首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In tropical forests, light‐gaps created from treefalls are a frequent source of habitat heterogeneity. The increase in productivity, through gap formation, can alter food quality, predation and their impact on insect herbivores. We hypothesized that in gaps, herbivores would be less resource‐limited and more predator limited, whereas in the understory, we predicted the reverse. In this study, we investigate the combined effects of food quality and predation on the lepidopteran larva Zunacetha annulata feeding on its host plant Hybanthus prunifolius in two habitats; sunny treefall gaps and the shaded understory in Panama. In bioassays, Z. annulata feeding on sun leaves ate 22 percent less leaf area, grew 25 percent faster, and had higher pupal weights than larvae feeding on shade leaves. However, shade leaves had higher nitrogen content and specific leaf area. In gaps, predation was 26.4 percent compared to 13.8 percent in the understory. Larvae on understory plants traveled greater distances and spent more time searching and traveling than larvae on gap plants. These differences in behavior are consistent with lower predation risk and lower quality food in the understory. Using data from bioassays and field experiments we calculated 0.22 percent and 1.02 percent survival to adulthood for larvae in gaps and the understory, respectively. In conclusion, although these habitats were in close proximity, we found that larvae in the understory are more resource‐limited and larvae in gaps are more predator limited.  相似文献   

2.
The extent to which individual host trees maintain their relative quality over time may affect patterns of abundance, distribution and microevolution in herbivorous insects. In this study, we explore temporal consistency in the quality of oak Quercus robur foliage, using leaf‐chewing larvae of the moth Amphipyra pyramidea as our model herbivores. By utilising an artificial diet, we are able to isolate the impact of chemical contents from physical attributes, and thereby to ask to what extent purely chemical parameters create tree‐to‐tree differences in host quality, how consistent such differences are among trees between different parts of a single growth season, and to what extent individual moth larvae are able to compensate for chemical variation in food quality. We find that with physical traits controlled for, chemical traits suffice to create strong differences in larval growth rates between trees, and between larvae fed on young and mature foliage. Nevertheless, these initial differences are efficiently compensated for the fact that larvae with lower growth rates continue to grow for a longer time, and thereby end up at the same size as larvae with high growth rates. At the pupal stage, we could no longer detect differences between either larvae fed foliage from different trees or between larvae fed young versus mature foliage – despite notably little variation among individuals within each group. Such compensatory responses were also reflected in patterns of consistency. The intraclass correlation for larval weight was relatively high (ρ=0.45), but lower for development time (ρ=0.26), and non‐existent for pupal weight (ρ=0.00). These results suggest that in terms of pupal mass, A. pyramidea is able to compensate more or less completely for differences in resource quality, that patterns of consistency vary with the specific trait examined, and that the net effect of spatiotemporal variation in host plant quality on herbivore fitness should be dissected by experiments aimed at different life history traits. If slow growth comes with high mortality, spatiotemporal patterns in resource quality may have a major impact on herbivore fitness; if not, the patterns may be nullified by efficient compensatory mechanisms.  相似文献   

