首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single nucleotide polymorphisms (SNPs) are indispensable in such applications as association mapping and construction of high-density genetic maps. These applications usually require genotyping of thousands of SNPs in a large number of individuals. Although a number of SNP genotyping assays are available, most of them are designed for SNP genotyping in diploid individuals. Here, we demonstrate that the Illumina GoldenGate assay could be used for SNP genotyping of homozygous tetraploid and hexaploid wheat lines. Genotyping reactions could be carried out directly on genomic DNA without the necessity of preliminary PCR amplification. A total of 53 tetraploid and 38 hexaploid homozygous wheat lines were genotyped at 96 SNP loci. The genotyping error rate estimated after removal of low-quality data was 0 and 1% for tetraploid and hexaploid wheat, respectively. Developed SNP genotyping assays were shown to be useful for genotyping wheat cultivars. This study demonstrated that the GoldenGate assay is a very efficient tool for high-throughput genotyping of polyploid wheat, opening new possibilities for the analysis of genetic variation in wheat and dissection of genetic basis of complex traits using association mapping approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background  

High-throughput measurement of allele-specific expression (ASE) is a relatively new and exciting application area for array-based technologies. In this paper, we explore several data sets which make use of Illumina's GoldenGate BeadArray technology to measure ASE. This platform exploits coding SNPs to obtain relative expression measurements for alleles at approximately 1500 positions in the genome.  相似文献   

3.
Large numbers of single nucleotide polymorphism (SNP) markers are now available for a number of crop species. However, the high-throughput methods for multiplexing SNP assays are untested in complex genomes, such as soybean, that have a high proportion of paralogous genes. The Illumina GoldenGate assay is capable of multiplexing from 96 to 1,536 SNPs in a single reaction over a 3-day period. We tested the GoldenGate assay in soybean to determine the success rate of converting verified SNPs into working assays. A custom 384-SNP GoldenGate assay was designed using SNPs that had been discovered through the resequencing of five diverse accessions that are the parents of three recombinant inbred line (RIL) mapping populations. The 384 SNPs that were selected for this custom assay were predicted to segregate in one or more of the RIL mapping populations. Allelic data were successfully generated for 89% of the SNP loci (342 of the 384) when it was used in the three RIL mapping populations, indicating that the complex nature of the soybean genome had little impact on conversion of the discovered SNPs into usable assays. In addition, 80% of the 342 mapped SNPs had a minor allele frequency >10% when this assay was used on a diverse sample of Asian landrace germplasm accessions. The high success rate of the GoldenGate assay makes this a useful technique for quickly creating high density genetic maps in species where SNP markers are rapidly becoming available. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval of a product to the exclusion of others that may be suitable.  相似文献   

4.
5.

Background

Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host''s serological responses may be used to infer exposure to parasite sub-populations.

Methods and Findings

We measured the antibody responses to 46 individual PfEMP1 domains at four time points among 450 children in Kenya, and identified distinct spatial clusters of antibody responses to individual domains. 35 domains showed strongly significant sero-clusters at p = 0.001. Individuals within the high transmission hotspot showed the greatest diversity of anti-PfEMP1 responses. Individuals outside the hotspot had a less diverse range of responses, even if as individuals they were at relatively intense exposure.

Conclusions

We infer that antigenically distinct sub-populations of parasites exist on a fine spatial scale in a study area of rural Kenya. Further studies should examine antigenic variation over longer periods of time and in different study areas.  相似文献   

6.
We review the principles of linkage analysis of experimental genetic crosses and their application to Plasmodium falciparum. Three experimental genetic crosses have been performed using the human malaria parasite P. falciparum. Linkage analysis of the progeny of these crosses has been used to identify parasite genes important in phenotypes such as drug resistance, parasite growth and virulence, and transmission to mosquitoes. The construction and analysis of genetic maps has been used to characterise recombination rates across the parasite genome and to identify hotspots of recombination.  相似文献   

7.
Plasmodium falciparum: assay of invasion of erythrocytes   总被引:2,自引:0,他引:2  
A method for quantitatively assaying Plasmodium falciparum merozoite invasion of particular erythrocytes is described. Erythrocytes were labeled with fluorescein isothiocyanate which did not affect parasite entry or growth, to distinguish them from uninfected erythrocytes in the original parasitized cell population. Parasites were detectable after staining with ethidium bromide. The time course of infection of the labeled cells was followed over 26 hr. The technique was used to determine the effect of serum from a patient with P. falciparum malaria on merozoite invasion of the labeled erythrocytes.  相似文献   

