首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding which species might become extinct and the consequences of such loss is critical. One consequence is a cascade of further, secondary extinctions. While a significant amount is known about the types of communities and species that suffer secondary extinctions, little is known about the consequences of secondary extinctions for biodiversity. Here we examine the effect of these secondary extinctions on trophic diversity, the range of trophic roles played by the species in a community. Our analyses of natural and model food webs show that secondary extinctions cause loss of trophic diversity greater than that expected from chance, a result that is robust to variation in food web structure, distribution of interactions strengths, functional response, and adaptive foraging. Greater than expected loss of trophic diversity occurs because more trophically unique species are more vulnerable to secondary extinction. This is not a straightforward consequence of these species having few links with others but is a complex function of how direct and indirect interactions affect species persistence. A positive correlation between a species' extinction probability and the importance of its loss defines high-risk species and should make their conservation a priority.  相似文献   

2.
Non-vagile taxa such as terrestrial molluscs are susceptible to stochastic environmental events that can cause local extinctions or population declines, and extinctions of terrestrial mollusc species are among the highest documented. Many terrestrial snails are habitat specialists, and genetic studies using both allozyme and DNA sequence data have indicated that many species contain substantial and geographically structured genetic variation. In this study, we assess the genetic variation within two species of the rare terrestrial snail genus Prestonella, an inhabitant of rocky areas along water courses in the southern Great Escarpment of South Africa, and correlate genetic diversity to climatic variables. DNA sequence data from mitochondrial 16S rDNA and partial cytochrome oxidase I genes indicate that neither species is monophyletic, and that populations are deeply divergent, even over distances of a few hundred metres. Principal components anaylsis of climatic variables derived from two databases indicates that genetic diversity of the populations is correlated to moisture-related climatic variables. Populations with little or no diversity occur in more arid regions, and are thus most at risk from any future climatic changes that would increase aridification. These moisture variables are thus potent drivers of genetic bottlenecks and may have resulted in historical climate filtering or limitation of the distribution of these species. Temperature appears to be a less important variable, a finding supported by physiological data based on heart rates that show that death occurs only at temperatures far higher than found in their environment.  相似文献   

3.
Mass extinctions among tetrapods and the quality of the fossil record   总被引:2,自引:0,他引:2  
The fossil record of tetrapods is very patchy because of the problems of preservation, in terrestrial sediments in particular, and because vertebrates are rarely very abundant. However, the fossil record of tetrapods has the advantages that it is easier to establish a phylogenetic taxonomy than for many invertebrate groups, and there is the potential for more detailed ecological analyses. The relative incompleteness of a fossil record may be assessed readily, and this can be used to test whether drops in overall diversity are related to mass extinctions or to gaps in our knowledge. Absolute incompleteness cannot be assessed directly, but a historical approach may offer clues to future improvements in our knowledge. One of the key problems facing palaeobiologists is paraphyly, the fact that many higher taxa in common use do not contain all of the descendants of the common ancestor. This may be overcome by cladistic analysis and the identification of monophyletic groups. The diversity of tetrapods increased from the Devonian to the Permian, remained roughly constant during the Mesozoic, and then began to increase in the late Cretaceous, and continued to do so during the Tertiary. The rapid radiation of 'modern' tetrapod groups--frogs, salamanders, lizards, snakes, turtles, crocodilians, birds and mammals--was hardly affected by the celebrated end-Cretaceous extinction event. Major mass extinctions among tetrapods took place in the early Permian, late Permian, early Triassic, late Triassic, late Cretaceous, early Oligocene and late Miocene. Many of these events appear to coincide with the major mass extinctions among marine invertebrates, but the tetrapod record is largely equivocal with regard to the theory of periodicity of mass extinctions.  相似文献   