3.
A suite of functionally-related characters and demography of three species of Neotropical shadeadapted understory shrubs (Psychotria, Rubiaceae) were studied in the field over five years. Plants were growing in large-scale irrigated and control treatments in gaps and shade in old-growth moist forest at Barro Colorado Island, Panama. Irrigation demonstrated that dry-season drought limited stomatal conductance, light saturated photosynthesis, and leaf longevity in all three species. Drought increased mortality of P. furcata. In contrast, irrigation did not affect measures of photosynthetic capacity determined with an oxygen electrode or from photosynthesis-CO2 response curves in the field. Drought stress limited field photosynthesis and leaf and plant survivorship without affecting photosynthetic capacity during late dry season. Leaves grown in high light in naturally occurring treefall gaps had higher photosynthetic capacity, dark respiration and mass per unit area than leaves grown in the shaded understory. P. furcata had the lowest acclimation to high light for all of these characters, and plant mortality was greater in gaps than in shaded understory for this species. The higher photosynthetic capacity of gap-grown leaves was also apparent when photosynthetic capacity was calculated on a leaf mass basis. Acclimation to high light involved repackaging (higher mass per unit leaf area) as well as higher photosynthetic capacity per unit leaf mass in these species. The three species showed two distinct syndromes of functionally-related adaptations to low light. P. limonensis and P. marginata had high leaf longevity (3 years), high plant survivorship, low leaf nitrogen content, and high leaf mass per unit area. In contrast, P. furcata had low leaf survivorship (1 year), high plant mortality (77–96% in 39 months), low leaf mass per unit area, high leaf nitrogen content, and the highest leaf area to total plant mass; the lowest levels of shelf shading, dark respiration and light compensation; and the highest stem diameter growth rates. This suite of characters may permit higher whole-plant carbon gain and high leaf and population turnover in P. furcata. Growth in deep shade can be accomplished through alternative character syndromes, and leaf longevity may not be correlated with photosynthetic capacity in shade adapted plants.  相似文献   

4.
Herbivore populations are influenced by a combination of food availability and predator pressure, the relative contribution of which is hypothesized to vary across a productivity gradient. In tropical forests, treefall gaps are pockets of high productivity in the otherwise less productive forest understory. Thus, we hypothesize that higher light availability in gaps will increase plant resources, thereby decreasing resource limitation of herbivores relative to the understory. As a result, predators should regulate herbivore populations in gaps, whereas food should limit herbivores in the understory. We quantified potential food availability and compared arthropod herbivore and predator densities in large forest light gaps and in the intact understory in Panama. Plants, young leaves, herbivores and predators were significantly more abundant per ground area in gaps than in the understory. This pattern was similar when we focused on seven gap specialist plant species and 15 shade-tolerant species growing in gaps and understory. Consistent with the hypothesis, herbivory rates were higher in gaps than the understory. Per capita predation rates on artificial caterpillars indicated higher predation pressure in gaps in both the dry and late wet seasons. These diverse lines of evidence all suggest that herbivores experience higher predator pressure in gaps and more food limitation in the understory.  相似文献   

5.
Xu CY  Schuster WS  Griffin KL 《Oecologia》2007,153(4):809-819
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C “subsidy” when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R 0) and the temperature response coefficient (E 0), were different among the three shrubs and species-specific negative correlations were observed between R 0 and E 0. All three shrubs showed significant correlation between respiration rate on an area basis (20°C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.  相似文献   

6.
Gypsy moth (Lymantria dispar (L.) (Lepidoptera: Lymantriidae)) larvae were reared from hatch on 1.25% N or 3.5% N artificial diet (previous diet) and switched reciprocally to the other diet (current diet) after molting into the second, third, fourth, or fifth instar. The nitrogen concentration of food consumed during previous instars had a strong residual effect on the growth rate in subsequent instars when a diet switch was made during instars two through four, but did not affect growth rate of fifth-instar larvae despite effects on food consumption and utilization. In early instars, larvae reared on 1.25% N artificial diet and then switched to 3.75% N diet had lower mass-adjusted growth rates than larvae continuously reared on 3.75% N diet. Conversely, larvae reared on 3.75% N diet and switched to 1.25% N had higher mass-adjusted growth rates than larvae reared continuously on 1.25% N diet. Relative to larvae previously reared on 1.25% N diet, fifth-instar male larvae previously reared on 3.75% N diet had slightly lower consumption rates, higher net growth efficiency (ECD), and higher gross growth efficiency (ECI). Larvae previously reared on 3.75% N diet tended to have lower food assimilation efficiency (AD) and lower nitrogen assimilation efficiency (AD(N)). Although both previous and current diet nitrogen concentration strongly affected larval growth and food utilization, the interaction term between these was not significant for any response variables except ECD and ECI. Because the interaction term reflects the effect of switching per se, the results indicate that there was a metabolic cost associated with switching, but no inherent net cost or benefit of diet-switching to growth.  相似文献   