8.
Chromosome size variation in Plasmodium falciparum has been examined using a double heterogenous pulse field gradient electrophoresis apparatus and a series of chromosome-specific probes. In the 11 different isolates analyzed the chromosomal markers always hybridized to the corresponding chromosome, indicating that translocations do not significantly contribute to chromosome size variations. Furthermore, despite probes specific for chromosomes 5 and 6 no evidence was obtained to support the hypothesis of a chromosome duplication involving these chromosomes. The double heterogenous electric field combined with longer pulse times allowed the genome to be resolved into a larger number of chromosomal bands and as a result permitted the more precise mapping of cloned genes.  相似文献   

9.
Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT) are major determinants of verapamil (VP)‐reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 × Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the South‐East Asia‐derived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute with the pfcrt and pfmdr1 loci to influence CQR levels. Chemoreversal via a wide range of chemical structures operates through a direct pfcrt‐based mechanism. Direct inhibition of parasite growth by these reversal agents is influenced by pfcrt mutations and additional loci. Direct labelling of purified recombinant PfMDR1 protein with a highly specific photoaffinity CQ analogue, and lack of competition for photolabelling by VP, supports our QTL predictions. We find no evidence that pfmdr1 copy number affects CQ response in the progeny; however, inheritance patterns indicate that an allele‐specific interaction between pfmdr1 and pfcrt is part of the complex genetic background of CQR.  相似文献   

10.
A set of over 8000 Diversity Arrays Technology (DArT) markers was tested for its utility in high-resolution population and phylogenetic studies across a range of Eucalyptus taxa. Small-scale population studies of Eucalyptus camaldulensis, Eucalyptus cladocalyx, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus pilularis and Eucalyptus urophylla demonstrated the potential of genome-wide genotyping with DArT markers to differentiate species, to identify interspecific hybrids and to resolve biogeographic disjunctions within species. The population genetic studies resolved geographically partitioned clusters in E. camaldulensis, E. cladocalyx, E. globulus and E. urophylla that were congruent with previous molecular studies. A phylogenetic study of 94 eucalypt species provided results that were largely congruent with traditional taxonomy and ITS-based phylogenies, but provided more resolution within major clades than had been obtained previously. Ascertainment bias (the bias introduced in a phylogeny from using markers developed in a small sample of the taxa that are being studied) was not detected. DArT offers an unprecedented level of resolution for population genetic, phylogenetic and evolutionary studies across the full range of Eucalyptus species.  相似文献   

11.
Whole-genome sequencing technologies are being increasingly applied to Plasmodium falciparum clinical isolates to identify genetic determinants of malaria pathogenesis. However, genome-wide discovery methods, such as haplotype scans for signatures of natural selection, are hindered by missing genotypes in sequence data. Poor correlation between single nucleotide polymorphisms (SNPs) in the P. falciparum genome complicates efforts to apply established missing-genotype imputation methods that leverage off patterns of linkage disequilibrium (LD). The accuracy of state-of-the-art, LD-based imputation methods (IMPUTE, Beagle) was assessed by measuring allelic r2 for 459 P. falciparum samples from malaria patients in 4 countries: Thailand, Cambodia, Gambia, and Malawi. In restricting our analysis to 86k high-quality SNPs across the populations, we found that the complete-case analysis was restricted to 21k SNPs (24.5%), despite no single SNP having more than 10% missing genotypes. The accuracy of Beagle in filling in missing genotypes was consistently high across all populations (allelic r2, 0.87-0.96), but the performance of IMPUTE was mixed (allelic r2, 0.34-0.99) depending on reference haplotypes and population. Positive selection analysis using Beagle-imputed haplotypes identified loci involved in resistance to chloroquine (crt) in Thailand, Cambodia, and Gambia, sulfadoxine-pyrimethamine (dhfr, dhps) in Cambodia, and artemisinin (kelch13) in Cambodia. Tajima’s D-based analysis identified genes under balancing selection that encode well-characterized vaccine candidates: apical merozoite antigen 1 (ama1) and merozoite surface protein 1 (msp1). In contrast, the complete-case analysis failed to identify any well-validated drug resistance or candidate vaccine loci, except kelch13. In a setting of low LD and modest levels of missing genotypes, using Beagle to impute P. falciparum genotypes is a viable strategy for conducting accurate large-scale population genetics and association analyses, and supporting global surveillance for drug resistance markers and candidate vaccine antigens.  相似文献   

12.
Surface proteins from Plasmodium falciparum are important malaria vaccine targets. However, the surface proteins previously identified are highly variant and difficult to study. We used tandem mass spectrometry to characterize the variant antigens (Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)) expressed on the surface of malaria-infected erythrocytes that bind to chondroitin sulfate A (CSA) in the placenta. Whereas PfEMP1 variants previously implicated as CSA ligands were detected, in unselected parasites four novel variants were detected in CSA-binding or placental parasites but not in unselected parasites. These novel PfEMP1 variants require further study to confirm whether they play a role in placental malaria.  相似文献   

13.