4.
Marine sediments cover most of the ocean bottom, and the organisms that reside in these sediments therefore constitute the largest faunal assemblage on Earth in areal coverage. The biomass in these sediments is dominated by macrofauna, a grouping of invertebrate polychaetes, molluscs, crustaceans and other phyla based on size. Globally, only a small portion of marine habitats have been sampled for macrofauna, but sampled areas have led to global estimates of macrofaunal species number ranging from 500,000 to 10,000,000. Most of these species are undescribed, and global syntheses of patterns of individual taxa and biodiversity are few and based on limited samples. The significance of biodiversity in marine sediments to ecosystem processes is poorly understood, but individual species and functional groups are known to carry out activities that have global importance. Macrofaunal activity impacts global carbon, nitrogen and sulphur cycling, transport, burial and metabolism of pollutants, secondary production including commercial species, and transport of sediments. Documented extinctions of marine macrofauna are few, but the ramifications of species loss through habitat shrinkage and undocumented extinctions are unknown. Limited data suggest there is substantial functional redundancy in macrofauna within trophic groups but whether this redundancy is sufficient to allow species loss without significantly altering ecosystem processes is unknown. Sorely needed are experiments that test specific hypotheses on biodiversity, redundancy, and ecosystem processes as they relate to marine macrofauna.  相似文献   

5.
Most invasion histories include an estimated arrival time, followed by range expansion. Yet, such linear progression may not tell the entire story. The European green crab (Carcinus maenas) was first recorded in the US in 1817, followed by an episodic expansion of range to the north. Its population has recently exploded in the Canadian Maritimes. Although it has been suggested that this northern expansion is the result of warming sea temperatures or cold-water adaptation, Canadian populations have higher genetic diversity than southern populations, indicating that multiple introductions have occurred in the Maritimes since the 1980s. These new genetic lineages, probably from the northern end of the green crab's native range in Europe, persist in areas that were once thought to be too cold for the original southern invasion front. It is well established that ballast water can contain a wide array of nonindigenous species. Ballast discharge can also deliver genetic variation on a level comparable to that of native populations. Such gene flow not only increases the likelihood of persistence of invasive species, but it can also rapidly expand the range of long-established nonindigenous species.  相似文献   

6.
Projected climate change has been suspected of affecting the biota of conserved nature areas in different and significant ways. Nevertheless, strategic management within some nature conservation agencies appears relatively unprepared for the possible consequences of climate change. National level planning of reserve design networks has also tended to skirt the issue, possibly owing to insufficient analysis. This paper provides a first assessment of the possible effects of climate change on plant diversity within the protected area network of South Africa. A climate change scenario of increased temperature but no change in precipitation resulted in derived optimum growth days increasing in some reserves through increased temperature extending the growing season. In some other reserves optimum growth days declined through greater evapotranspiration. We concentrated on the larger reserves of the latter group for which conditions that are more limiting were predicted. Plant species were evaluated in terms of their critical limits in growth days and minimum temperature. Over a third of the species analysed for one reserve (Augrabies Falls National Park and Melkbosrand) was indicated to become locally extinct with climate change. Another reserve in the region showed fewer than 1% local extinctions. It is clear that although a certain magnitude of climate change is a prerequisite for these extinctions, the rate and number of extinctions depend strongly on the different environmental tolerances of the specific biotic components of the conserved area. Potential immigration of other species to Augrabies Falls/Melkbosrand required to balance the projected extinctions with climate change would need migration abilities and conditions that are unlikely to be met. A net decrease in plant diversity may thus be expected. The results confirm that with the climate change scenario used, the concept of sustaining species through fixed protected areas may be fundamentally flawed, at least in certain areas.  相似文献   

7.
Increasing land salinization in Australia is predicted to lead to severe declines in species diversity in affected areas, and perhaps significant numbers of species extinctions. Much of the diversity that will be lost consists of understorey and mid-storey species, yet the overwhelming majority of research has focussed on salinity tolerance in tree species. We investigated how the presence of a shallow, saline water table affected the understorey species composition, species richness and species diversity in two remnant Eucalyptus wandoo Blakely woodlands in the Western Australian wheatbelt. Species richness and species diversity were significantly lower in areas with a shallow water table at elevations < 0.5 m above the lowest local elevation, compared with both higher elevations and with areas of low elevation without a shallow water table. Species composition (Bray-Curtis similarities) was also significantly different in low elevation, saline areas. At one site, saline areas were colonized by native and alien species that were not present in the surrounding vegetation, yet the community that has developed does not contain either the species or structural diversity of the surrounding system. At the other site, no colonisation of saline areas by new species occurred. Even though small differences in elevation (< 0.5 m) at our study sites were important in moderating the impacts of salinity in areas with a shallow water table, the loss of species diversity, species richness and structural complexity in low-lying elevations indicated that the ecological risk from secondary salinity to species associated only with drainage lines, seasonally wet flats and other low-lying areas is severe. The priority is to identify those vegetation communities that are restricted to only low relative elevations within the landscape and that only occur in remnants predicted to be at a high risk of developing a shallow and saline water table.  相似文献   

