首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the conductivity and photoconductivity in silver nanoparticle ensembles on quartz glass substrates. We observed a significant increase of the photoconductivity if the localized surface plasmon resonance in the metal nanoparticles was excited. A detailed analysis of the temperature dependence of the conductivity as well as dependences of the conductivity and photoconductivity on the amount of deposited metal led to the mechanism of the charge transfer in these structures. We found that the primary role in this mechanism is due to defects in the quartz glass structure which act as traps for electrons.  相似文献   

2.
Ceramic Li7La3Zr2O12 garnet materials are promising candidates for the electrolytes in solid state batteries due to their high conductivity and structural stability. In this paper, the existence of “polyamorphism” leading to various glass‐type phases for Li‐garnet structure besides the known crystalline ceramic ones is demonstrated. A maximum in Li‐conductivity exists depending on a frozen thermodynamic glass state, as exemplified for thin film processing, for which the local near range order and bonding unit arrangement differ. Through processing temperature change, the crystallization and evolution through various amorphous and biphasic amorphous/crystalline phase states can be followed for constant Li‐total concentration up to fully crystalline nanostructures. These findings reveal that glass‐type thin film Li‐garnet conductors exist for which polyamorphism can be used to tune the Li‐conductivity being potential new solid state electrolyte phases to avoid Li‐dendrite formation (no grain boundaries) for future microbatteries and large‐scale solid state batteries.  相似文献   

3.
  1. Tip potential (TP) of glass microelectrodes filled with 3 M KCl increased remarkably with the increase in the storage period in 3 M KCl solution at 37? C, while the electrode resistances decreased gradually.
  2. The electrical conductivity through the thin glass wall near the tip was found to increase in parallel with the TP increase.
  3. The e.m.f. across the thin glass wall in the tip region was directly measured. This seems to contribute to the TP generation of the microelectrode when the conductivity of the glass wall is significantly high in the tip region.
  4. Effects of the acid treatment of glass employed and the acidification of fillant electrolyte solution suggested that fixed negative charges on the glass wall play a fundamental role in the TP formation.
  5. Based on these experimental results, it was concluded that not only the diffusion potential through the tip pore but also the interfacial potential through the thin glass wall near the tip contributes to the TP generation, and the contribution of the latter increases with a long exposure period of the electrodes to electrolyte solution.
  6. In this connection, technical problems related to reduction of the tip potential were also discussed.
  相似文献   

4.
As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.  相似文献   

5.
The use of solid electrolytes is a promising direction to improve the energy density of lithium‐ion batteries. However, the low ionic conductivity of many solid electrolytes currently hinders the performance of solid‐state batteries. Sulfide solid electrolytes can be processed in a number of forms (glass, glass‐ceramic, and crystalline) and have a wide range of available chemistries. Crystalline sulfide materials demonstrate ionic conductivity on par with those of liquid electrolytes through the utilization of near ideal conduction pathways. Low‐temperature processing is also possible for these materials due to their favorable mechanical properties. The main drawback of sulfide solid electrolytes remains their electrochemical stability, but this can be addressed through compositional tuning or the use of artificial solid electrolyte interphase (SEI). Implementation of sulfide solid electrolytes, with proper treatment for stability, can lead to substantial improvements in solid‐state battery performance leading to significant advancement in electric vehicle technology.  相似文献   

6.
Proton tunneling in hydrated biological tissues near 200 K   总被引:1,自引:0,他引:1  
We measure the protonic conductivity in water clusters adsorbed on intact samples of viable biological samples (corn embryo and endosperm, Artemia cysts, and Typha pollen) below room temperature. In the low-temperature region, the conductivity increases with temperature as exp T6, in agreement with prediction by the theory of dissipative quantum tunneling. We detect the onset of this effect near 180 K, where a glass transition in the hydrated protein matrix is known to take place. Above 220 K other transitions are superimposed onto this simple behavior.  相似文献   