Background

The human malaria parasite Plasmodium falciparum survives pressures from the host immune system and antimalarial drugs by modifying its genome. Genetic recombination and nucleotide substitution are the two major mechanisms that the parasite employs to generate genome diversity. A better understanding of these mechanisms may provide important information for studying parasite evolution, immune evasion and drug resistance.

Results

Here, we used a high-density tiling array to estimate the genetic recombination rate among 32 progeny of a P. falciparum genetic cross (7G8 × GB4). We detected 638 recombination events and constructed a high-resolution genetic map. Comparing genetic and physical maps, we obtained an overall recombination rate of 9.6 kb per centimorgan and identified 54 candidate recombination hotspots. Similar to centromeres in other organisms, the sequences of P. falciparum centromeres are found in chromosome regions largely devoid of recombination activity. Motifs enriched in hotspots were also identified, including a 12-bp G/C-rich motif with 3-bp periodicity that may interact with a protein containing 11 predicted zinc finger arrays.

Conclusions

These results show that the P. falciparum genome has a high recombination rate, although it also follows the overall rule of meiosis in eukaryotes with an average of approximately one crossover per chromosome per meiosis. GC-rich repetitive motifs identified in the hotspot sequences may play a role in the high recombination rate observed. The lack of recombination activity in centromeric regions is consistent with the observations of reduced recombination near the centromeres of other organisms.  相似文献   

14.
Human malaria infections resulting from Plasmodium falciparum have become increasingly difficult to treat due to the emergence of drug-resistant parasites. The P. falciparum purine salvage enzyme purine nucleoside phosphorylase (PfPNP) is a potential drug target. Previous studies, in which PfPNP was targeted by transition state analogue inhibitors, found that those inhibiting human PNP and PfPNPs killed P. falciparum in vitro. However, many drugs have off-target interactions, and genetic evidence is required to demonstrate single target action for this class of potential drugs. We used targeted gene disruption in P. falciparum strain 3D7 to ablate PNP expression, yielding transgenic 3D7 parasites (Deltapfpnp). Lysates of the Deltapfpnp parasites showed no PNP activity, but activity of another purine salvage enzyme, adenosine deaminase (PfADA), was normal. When compared with wild-type 3D7, the Deltapfpnp parasites showed a greater requirement for exogenous purines and a severe growth defect at physiological concentrations of hypoxanthine. Drug assays using immucillins, specific transition state inhibitors of PNP, were performed on wild-type and Deltapfpnp parasites. The Deltapfpnp parasites were more sensitive to PNP inhibitors that bound hPNP tighter and less sensitive to MT-ImmH, an inhibitor with 100-fold preference for PfPNP over hPNP. The results demonstrate the importance of purine salvage in P. falciparum and validate PfPNP as the target of immucillins.  相似文献   

15.
16.
Most human malaria deaths are caused by blood-stage Plasmodium falciparum parasites. Cerebral malaria, the most life-threatening complication of the disease, is characterised by an accumulation of Plasmodium falciparum infected red blood cells (iRBC) at pigmented trophozoite stage in the microvasculature of the brain(2-4). This microvessel obstruction (sequestration) leads to acidosis, hypoxia and harmful inflammatory cytokines (reviewed in (5)). Sequestration is also found in most microvascular tissues of the human body(2, 3). The mechanism by which iRBC attach to the blood vessel walls is still poorly understood. The immortalized Human Brain microvascular Endothelial Cell line (HBEC-5i) has been used as an in vitro model of the blood-brain barrier(6). However, Plasmodium falciparum iRBC attach only poorly to HBEC-5i in vitro, unlike the dense sequestration that occurs in cerebral malaria cases. We therefore developed a panning assay to select (enrich) various P. falciparum strains for adhesion to HBEC-5i in order to obtain populations of high-binding parasites, more representative of what occurs in vivo. A sample of a parasite culture (mixture of iRBC and uninfected RBC) at the pigmented trophozoite stage is washed and incubated on a layer of HBEC-5i grown on a Petri dish. After incubation, the dish is gently washed free from uRBC and unbound iRBC. Fresh uRBC are added to the few iRBC attached to HBEC-5i and incubated overnight. As schizont stage parasites burst, merozoites reinvade RBC and these ring stage parasites are harvested the following day. Parasites are cultured until enough material is obtained (typically 2 to 4 weeks) and a new round of selection can be performed. Depending on the P. falciparum strain, 4 to 7 rounds of selection are needed in order to get a population where most parasites bind to HBEC-5i. The binding phenotype is progressively lost after a few weeks, indicating a switch in variant surface antigen gene expression, thus regular selection on HBEC-5i is required to maintain the phenotype. In summary, we developed a selection assay rendering P. falciparum parasites a more "cerebral malaria adhesive" phenotype. We were able to select 3 out of 4 P. falciparum strains on HBEC-5i. This assay has also successfully been used to select parasites for binding to human dermal and pulmonary endothelial cells. Importantly, this method can be used to select tissue-specific parasite populations in order to identify candidate parasite ligands for binding to brain endothelium. Moreover, this assay can be used to screen for putative anti-sequestration drugs(7).  相似文献   