7.
Summary In a series of field experiments using Costa Rican rain forest plants, we examined the effect of accessibility on fruit removal rates. We compared the effects of fruit placement in terminal and axillary infructescences on diurnal and nocturnal removal rates, visitation rates, and incidence of fruit damage. We used three different species of berries (Phytolacca rivinoides, Psychotria brachiata, and Psychotria pitteri) and worked in three different habitats (fallow fields, treefall gaps, and forest understory) and in two different seasons (July–September, a season of fruit abundance and December–January, a season of fruit scarcity.)We found that in oldfields especially, diurnal removal rates by birds were significantly greater from axillary than from terminal infructescences. Nocturnal removal from axillary infructescences-presumably by rodents-is also occassionally significant. From these data, from observations on climbing ability and fruit use in captive rodents, and from reports in the literature, we suggest that rodents are significant sources of fruit and seed loss in tropical shrubs. We hypothesize that placement of the infructescence on the plant affects fruit removal by both seed-dispersing birds and by the less agile, often seed-destroying rodents. The balance between the two rates is an important component of a plant's dispersal success.Diurnal fruit removal rates were higher during the season of fruit scarcity than during the season of fruit abundance and higher in old fields than in forest gaps or understory. Fruit damage rates-probably due to orthopterans-were slightly greater in gaps and understory than in old fields.  相似文献   

8.
The establishment and spread of non‐native, invasive shrubs in forests poses an important obstacle to natural resource conservation and management. This study assesses the impacts of the physical removal of a complex of woody invasive shrub species on deciduous forest understory resources. We compared leaf litter quantity and quality and understory light transmittance in five pairs of invaded and removal plots in an oak‐dominated suburban mature forest. Removal plots were cleared of all non‐native invasive shrubs. The invasive shrubs were abundant (143,456 stems/ha) and diverse, dominated by species in the genera Ligustrum, Viburnum, Lonicera, and Euonymus. Annual leaf litter biomass and carbon inputs of invaded plots were not different from removal plots due to low leaf litter biomass of invasive shrubs. Invasive shrub litter had higher nitrogen (N) concentrations than native species; however, low biomass of invasive litter led to low N inputs by litter of invasive species compared to native. Light transmittance at the forest floor and at 2 m was lower in invaded plots than in removal plots. We conclude that the removal of the abundant invasive shrubs from a native deciduous forest understory did not alter litter quantity or N inputs, one measure of litter quality, and increased forest understory light availability. More light in the forest understory could facilitate the restoration of forest understory dynamics.  相似文献   

9.
Short-term damage-induced increases in tobacco alkaloids protect plants   总被引:10,自引:0,他引:10  
Ian T. Baldwin 《Oecologia》1988,75(3):367-370
Summary Leaf damage significantly increases the alkaloid content in undamaged leaves on damaged field-grown wild tobacco plants. Although field-grown pot-bound plants fail to exhibit the same damage-induced increase in alkaloid content, the ability to respond to leaf damage is restored 6 days after removing plants from their pots. Freshly hatched Manduca sexta larvae reared individually in the laboratory on the high-alkaloid foliage of damaged plants released from their pots gain less weight and eat less (57.2% and 45.7% of controls, respectively) than larvae fed low-alkaloid foliage from undamaged released plants. Moreover, larvae grow equally well on the foliage of damaged and undamaged pot-bound plants. The higher chlorophyll contents characteristic of damaged released plants did not negate the effects of the increased alkaloid contents on larval growth. Undamaged leaves from undamaged field-grown plants stem-fed nicotine solutions had elevated leaf nicotine and nornicotine contents. Larvae reared on these artificially induced leaves gain only 38.5% of the weight gained by larvae reared on low-alkaloid foliage. These results demonstrate that damage-induced increases in leaf alkaloids protect induced foliage from attack and are sufficient to explain the decreased growth of caterpillars on the foliage of damaged plants.  相似文献   