7.
风胁迫对三种叶菜的机械损伤及预测模型   总被引:1,自引:0,他引:1  
韩玮  岳云瑞 《生态学报》2017,37(13):4356-4365
为了研究风害对不同叶菜的影响,本研究通过模拟风洞试验,以上海青,四季小白菜,玻璃生菜3种叶菜为试验材料,分别在5,15,25 m/s风速条件下设置5,10,15 min的风胁迫处理,采用电导率法、伤口染色目测法、伤口色泽L值测定法研究风胁迫对不同种类叶菜造成的机械损伤,并对以上3种测定方法进行了综合评价,进而建立相应的数学模型。结果表明:风速和风胁迫时间两因子均对3种叶菜的相对电导率、目测等级、L值有显著性影响;两者的交互作用对上海青和四季小白菜的相对电导率有显著性影响,但对玻璃生菜的相对电导率无显著影响;另外,两者的交互作用对3种叶菜的目测等级均影响显著,但对3种叶菜的L值影响均不显著。25 m/s和15 m/s风对3种叶菜都可引起显著机械损伤,其中,在25 m/s持续15 min风处理下机械损伤最为严重,在此处理组合下,上海青、四季小白菜和玻璃生菜的相对电导率分别高于对照214.70%,228.96%,266.92%;目测等级分别高于对照2.3,2.4和3.6级;L值分别低于对照21.17%,38.91%,42.73%。显然,与上海青和四季小白菜相比,玻璃生菜更容易受到风害影响。Gauss2D拟合模型中,3种叶菜机械损伤拟合模型的决定系数R2均超过0.95,证明该拟合模型能较好地预测不同叶菜遭受风害后的机械损伤程度,可以为风害机械损伤预测提供理论基础。  相似文献   

8.
Rapid-cycle PCR uses fast temperature transitions and minimal denaturation and annealing times of "0" s to complete 30 cycles in 10 to 30 min. The most popular platform amplifies samples in glass capillaries arranged around a carousel with circulating air for temperature control. Recently, plastic capillary replacements for glass capillaries became available. We compared the performance of plastic and glass capillaries for rapid-cycle PCR. Heat transfer into plastic capillaries was slowed by thicker walls, lower thermal conductivity, and a lower surface area-to-volume ratio than glass capillaries. Whereas the denaturation and annealing target temperatures were reached by samples in glass capillaries, samples in plastic capillaries fell short of these target temperatures by 6 degrees -7 degrees C. Rapid-cycle PCR was performed on two human genomic targets (APOE and ACVRL1) and one plasmid (pBR322) to amplify fragments of 225-300 bp in length with melting temperatures of 90.3 degrees -93.1 degrees C. Real-time amplification data, end-point melting curves, and end-point gel analysis revealed strong, specific amplification of samples in glass and complete amplification failure in plastic. Only the APOE target was successfully amplified by extending the denaturation and annealing times to 5 or 10 s. A 20 s holding period was necessary to reach target temperatures in plastic capillaries.  相似文献   

9.
1. Collodion membranes of high polarizability and low resistance can be obtained either by addition of certain ether-soluble substances such as phosphatides, olive oil, mastix, and gum benzoin, to the collodion or by drying collodion membranes for a limited time under pressure. 2. The permeability of membranes of different polarization has been measured by means of conductivity methods. 3. Sintered glass filter plates of Jena glass crucibles on which proteins and lipoids have been adsorbed show polarization. It could be shown that some narcotics which react with lecithin cause an increase in polarization of the protein-lipoid-glass system. Substitutions of the protein but not of the lipoid were possible, without causing a decrease in the polarizability of the membranes.  相似文献   

10.
Experiments to measure the permeability properties of individually perfused microvessels provide a bridge between investigation of molecular and cellular mechanisms regulating vascular permeability in cultured endothelial cell monolayers and the functional exchange properties of whole microvascular beds. A method to cannulate and perfuse venular microvessels of rat mesentery and measure the hydraulic conductivity of the microvessel wall is described. The main equipment needed includes an intravital microscope with a large modified stage that supports micromanipulators to position three different microtools: (1) a beveled glass micropipette to cannulate and perfuse the microvessel; (2) a glass micro-occluder to transiently block perfusion and enable measurement of transvascular water flow movement at a measured hydrostatic pressure, and (3) a blunt glass rod to stabilize the mesenteric tissue at the site of cannulation. The modified Landis micro-occlusion technique uses red cells suspended in the artificial perfusate as markers of transvascular fluid movement, and also enables repeated measurements of these flows as experimental conditions are changed and hydrostatic and colloid osmotic pressure difference across the microvessels are carefully controlled. Measurements of hydraulic conductivity first using a control perfusate, then after re-cannulation of the same microvessel with the test perfusates enable paired comparisons of the microvessel response under these well-controlled conditions. Attempts to extend the method to microvessels in the mesentery of mice with genetic modifications expected to modify vascular permeability were severely limited because of the absence of long straight and unbranched microvessels in the mouse mesentery, but the recent availability of the rats with similar genetic modifications using the CRISPR/Cas9 technology is expected to open new areas of investigation where the methods described herein can be applied.  相似文献   