8.
Identifying local extinctions is integral to estimating species richness and geographic range changes and informing extinction risk assessments. However, the species occurrence records underpinning these estimates are frequently compromised by a lack of recorded species absences making it impossible to distinguish between local extinction and lack of survey effort—for a rigorously compiled database of European and Asian Galliformes, approximately 40% of half-degree cells contain records from before but not after 1980. We investigate the distribution of these cells, finding differences between the Palaearctic (forests, low mean human influence index (HII), outside protected areas (PAs)) and Indo-Malaya (grassland, high mean HII, outside PAs). Such cells also occur more in less peaceful countries. We show that different interpretations of these cells can lead to large over/under-estimations of species richness and extent of occurrences, potentially misleading prioritization and extinction risk assessment schemes. To avoid mistakes, local extinctions inferred from sightings records need to account for the history of survey effort in a locality.  相似文献   

9.
At least five species of large flightless waterfowl have become extinct in the Hawaiian Islands in recent millennia. These birds are thought to have occupied the role of large herbivores in a wide range of terrestrial habitats. A collection of coprolites from one of the species ( Thambetochen chauliodous ) was obtained during excavations in Holocene cave sediments on the island of Maui. The chemical composition and pollen and spore content of the coprolites are analysed and compared with pollen/spore spectra from the cave sediments and from recent goose scats. The results support the contention that these birds were primarily folivorous, and further suggest that ferns were important in the diet. The coprolites have a very fine texture that may result from efficient hindgut fermentation and digestion of plant fibre. Our data are discussed in the light of a recent hypothesis of plant/herbivore coevolution between extinct avian herbivores and native Hawaiian lobelias. The loss of large native herbivores, as well as other changes in vertebrate trophic structure due to extinctions over the past few thousand years, may still be affecting ecological processes in areas of the Hawaiian islands with native vegetation.  相似文献   

10.
《Marine Micropaleontology》1988,13(3):239-263
An expanded sediment record at El Kef shows that the K/T boundary extinctions of planktic foraminifera extend over an interval from 25 cm below the geochemical boundary (Ir anomaly) to 7 cm above. Species extinctions appear sequential with complex, large, ornate forms disappearing first and smaller, less ornate, forms surviving longer. The 14 species extinctions below the boundary appear unrelated to an impact event.Cretaceous species survivorship is greater than previously assumed. About 10 species survive (22%) into Subzone P1a (Globigerina eugubina). All Cretaceous survivors are small primitive forms which are generally smaller than their ancestors in Cretaceous sediments.Species evolution after the K/T event occurs in two pulses. The first new Paleocene species evolve in the basal black clay (Zone PO) immediately after the major Cretaceous extinctions. Evolving species are small and primitive similar to Cretaceous survivors. The second pulse in species evolution occurs in the lower part of Subzone P1b with the appearance of larger more diverse species. The first major increase in carbonate sedimentation and productivity occurs at this time and signals the recoveyr of the ecosystem nearly 300,000 years after the K/T event. The species extinctions prior to the generally assumed impact event implied by the Ir anomaly, and the long recovery period of the ecosystem thereafter cannot be explained by a single impact, but suggest that multiple causes may be responsible such as climatic changes, volcanism, a sea level drop, production of warm saline bottom water and the chemical consequences associated with increased salinity.  相似文献   