10.
Abstract. The currently prevailing view is that saplings require gaps or larger disturbances in order to grow into the canopy. This study documents an exception. In California's Pseudotsuga‐mixed hardwood forests, crowns of Pseudotsuga menziesii (Douglas fir) are within those of angiosperm trees (Arbutus menziesii and Quercus species). In the forests we examined, every Pseudotsuga was younger and all but one were growing more rapidly in girth than the Arbutus or Quercus whose crown it had penetrated. Furthermore, as saplings, the Pseudotsuga had grown at rates between those of suppressed saplings and canopy dominants. The recruitment of emergent Pseudotsuga substantially alters these canopies because of the large size Pseudotsuga attains. Given the density of Pseudotsuga growing in canopy crowns, such recruitment is likely. As a mechanism of recruitment, this through‐growth differs from gap recruitment in that the turnover of canopy trees is determined by an understory species' growth rate rather than the overstory species' longevity, and community attributes may change rapidly by replacement of canopy dominants with a dissimilar species. Pseudotsuga could grow through the canopy because of its greater potential height (> 60m vs. 20–40m for the angiosperms), narrower crown and its branches suffering less mechanical damage than those of the angiosperms. In general, resource levels in the understory, canopy height, and interspecific differences in maximum height and crown architecture all influence the likelihood of through‐growth. Therefore, for vegetation types whose dominants differ substantially in growth form, through‐growth may be a mechanism for rapid ecosystem change.  相似文献   

11.
Shade-tolerant understory shrubs and subcanopy trees constitute most of the woody species in Neotropical moist forest, but studies demonstrating physiological differences among these species are few. Shade-tolerant species that coexist in the forest understory exhibit differences in leaf life span that have been associated with variation in physiological traits. We hypothesized that water relations of understory species with widely divergent leaf life spans differ in response to drought. Although severe drought is infrequent in Neotropical moist forest, we studied the water relations of shade-tolerant understory species with short or long leaf life spans during the severe 1991-1992 dry season on Barro Colorado Island, Panama. The predawn leaf water potential declined to -2.8 and -3.6 MPa during the dry season in Hybanthus prunifolius and Psychotria horizontalis, respectively, two species with short leaf life spans, but remained above -1.3 MPa in two species with long leaf life spans, Swartzia simplex and Ouratea lucens. The midday leaf water potential dropped as low as -3.4 and -4.5 MPa for H. prunifolius and P. horizontalis, respectively. The osmotic potential of H. prunifolius and P. horizontalis and another species with short leaf life span, Alms blackiana, decreased early in the dry season, a period during which all three had substantially negative predawn water potential. In contrast, the osmotic potential of S. Simplex, O. lucens, and Licania platypus, a third species with long leaf life span, declined late in the dry season, even though we observed little change in predawn water potential for S. simplex and O. lucens. We conclude that the variable and potentially severe dry season in Neotropical moist forest can be sufficiently intense to severely limit soil moisture availability for understory plants. H. prunifolius and P. horizontalis tolerated dehydration, whereas S. simplex and O. lucens postponed dehydration.  相似文献   

12.
In moist tropical forests resprouting may be an important component of life history, contributing to asexual reproduction through the clonal spread of individuals derived from shoot fragments. However, in contrast to other ecosystems where resprouting is common, the ecological correlates of resprouting capacity in tropical forests remain largely unexplored. In this study we characterized shade tolerance, resprouting capacity and sexual reproductive success of eight co-occurring Piper species from lowland forests of Panama. In field experiments we found that shade-tolerant Piper species had a higher capacity to regenerate from excised or pinned stem fragments than light-demanding species in both gap and understory light conditions. In contrast, shade-tolerant species had lower recruitment probabilities from seeds, as a consequence of lower initial seed viability, and lower seedling emergence rates. All Piper species needed gap conditions for successful seedling establishment. Of 8,000 seeds sown in the understory only 0.2% emerged. In gaps, seed germination of light-demanding species was between 10 and 50%, whereas for shade-tolerant species it was 0.5–9.8%. We propose that the capacity to reproduce asexually from resprouts could be adaptive for shade-tolerant species that are constantly exposed to damage from falling litter in the understory. Resprouting may allow Piper populations to persist and spread despite the high rate of pre-dispersal seed predation and low seed emergence rates. Across Piper species, we detected a trade-off between resprouting capacity and the annual viable seed production per plant but not with annual seed mass produced per plant. This suggests that species differences in sexual reproductive success may not necessarily result from differential resource allocation. Instead we suggest that low sexual reproductive success in the understory may in part reflect reduced genetic diversity in populations undergoing clonal growth, resulting in self-fertilization and in-breeding depression.  相似文献   

