theNa+/H+exchanger NHE1. Both native human NHE1 in platelets and epitope-tagged rat NHE1 transfected into antiport-deficient cells were used for thesestudies. The results indicated that1) the entire population ofexchangers is present on the surface membrane of unstimulated platelets, ruling out regulation by recruitment of internal stores ofNHE1; 2) the putative extracellularloops near the NH2 terminus areexposed to the medium and contain all the N- andO-linked carbohydrates;3) by contrast, the putativeextracellular loops between transmembrane domains 9-10 and11-12 are not readily accessible from the outside and may befolded within the protein, perhaps contributing to an aqueous iontransport pathway; 4) the extreme COOH terminus of the protein was found to be inaccessible toextracellular proteases, antibodies, and other impermeant reagents,consistent with a cytosolic localization; and5) detachment of ~150 amino acidsfrom the NH2-terminal end of theprotein had little effect on the transport activity of NHE1.

  相似文献   

17.
Na+-K+-Cl cotransporter isoform 1 (NKCC1) and reverse mode operation of the Na+/Ca2+ exchanger (NCX) contribute to intracellular Na+ and Ca2+ overload in astrocytes following oxygen-glucose deprivation (OGD) and reoxygenation (REOX). Here, we further investigated whether NKCC1 and NCX play a role in mitochondrial Ca2+ (Cam2+) overload and dysfunction. OGD/REOX caused a doubling of mitochondrial-releasable Ca2+ (P < 0.05). When NKCC1 was inhibited with bumetanide, the mitochondrial-releasable Ca2+ was reduced by 42% (P < 0.05). Genetic ablation of NKCC1 also reduced Cam2+ accumulation. Moreover, OGD/REOX in NKCC1+/+ astrocytes caused dissipation of the mitochondrial membrane potential (m) to 42 ± 3% of controls. In contrast, when NKCC1 was inhibited with bumetanide, depolarization of m was attenuated significantly (66 ± 10% of controls, P < 0.05). Cells were also subjected to severe in vitro hypoxia by superfusion with a hypoxic, acidic, ion-shifted Ringer buffer (HAIR). HAIR/REOX triggered a secondary, sustained rise in intracellular Ca2+ that was attenuated by reversal NCX inhibitor KB-R7943. The hypoxia-mediated increase in Cam2+ was accompanied by loss of m and cytochrome c release in NKCC1+/+ astrocytes. Bumetanide or genetic ablation of NKCC1 attenuated mitochondrial dysfunction and astrocyte death following ischemia. Our study suggests that NKCC1 acting in concert with NCX causes a perturbation of Cam2+ homeostasis and mitochondrial dysfunction and cell death following in vitro ischemia. intracellular calcium ion; mitochondrial membrane potential; sodium ion influx; bumetanide; cytochrome c; glial cell death  相似文献   

18.
The Na+/Ca2+ exchanger is the major Ca2+ extrusion mechanism in cardiac myocytes. The activity of the cardiac Na+/Ca2+ exchanger is dynamically regulated by intracellular Ca2+. Previous studies indicate that Ca2+ binding to a high-affinity Ca2+-binding domain (CBD1) in the large intracellular loop is involved in regulation. We generated transgenic zebrafish with cardiac-specific expression of CBD1 linked to yellow and cyan fluorescent protein. Ca2+ binding to CBD1 induces conformational changes, as detected by fluorescence resonance energy transfer. With this transgenic fish model, we were able to monitor conformational changes of the Ca2+ regulatory domain of Na+/Ca2+ exchanger in intact hearts. Treatment with the positive inotropic agents ouabain and isoproterenol increased both Ca2+ transients and Ca2+-induced changes in fluorescence resonance energy transfer. The results indicate that Ca2+ regulation of the Na+/Ca2+ exchanger domain CBD1 changes with inotropic state. The transgenic fish models will be useful to further characterize the regulatory properties of the Na+/Ca2+ exchanger in vivo. Ca2+-binding domain; sodium/calcium exchange; zebrafish; fluorescence resonance energy transfer  相似文献   