11.
Negative dielectrophoretic (n-DEP) cell manipulation is an efficient way to pattern human liver cells on micro-electrode arrays. Maintaining cell viability is an important objective for this approach. This study investigates the effect of low conductivity medium and the optimally designed microchip on cell viability and cell adhesion. To explore the influence of conductivity on cell viability and cell adhesion, we have used earlier reported dielectrophoresis (DEP) buffer with a conductivity of 10.2 mS/m and three formulated media with conductivity of 9.02 (M1), 8.14 (M2), 9.55 (M3) mS/m. The earlier reported isotonic sucrose/dextrose buffer (DEP buffer) used for DEP manipulation has the drawback of poor cell adhesion and cell viability. A microchip prototype with well-defined positioning of titanium electrode arrays was designed and fabricated on a glass substrate. The gap between the radial electrodes was accurately determined to achieve good cell patterning performance. Parameters such as dimension of positioning electrode, amplitude, and frequency of voltage signal were investigated to optimize the performance of the microchip.  相似文献   

12.
Abstract

We use classical molecular dynamics simulations to study both the structural modifications through the glass transition and the thermal conductivity k of a model silica glass. The first part is based on the Voronoï tessellation and we show that the structural freezing following upon the glass transition is noticeable in all the geometric characteristics of the Voronoï cells and a possible interpretation in terms of geometrical frustration is proposed.

In the second part we calculate k directly in the simulation box by using the standard equations of heat transport. The calculations have been done between 10 and 1000 Kelvin and the results are in good agreement with the experimental data at temperatures above 20 K. The plateau observed around 10 K can be accounted for by correcting our results taking into account finite size effects in a phenomenological way.  相似文献   

13.
Continuous monitoring of urea in blood during dialysis   总被引:1,自引:0,他引:1  
Urease was immobilized to porous glass and used in combination with a conductivity meter for determining urea in standard solutions as well as in blood from a patient undergoing dialysis. The sampling unit involves a possibility for heparinization at the sampling point and a dialysis step prior to exposure to the enzyme column. The unit operates in a linear mode in the concentration range 5-50 mM. Monitoring of dialysis process gave good correlation with off-line analyses.  相似文献   

14.
Natural oligosaccharide-derived room temperature ionic liquids (RTILs) were prepared from 1-ethyl-3-methylimidazolium hydroxide (EMIM·OH) and carboxymethylated chitosan (CM-chitosan) by acid–base neutralization reaction. These EMIM·CM-chitosan ionic liquids exhibited good ionic conductivity and thermal stability, as well as low glass transition temperature, implying their potential wide applications in direct electrochemistry, biosensors, and biocatalysis.  相似文献   

15.
An integrated preparation of a low‐cost composite gel–polymer/glass–fiber electrolyte with poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) reinforced by a glass–fiber paper and modified by a polydopamine coating to tune the mechanical and surface properties of PVDF‐HFP is shown to be applicable to a sodium‐ion battery. The composite polymer matrix exhibits excellent mechanical strength and thermal stability up to 200 °C. After saturating with a liquid electrolyte, a wide electrochemical window and high ionic conductivity is obtained for the composite gel–polymer/glass–fiber electrolyte. When tested in a sodium‐ion battery with Na2MnFe(CN)6 as cathode, the rate capability, cycling performance, and coulombic efficiency are significantly improved. The results suggest that the composite polymer electrolyte is a very attractive separator for a large‐scale battery system where safety and cost are the main concerns.  相似文献   