13.
Variation in the susceptibility of lepidopterous pest larvae of different ages to transgenic crops and the potential for survivors to reproduce could have important consequences for the development of resistance in such pests. Experiments were undertaken in the laboratory to determine if larvae of the potato tuber moth, Phthorimaea operculella, of different ages (0 (< 1 day old), 3, 5, 7 days) varied in their susceptibility to cry1Ac9–transgenic potato (Solanum tuberosum) foliage grown in the glasshouse or field. The survival and fecundity of larvae reared on transgenic tubers was also determined in the laboratory. There were no apparent differences in susceptibility of larvae of different ages to transgenic foliage. Larvae fed glasshouse or field‐grown non‐transgenic foliage had significantly larger relative growth indices and more larvae pupated, than those fed transgenic foliage, regardless of larval age. Eggs from a laboratory colony were placed on transgenic or non‐transgenic tubers to measure survival and fecundity. Between 6% and 15% of eggs placed on transgenic tubers developed into pupae for three of the four transgenic potato lines tested. On one transgenic line, only six adults emerged from 1300 eggs. In contrast, between 71% and 97% of the eggs placed on non‐transgenic tubers developed into pupae. Male and female pupae from transgenic lines weighed less than those from non‐transgenic lines. The fecundity of females from two of four transgenic lines was lower than from the non‐transgenic parent cultivar. Although larvae of different ages did not exhibit any overall age‐dependent pattern of increasing or decreasing susceptibility to transgenic foliage of glasshouse or field‐grown plants, the ability of larvae to survive and reproduce on transgenic tubers suggests this pest has the ability to evolve resistance to the transgenic plants used in the present study.  相似文献   

14.
We examined toxicity of acephate to third-instar gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), under different conditions of administration method, availability of food to larvae during bioassay, host plant, and activity of detoxifying enzymes. Larvae that had been fed field-collected foliage of white alder (Alnus rhombifolia Nutt.) were less susceptible 48 h after treatment with topically applied acephate if they were allowed to continue feeding on foliage during the bioassay period (LD50= 60.6 μg/g larva ) than if they were not (LD50= 13.5 μg/g larva ). All surviving larvae were replaced on their original food plant after the 48-h bioassay; of these, 14.4% of the larvae not fed during treatment died before pupation, compared with 1.3% of the larvae fed alder during treatment. The LD50 obtained for topically treated larvae reared and treated on Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, (51.1 μg/g larva) was comparable to that obtained for larvae fed alder (60.0 μg/g larva) throughout treatment. Larvae treated orally with acephate, however, were slightly more susceptible when reared on Douglas-fir (LC50, 20.3 ppm ) than when reared on alder (LC50, 27.0 ppm ). Post-treatment mortality in orally treated larvae was 10.3% in those fed alder and 9.5% in those fed Douglas-fir. Higher cytochrome P-450 activities in larvae reared on Douglas-fir apparently did not enhance tolerance to acephate. Both sexes of orally treated larvae took significantly longer to pupate than did controls on both foliage types, as did topically treated males fed Douglas-fir. Pupal weight generally was slightly, but not always significantly, higher in treated than untreated larvae under all dietary and treatment regimes.  相似文献   