17.
Discovering novel genes involved in immune evasion and drug resistance in the human malaria parasite, Plasmodium falciparum, is of critical importance to global health. Such knowledge may assist in the development of new effective vaccines and in the appropriate use of antimalarial drugs. By performing a full-genome scan of allelic variability in 14 field and laboratory strains of P. falciparum, we comprehensively identified approximately 500 genes evolving at higher than neutral rates. The majority of the most variable genes have paralogs within the P. falciparum genome and may be subject to a different evolutionary clock than those without. The group of 211 variable genes without paralogs contains most known immunogens and a few drug targets, consistent with the idea that the human immune system and drug use is driving parasite evolution. We also reveal gene-amplification events including one surrounding pfmdr1, the P. falciparum multidrug-resistance gene, and a previously uncharacterized amplification centered around the P. falciparum GTP cyclohydrolase gene, the first enzyme in the folate biosynthesis pathway. Although GTP cyclohydrolase is not the known target of any current drugs, downstream members of the pathway are targeted by several widely used antimalarials. We speculate that an amplification of the GTP cyclohydrolase enzyme in the folate biosynthesis pathway may increase flux through this pathway and facilitate parasite resistance to antifolate drugs.  相似文献   

18.
African apes are endemically infected with numerous Plasmodium spp. including close relatives of human Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. Although these ape parasites are not believed to pose a zoonotic threat, their ability to colonise humans has not been fully explored. In particular, it remains unknown whether ape parasites are able to initiate exo-erythrocytic replication in human hepatocytes following the bite of an infective mosquito. Since animal studies have shown that liver stage infection can result in the excretion of parasite nucleic acids into the bile, we screened faecal samples from 504 rural Cameroonians for Plasmodium DNA. Using pan-Laverania as well as P. malariae- and P. vivax-specific primer sets, we amplified human P. falciparum (n?=?14), P. malariae (n?=?1), and P. ovale wallikeri (n?=?1) mitochondrial sequences from faecal DNA of 15 individuals. However, despite using an intensified PCR screening approach we failed to detect ape Laverania, ape P. vivax or ape P. malariae parasites in these same subjects. One faecal sample from a hunter-gatherer contained a sequence closely related to the porcupine parasite Plasmodium atheruri. Since this same faecal sample also contained porcupine mitochondrial DNA, but a matching blood sample was Plasmodium-negative, it is likely that this hunter-gatherer consumed Plasmodium-infected bushmeat. Faecal Plasmodium detection was not secondary to intestinal bleeding and/or infection with gastrointestinal parasites, but indicative of blood parasitaemia. Quantitative PCR identified 26-fold more parasite DNA in the blood of faecal Plasmodium-positive than faecal Plasmodium-negative individuals (P?=?0.01). However, among blood-positive individuals only 10% - 20% had detectable Plasmodium sequences in their stool. Thus, faecal screening of rural Cameroonians failed to uncover abortive ape Plasmodium infections, but detected infection with human parasites, albeit with reduced sensitivity compared with blood analysis.  相似文献   

19.
In Brazil, malaria still remains a clinically important febrile syndrome for local populations and travelers, occurring mostly in the Amazon Basin. This review aims to report the main efforts employed to control this disease since the 1940s and the emergence of Plasmodium falciparum and Plasmodium vivax chemoresistance to chloroquine and sulphadoxine-pyrimethamine among other drugs. Additionally, in vivo, in vitro and molecular studies as well as malaria chemoresistance consequences on disease morbidity and policy treatment guidelines were commented.  相似文献   

20.
The initial rates of uptake of L-tryptophan into normal human red blood cells and into cells infected by the malarial parasite Plasmodium falciparum in vitro, were investigated. We find that transport in non-infected cells, which is mediated by the specific saturable T system and the apparently non-saturable L system (Rosenberg, Young and Ellory (1980) Biochim. Biophys. Acta 598, 375-384) is considerably enhanced by blood preservation and culture conditions. This increase is mostly due to an increase in the maximal velocity of the saturable component and of the rate constant of the linear component. Uptake is further enhanced in non-infected cells by factors released from infected cells into the culture medium and, even more so, in infected cells at the advanced stage of intraerythrocytic parasite development. At these stages the susceptibility of the transport system to the non-specific inhibitor phloretin and to the competitive inhibitor phenylalanine, is virtually lost. The effect of the parasite on L-tryptophan uptake by the host cell membrane is exerted only on the maximal velocity of the T system, which is carrying most of the substrate under physiological conditions. The possible implications of these findings to the life of the intraerythrocytic parasite are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号