11.
Studies of biodiversity through deep time have been a staple for biologists and paleontologists for over 60 years. Investigations of species richness (diversity) revealed that at least five mass extinctions punctuated the last half billion years, each seeing the rapid demise of a large proportion of contemporary taxa. In contrast to diversity, the response of morphological diversity (disparity) to mass extinctions is unclear. Generally, diversity and disparity are decoupled, such that diversity may decline as morphological disparity increases, and vice versa. Here, we develop simulations to model disparity changes across mass extinctions using continuous traits and birth-death trees. We find no simple null for disparity change following a mass extinction but do observe general patterns. The range of trait values decreases following either random or trait-selective mass extinctions, whereas variance and the density of morphospace occupation only decline following trait-selective events. General trends may differentiate random and trait-selective mass extinctions, but methods struggle to identify trait selectivity. Long-term effects of mass extinction trait selectivity change support for phylogenetic comparative methods away from the simulated Brownian motion toward Ornstein-Uhlenbeck and Early Burst models. We find that morphological change over mass extinction is best studied by quantifying multiple aspects of morphospace occupation.  相似文献   

12.
Ants were studied on Puerto Rico and 44 islands surrounding Puerto Rico. Habitat diversity was the best predictor of the number of species per island and the distributions of species followed a nested subset pattern. The number of extinctions per island was low, approximately 1–2 extinctions per island in a period of 18 years, and the rates of colonization seem to be greater than the extinction rates. Ant dynamics on these islands do not seem to support the basic MacArthur and Wilson model of island biogeography. The MacArthur and Wilson equilibrium is based on the notion that species are interchangeable, but some extinctions and colonizations can change the composition and number of species drastically.  相似文献   

13.
One-third of the world''s reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures—phylogenetic diversity and phylogenetic species variability—we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs.  相似文献   

14.
The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic diversity among 16 reef areas in the region to estimate changes in species and evolutionary diversity during projected anthropogenic extinctions. Our results show that richness, rarity, and phylogenetic diversity differ considerably among reef areas in the region, and that their outcomes following projected extinctions cannot be predicted by species diversity alone. Although relative rarity and threat levels are high in species-rich areas such as West Malaysia and the Philippines, areas with fewer species such as northern Vietnam and Paracel Islands stand to lose disproportionately large amounts of phylogenetic diversity. Our study quantifies various biodiversity components of each reef area to inform conservation planners and better direct sparse resources to areas where they are needed most. It also provides a critical biological foundation for targeting reefs that should be included in a regional network of marine protected areas in the South China Sea.  相似文献   

15.
River levels in Central Amazonia fluctuate up to 14 m annually, with the flooding period ranging from 50 to 270 days between the rising and falling phases. Vast areas of forest along the rivers contain plant species that are well adapted to annual flooding. We studied the effect of flooding level on tree species richness, diversity, density, and composition in lake, river, and stream habitats in Jaú National Park, Brazil. 3051 trees >10 cm diameter (at 1.3 m diameter at breast height, dbh) were measured and identified in 25 10 m × 40 m randomly selected plots in each habitat. Ordination methods and analysis of variance results showed that forested areas near lakes had significantly lower species richness of trees than riverine and streamside habitats. Plot species richness and diversity were strongly negatively correlated with the water level and duration of flooding. The drier (stream) habitat had more total species (54 species of trees) and more unique species of trees (6 tree species) than the riverine (52 tree species; 3 unique species) and lake (33 tree species; 3 unique species) habitats. Species composition overlap among habitats was surprisingly high (42.6–60.6% overlap), almost one-third of the species were found in all three habitat types, and few species were unique to each habitat. We conclude that: (1) duration of flooding has a strong impact on species richness, diversity and plant distribution patterns; (2) most species are adapted to a wide range of habitats and flood durations; and (3) while flood duration may decrease local diversity, it also creates and maintains high landscape-scale diversity by increasing landscape heterogeneity. Received: 20 April 1997 / Accepted: 14 January 1999  相似文献   

16.
Human activities have elevated the extinction of natural populations as well as the invasion of new areas by non-native species. These dual processes of invasion and extinction may change the richness and similarity of communities, but the form these changes take is likely to depend on the manner in which invasions and extinctions occur and the spatial scale at which the changes are measured. Here, we explore the influence of differing patterns of extinction and invasion on the similarity and richness of a meta-community. In particular, we model simple stochastic processes analogous to realistic modes of human-mediated introduction of non-native species and range expansion by native species. We show that different modes of invasion and extinction can produce very different changes in diversity, and that the relative magnitude of these changes depends both on where in the meta-community diversity is measured and the degree of initial species aggregation. At any spatial scale of measurement, changes in the richness and similarity of communities following invasion and extinction are not necessarily strongly coupled: relatively large increases in richness may or may not also be associated with relatively large increases in similarity among communities. Thus, in real systems, the influence of human-induced invasions and extinctions on diversity will depend on both the precise mode of these processes (especially invasion), and how species populations are distributed across space.  相似文献   