16.
The effect of carbohydrate structure on the conductivity of low water content amorphous carbohydrate-water, and carbohydrate-water-KCl mixtures, has been measured using both direct current and alternating current techniques at temperatures in the supercooled liquid and glassy range, ranging from -40 to 80 degrees C. The structures included homologous mono-, di- and trisaccharides (glucose, maltose and maltotriose), a monosaccharide with no exocyclic hydroxymethyl group (xylose) and a second trisaccharide (raffinose). The KCl-mixtures contained 9.3% w/w water and 0.74% w/w KCl which resulted in calorimetric glass transition temperatures, T(g), in the range -29-19 degrees C. At this concentration conduction due to KCl dominated that due to intrinsic conductors originating from the carbohydrates and water. In the supercooled liquid region, as temperature, T, is reduced to T(g), the activation energy of the molar conductivity of KCl, Lambda(m), increased as described by a Vogel-Tamman-Fulcher-type equation, Lambda(m)=Lambda(m0)exp[B/(T-T(0))], where Lambda(m0), B and T(0) are constants. Comparison of the molar conductivity of KCl in the carbohydrate mixtures at T(g) with that in aqueous solutions showed that conductivity is, to varying extents, uncoupled from viscosity. The uncoupling increased in the order D-xylose相似文献   

17.
Metal oxides, as one of the most promising flame retardant additives, improve the fire retardant and the thermal stability properties of polymers. In the present study, molecular dynamics (MD) simulations based on the united atom model were applied to study the effect of alumina nanoparticles on the density, thermal conductivity, heat capacity, and thermal diffusivity of isotactic poly(methyl methacrylate) (is-PMMA). Thermal diffusivity of PMMA and PMMA/alumina nanocomposite were investigated through calculating thermal conductivity, density and heat capacity in the range of 300–700?K. Heat capacity can be calculated using fluctuations properties of energy. Thermal conductivity was calculated through the nonequilibrium molecular dynamics (NEMD) simulation by Fourier’s law approach. Our results show that the addition of alumina nanoparticles decreases the heat capacity and increases the glass transition temperature (Tg), thermal conductivity and thermal diffusivity of the PMMA. Therefore, the addition of alumina nanoparticles to PMMA improves the fire retardancy of the polymer. In addition, we illustrate the links between the intermolecular and bulk properties of PMMA in the presence of the alumina nanoparticles.  相似文献   

18.
Postthaw hemolysis of glycerolized human red cells is influenced by the container material. The effect does not appear to be the result of toxic materials extracted from the plastic or of differences in thermal conductivity. In materials other than UCAR there is a correlation between post-thaw hemolysis and the area of container surface exposed to the cells. Rough handling of frozen cell suspensions increases the postthaw hemolysis of cells frozen in PVC bags but not those frozen in UCAR bags. Hemolysis at glass surfaces is particularly high. The mechanism of these effects remains a mystery.  相似文献   

19.
Among many other requirements, energy efficient building materials require effective daylight harvesting and thermal insulation to reduce electricity usage and weatherization cost. The most commonly used daylight harvesting material, glass, has limited light management capability and poor thermal insulation. For the first time, transparent wood is introduced as a building material with the following advantages compared with glass: (1) high optical transparency over the visible wavelength range (>85%); (2) broadband optical haze (>95%), which can create a uniform and consistent daylight distribution over the day without glare effect; (3) unique light guiding effect with a large forward to back scattering ratio of 9 for a 0.5 cm thick transparent wood; (4) excellent thermal insulation with a thermal conductivity around 0.32 W m?1 K?1 along the wood growth direction and 0.15 W m?1 K?1 in the cross plane, much lower than that of glass (≈1 W m?1 K?1); (5) high impact energy absorption that eliminates the safety issues often presented by glass; and (6) simple, scalable fabrication with reliable performance. The demonstrated transparent wood composite exhibits great promise as a future building material, especially as a replacement of glass toward energy efficient building with sustainable materials.  相似文献   

20.
Dielectric relaxation data covering a temperature range from above room temperature to below the glass transition for 40% (w/w) and 75% (w/w) glucose/water solutions in the frequency range between 5 and 13 MHz are presented. These data are used to obtain correlation times for the dielectric relaxation in the viscous liquid and the glass and are compared with correlation times determined from deuterium nuclear spin relaxation times [J. Chem. Phys., 110 (1999) 3472-3483]. The two sets of results have the same temperature dependence, but differ in magnitude by a factor of 3, implying that the relaxation is a small-step rotational diffusion. Both the structural relaxation (alpha process) and the slow beta process are present. In the 40% glucose/water sample, there is a dielectric relaxation attributable to the ice that forms at low temperature. It is shown that the reciprocal of the viscosity, the correlation time derived from the dielectric relaxation, and the dc conductivity have a similar dependence on temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号