15.
The photosynthetic response of juveniles of Decussocarpus rospigliosii, an emergent primary forest species and shade tolerant in its juvenile stages and Alchornea triplinervia, a gap-colonizing species of tropical cloud forest in Venezuela was studied. Daily courses of microenvironmental variables and gas exchange under contrasting light conditions (gap and understory) were carried out in their natural environment and transplanted to different light regimes (shade and sun) in the field. The photosynthetic response and some anatomical characteristics of plants from different treatments were analyzed in the laboratory. Photosynthetic rates were low for both species, and were negative during some diurnal periods, related to the low photosynthetically active radiation levels obtained at both gap (6% of total radiation) and understory (2%). A. triplinervia shows higher rates (1.5–3.0 molm-2 -1) than D. rospigliosii (0.7–1.1 molm-2s-1). Both species showed increased photosynthetic rates when grown in gaps. A. triplinervia did not adjust its maximum photosynthetic rates to the prevailing light conditions. In contrast, D. rospigliosii responded to increased light levels. Both species showed low light compensation points when grown under total shade. There was a partial stomatal closure generally during midday in D. rospigliosii. A. triplinervia presented lower leaf conductances, transpiration rates and lesser stomatal control. Some leaf anatomical characteristics, in both species, were affected by variations in the light regime (i.e. increased leaf thickness, leaf specific weight and stomatal density). These results suggest that both species have the ability to respond to variations in their natural light environments, therefore maintaining a favorable carbon balance during the day.  相似文献   

16.
1. Interactions between invertebrate herbivores with different feeding modes are common on long-lived woody plants. In cases where one herbivore facilitates the success of another, the consequences for their shared host plant may be severe. Eastern hemlock (Tsuga canadensis), a canopy-dominant conifer native to the eastern U.S., is currently threatened with extirpation by the invasive stylet-feeding hemlock woolly adelgid (Adelges tsugae). The effect of adelgid on invasive hemlock-feeding folivores remains unknown. 2. This study evaluated the impact of feeding by hemlock woolly adelgid on gypsy moth (Lymantria dispar) larval preference for, and performance on, eastern hemlock. To assess preference, 245 field-grown hemlocks were surveyed for gypsy moth herbivory damage and laboratory paired-choice bioassays were conducted. To assess performance, gypsy moth larvae were reared to pupation on adelgid-infested or uninfested hemlock foliage, and pupal weight, proportional weight gain, and larval period were analysed. 3. Adelgid-infested hemlocks experienced more gypsy moth herbivory than did uninfested control trees, and laboratory tests confirmed that gypsy moth larvae preferentially feed on adelgid-infested hemlock foliage. Gypsy moth larvae reared to pupation on adelgid-infested foliage gained more weight than larvae reared on uninfested control foliage. 4. These results suggest that the synergistic effect of adelgid and gypsy moth poses an additional threat to eastern hemlock that may increase extirpation risk and ecological impact throughout most of its range.  相似文献   

17.
Summary We tested the hypothesis that herbivorous insects on desert shrubs contribute to short-term nitrogen cycling, and increase rates of nitrogen flux from nutrient rich plants. Creosotebush (Larrea tridentata) shrubs were treated with different combinations of fertilizer and water augmentations, resulting in different levels of foliage production and foliar nitrogen contents. Foliage arthropod populations, and nitrogen in canopy dry throughfall, wet throughfall and stemflow were measured to assess nitrogen flux rates relative to arthropod abundances on manipulated and unmanipulated shrubs over a one-month period during peak productivity. Numbers and biomass of foliage arthropods were significantly higher on fertilized shrubs. Sap-sucking phytophagous insects accounted for the greatest numbers of foliage arthropods, but leaf-chewing phytophagous insects represented the greatest biomass of foliage arthropods. Measured amounts of bulk frass (from leaf-chewing insects) were not significantly different among the various treatments. Amounts of nitrogen from dry and wet throughfall and stemflow were significantly greater under fertilized shrubs due to fine frass input from sap-sucking insects. Increased numbers and biomass of phytophagous insects on fertilized shrubs increased canopy to soil nitrogen flux due to increased levels of herbivory and excrement. Nitrogen excreted by foliage arthropods accounted for about 20% of the total one month canopy to soil nitrogen flux, while leaf litter accounted for about 80%.  相似文献   