17.
Commercial selective logging and the conversion of primary and degraded forests to agriculture are the biggest threats to tropical biodiversity. Our understanding of the impacts of these disturbances and the resulting local extinctions on the functional roles performed by the remaining species is limited. We address this issue by examining functional diversity (FD), which quantifies a range of traits that affect a species' ecological role in a community as a single continuous metric. We calculated FD for birds across a gradient of disturbance from primary forest through intensively logged forest to oil palm plantations on previously forested land in Borneo, Southeast Asia, a hotspot of imperilled biodiversity. Logged rainforest retained similar levels of FD to unlogged rainforest, even after two logging rotations, but the conversion of logged forest to oil palm resulted in dramatic reductions in FD. The few remaining species in oil palm filled a disproportionately wide range of functional roles but showed very little clustering in terms of functional traits, suggesting that any further extinctions from oil palm would reduce FD even further. Determining the extent to which the changes we recorded were due to under‐utilization of resources within oil palm or a reduction in the resources present is an important next step. Nonetheless our study improves our understanding of the stability and resilience of functional diversity in these ecosystems and of the implications of land‐use changes for ecosystem functioning.  相似文献   

18.
The influence of diversity on ecosystem functioning and ecosystem services is now well established. Yet predictive mechanistic models that link species traits and community-level processes remain scarce, particularly for multitrophic systems. Here we revisit MacArthur's classical consumer resource model and develop a trait-based approach to predict the effects of consumer diversity on cascading extinctions and aggregated ecosystem processes in a two-trophic-level system. We show that functionally redundant efficient consumers generate top-down cascading extinctions. This counterintuitive result reveals the limits of the functional redundancy concept to predict the consequences of species deletion. Our model also predicts that the biodiversity-ecosystem functioning relationship is different for different ecosystem processes and depends on the range of variation of consumer traits in the regional species pool, which determines the sign of selection effects. Lastly, competition among resources and consumer generalism both weaken complementarity effects, which suggests that selection effects may prevail at higher trophic levels. Our work emphasizes the potential of trait-based approaches for transforming biodiversity and ecosystem functioning research into a more predictive science.  相似文献   

19.
《Aquatic Botany》2007,86(4):350-354
The genetic diversity of the species, Potamogeton lucens subsp. sinicus var. teganumensis, which is critically endangered in Japan, was investigated. This species now occurs in only two known localities in Japan. One is a native population (Oitoike population), but the other (Teganuma-Okahotto population) is found in a small artificial pond that was dug in 1998. It is considered that the Teganuma-Okahotto population grew from a soil seed bank. Based on RAPD variation, we compared the genetic diversity of the two populations of P. lucens var. teganumensis in Japan and one population of P. lucens subsp. sinicus var. sinicus in China. The Teganuma-Okahotto population showed RAPD variation, suggesting that it may be derived from more than one seed buried in old sediments. This population also had the highest value of Shannon's Information Index among the three study populations. This finding suggests that seeds buried in sediments can contain genetic variability, and may be used to conserve the genetic diversity of rare and endangered plants.  相似文献   

20.
The genetic diversity of the species, Potamogeton lucens subsp. sinicus var. teganumensis, which is critically endangered in Japan, was investigated. This species now occurs in only two known localities in Japan. One is a native population (Oitoike population), but the other (Teganuma-Okahotto population) is found in a small artificial pond that was dug in 1998. It is considered that the Teganuma-Okahotto population grew from a soil seed bank. Based on RAPD variation, we compared the genetic diversity of the two populations of P. lucens var. teganumensis in Japan and one population of P. lucens subsp. sinicus var. sinicus in China. The Teganuma-Okahotto population showed RAPD variation, suggesting that it may be derived from more than one seed buried in old sediments. This population also had the highest value of Shannon's Information Index among the three study populations. This finding suggests that seeds buried in sediments can contain genetic variability, and may be used to conserve the genetic diversity of rare and endangered plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号