19.
Actin-dependent regulation of the cardiac Na(+)/Ca(2+) exchanger   总被引:1,自引:0,他引:1  
In the present study, the bovine cardiac Na+/Ca2+ exchanger (NCX1.1) was expressed in Chinese hamster ovary cells. The surface distribution of the exchanger protein, externally tagged with the hemagglutinin (HA) epitope, was associated with underlying actin filaments in regions of cell-to-cell contact and also along stress fibers. After we treated cells with cytochalasin D, NCX1.1 protein colocalized with patches of fragmented filamentous actin (F-actin). In contrast, an HA-tagged deletion mutant of NCX1.1 that was missing much of the exchanger's central hydrophilic domain (241–680) did not associate with F-actin. In cells expressing the wild-type exchanger, cytochalasin D inhibited allosteric Ca2+ activation of NCX activity as shown by prolongation of the lag phase of low Ca2+ uptake after initiation of the reverse (i.e., Ca2+ influx) mode of NCX activity. Other agents that perturbed F-actin structure (methyl--cyclodextrin, latrunculin B, and jasplakinolide) also increased the duration of the lag phase. In contrast, when reverse-mode activity was initiated after allosteric Ca2+ activation, both cytochalasin D and methyl--cyclodextrin (Me--CD) stimulated NCX activity by 70%. The activity of the (241–680) mutant, which does not require allosteric Ca2+ activation, was also stimulated by cytochalasin D and Me--CD. The increased activity after these treatments appeared to reflect an increased amount of exchanger protein at the cell surface. We conclude that wild-type NCX1.1 associates with the F-actin cytoskeleton, probably through interactions involving the exchanger's central hydrophilic domain, and that this association interferes with allosteric Ca2+ activation. cytochalasin; methyl--cyclodextrin; allosteric calcium activation  相似文献   

20.
We recently reported that Na+/H+ exchanger isoform 1 (NHE1) activity in astrocytes is stimulated and leads to intracellular Na+ loading after oxygen and glucose deprivation (OGD). However, the underlying mechanisms for this stimulation of NHE1 activity and its impact on astrocyte function are unknown. In the present study, we investigated the role of the ERK1/2 pathway in NHE1 activation. NHE1 activity was elevated by 75% in NHE1+/+ astrocytes after 2-h OGD and 1-h reoxygenation (REOX). The OGD/REOX-mediated stimulation of NHE1 was partially blocked by 30 µM PD-98059. Increased expression of phosphorylated ERK1/2 was detected in NHE1+/+ astrocytes after OGD/REOX. Moreover, stimulation of NHE1 activity disrupted not only Na+ but also Ca2+ homeostasis via reverse-mode operation of Na+/Ca2+ exchange. OGD/REOX led to a 103% increase in intracellular Ca2+ concentration ([Ca2+]i) in NHE1+/+ astrocytes in the presence of thapsigargin. Inhibition of NHE1 activity with the NHE1 inhibitor HOE-642 decreased OGD/REOX-induced elevation of [Ca2+]i by 73%. To further investigate changes of Ca2+ signaling, bradykinin-mediated Ca2+ release was evaluated. Bradykinin-mediated intracellular Ca2+ transient in NHE1+/+ astrocytes was increased by 84% after OGD/REOX. However, in NHE1–/– astrocytes or NHE1+/+ astrocytes treated with HOE-642, the bradykinin-induced Ca2+ release was increased by only 34%. Inhibition of the reverse mode of Na+/Ca2+ exchange abolished OGD/REOX-mediated Ca2+ rise. Together, our data suggest that ERK1/2 is involved in activation of NHE1 in astrocytes after in vitro ischemia. NHE1-mediated Na+ accumulation subsequently alters Ca2+ homeostasis via Na+/Ca2+ exchange. intracellular pH; cortical astrocytes; sodium/calcium exchange; intracellular sodium ion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号