18.
We quantified differences in leaf traits between upper and lower crowns of a deciduous oak, Quercus acutissima, and examined feeding preference, consumption and performance of the Japanese oak silkmoth, Antheraea yamamai, for those leaves. Upper‐crown leaves had significantly smaller area, larger dry mass per area, greater thickness, lower water content, higher nitrogen content and a higher N/C ratio than lower‐crown leaves. When simultaneously offered upper‐crown and lower‐crown leaves, moth larvae consumed a significantly larger amount of the former. However, when fed with either upper‐crown or lower‐crown leaves (no choice), they consumed a significantly larger amount of the latter. Female larvae reared on upper‐crown leaves had a significantly smaller fresh weight, but attained a significantly larger pupal fresh and dry weight, with a significantly higher relative growth rate than those on lower‐crown leaves. Although, like female larvae, male larvae had a significantly smaller fresh weight when reared on upper‐crown leaves, they had a significantly larger value only for pupal dry weight. These results suggest that: (i) larvae ingest a greater amount of lower‐crown leaves to compensate for the lower nitrogen content of the foliage, resulting in having an excess of water because of the higher water content of the foliage; (ii) feeding preference for upper‐crown leaves accords with better performance (with respect to dry pupal weight and relative growth rate) on the foliage; (iii) better performance is explained by a higher nitrogen content and N/C ratio of the upper‐crown foliage; and (iv) the effects of leaf quality on performance differ between sexes.  相似文献   

19.
Summary The ephemerality of high quality foliage in spring may act as a defense for trees against early season folivores, but only if the duration of high quality is so short that it is difficult for insects to synchronize their eclosion with the period of high quality foliage that follows budbreak. The rate of change in foliage quality on a day to day basis through the spring was determined for 9 species of hardwood trees in 2–3 years. Measurement of physical and chemical parameters and a bioassay with gypsy moth larvae both showed decreasing quality during the three to five weeks of canopy development in all species. Rates of decline differed among species but the patterns were similar from year to year on a degree-day scale. Growth rates of larvae raised through the first stadium on foliage of differing ages reflected these changes in foliage acceptability. Increasing toughness and declining nitrogen and water contents of leaves were correlated with changes in acceptability to larvae but explained only a small part of the variation in acceptability. The host-seeking period of gypsy moth larvae over-lapped with the availability of highly acceptable foliage of the most preferred host species. Less preferred species had more rapid declines in foliage acceptability, and hence narrower overlaps with the host-seeking period, which may provide defense against use by this generalist forest pest.  相似文献   

20.
格氏栲天然林林窗和林下种子散布及幼苗更新研究   总被引:1,自引:0,他引:1  
以格氏栲(Castanopsis kawakamii)天然林为研究对象,探讨了林窗和林下格氏栲种子雨、种子库的分布特征及幼苗更新状况。结果表明:林窗种子雨总量和完好种子密度高于林下,未成熟种子比例低于林下;林窗和林下种子雨高峰期掉落数量分别占种子雨总量的77.13%和74.5%;林窗种子库储量低于林下,种子库中以全食或捡拾种子比例最高,其中种子库储量垂直分布表现为枯落物层(约占2/3)>腐殖质层(0~5 cm)(约占1/3)>心土层(5~10 cm)(小于1%),以格氏栲种子占绝对优势;格氏栲从种子到幼苗的转化率低,林窗中格氏栲完好种子密度与幼苗密度均高于林下。林窗微生境提高了种子散布过程中格氏栲成熟种子的密度和比例,有利于促进格氏栲的幼苗更新,表明林窗在格氏栲种群恢复过程中扮演着重要角色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号