首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Building on a substantial literature addressing the fire responses of woody plants, particularly under mediterranean climates, we assess the extent to which fire persistence traits can be used to predict vegetation responses to fire regime changes in fire‐prone arid and savanna landscape settings. Location Australia, applying data from arid central to monsoonal northern regions (11–26° S, 129–138° E). Methods With reference to a substantial sub‐continental floristics dataset, we first assigned the fire response (obligate seeder, resprouter) and seedbank persistence (transient, dormant) of rapid and longer‐maturing (> 3 years) woody taxa. Using logistic regression, we then modelled the proportions of taxa possessing these traits as a function of mean annual rainfall (highly correlated with fire frequency) and terrain roughness (a measure of topographic variability) in 0.25° × 0.25° and 1° × 1° grid cells. Separate assessments were undertaken with datasets for 1264 sclerophyll and 236 rain forest taxa. Results This woody flora is characterized by taxa exhibiting mostly resprouting and dormant seedbank traits that promote site persistence. While numbers of obligate seeder and resprouter taxa were related positively to both rainfall and roughness, the relative abundance of both sclerophyll and rain forest obligate seeders decreased significantly with rainfall. The relative abundance of sclerophyll (especially long‐lived) obligate seeders alone increased with topographic roughness. The proportion of taxa with transient seedbanks increased with rainfall in resprouters generally, and in rain forest obligate seeders alone. Main conclusions We find that resprouters are favoured on more productive, fire‐prone sites, and obligate seeders are favoured in less productive, more fire‐protected settings. Seedbank persistence responses are more variable. These findings concur generally with theoretical constructs, and support comparable assessments in Australian and other fire‐prone systems ranging from mediterranean to boreal environments. Our observations illustrate that resprouting and obligate seeding syndromes, but not necessarily seedbank persistence, are useful predictors of vegetation responses to changing fire regime conditions at large landscape scales.  相似文献   

2.
BACKGROUND AND AIMS: The genus Erica represents the epitome of plant biodiversity in the South African Cape region. It includes seeder and resprouter species, but both species diversity and narrow endemism are tightly associated with the seeder habit. It also includes 'mixed' species, in which both seeder and resprouter life histories are found. This intraspecific variation in life history is genetically based. METHODS: The cotyledonary region and basal stem of seeder and resprouter seedlings of two 'mixed' species, Erica calycina and E. coccinea, were examined to detect morphological and anatomical differences in axillary bud development between regeneration forms. KEY RESULTS: While at least some bud activity was observed for resprouter seedlings, none was detected for seeder seedlings. A closer examination allowed the detection of some axillary buds in seeder seedlings of the two species, but they appeared in an unequivocally atrophied state. CONCLUSIONS: The seeder and resprouter life histories are two character states and the seeder one (i.e. loss of resprouting) is derived within these two Erica species. Results allow the hypothesis that the loss of resprouting in a fire-prone scenario such as the Cape fynbos has promoted high diversification rates in seeder Erica lineages.  相似文献   

3.
Abstract Plant responses to fire are variable between and within species and are influenced by numerous factors including fire severity. This study investigated the effects of fire severity on the regeneration and recruitment of forest eucalypts in the Cotter River Catchment, Australian Capital Territory (ACT). This study also examined the potential for the obligate seeder Eucalyptus delegatensis R.T. Baker (Myrtaceae) to expand into adjacent stands dominated by the facultative resprouter Eucalyptus fastigata H. Deane & Maiden (Myrtaceae) by seed shed and seedling establishment beyond the pre‐fire boundary. Sites were located in areas of either higher or lower fire severity, and transects were placed across the boundary of stands of E. delegatensis and E. fastigata. Species distributions, tree survival and seedling densities and heights were recorded, and the location of each boundary was determined as the region of maximum change in species composition along the transects. Eucalyptus delegatensis was the only eucalypt killed by higher severity fire. However, E. delegatensis seedling density was greater at higher severity sites than lower severity sites. Eucalyptus fastigata seedling density was low across all sites, with other eucalypts producing few, if any, seedlings. There was no evidence that E. delegatensis had increased its range into downslope stands dominated by E. fastigata. Patterns of vegetative recovery and seedling recruitment may be related to a number of factors, including differences in allocation patterns between seeders and sprouters, and the effects of overstory and understory competition. It is unclear what processes impede E. delegatensis seedling establishment beyond the stand boundary, but may involve an inability of E. delegatensis to shed seed sufficiently far downslope; unsuitable conditions for germination beyond the boundary; or, competition from a retained or resprouting overstory, despite the potential for increased dispersal distance soon after fire.  相似文献   

4.
Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.  相似文献   

5.
Fire is an important factor in several ecosystems, affecting plant population biology. Campos grasslands are under constant influence of disturbance, mostly grazing and fire. However, few studies evaluated the effect of fire on plant population biology of grassland species. Therefore, we aim to analyze the effect of fire on the population biology of four species, from different functional groups and regeneration strategies: Chaptalia runcinata (forb, resprouter, absence of belowground organ), Vernonia flexuosa (forb, resprouter, presence of rhizophore), Eupatorium ligulaefolium (shrub, resprouter, presence of xylopodium) and Heterothalamus psiadioides (shrub, obligate seeder). Seven plots were established in different sites in southern Brazil: frequently burned (FB) and excluded from fire since 6 years (E). All plots were subjected to controlled burns during summer. Before experiments, populations were sampled. Further observations were carried out after 90 and after 360 days of fire experiments. In addition, we counted the number of seedlings and resprouters recruited after fire. Heat shock experiments were conducted with two species (H. psiadioides and V. flexuosa), as well as the study of the bud bank of the following species: E. ligulaefolium and V. flexuosa. The obligate seeder species had all individuals killed by fire and established only after 1 year. Resprouters, however, showed new stems immediately after fire. E. ligulaefolium and V. flexuosa showed only vegetative regeneration from belowground organs and more individuals in excluded sites 1 year after the fire. The bud bank of E. ligulaefolium tended to be larger in excluded sites, whilst V. flexuosa showed an opposite result. High temperatures did not enhance nor kill seeds from both studied species. Vegetative regeneration was the most important strategy for all studied species, except for H. psiadioides, the obligate seeder species. Fire thus, plays an important role on population structure and demography, being also important for plant recruitment.  相似文献   

6.
High diversification of woody seeder lineages is characteristic of the south-western cape floristic region (CFR), South Africa, which has been explained as a consequence of its mild Mediterranean climate and reliable winter rainfall. Such climatic regime reduces the risk of post-fire recruitment failure, acting as an ecological filter that favours seeder populations, thus promoting genetic differentiation and diversification in seeder populations, as previously seen in the South African heath Erica coccinea. To explore this hypothesis further, genetic population structure was investigated in two Mediterranean Erica species, one seeder (Erica umbellata) and the other resprouter (Erica australis), using nuclear microsatellites. These two species are endemic to the western Mediterranean Basin and co-occur in heathlands of the Strait of Gibraltar region. Mean annual rainfall in this region is similar to that from the south-western CFR, but summer stress is more marked and winter rainfall is much less reliable. Contrary to what was found in E. coccinea, average genetic diversity levels were considerably lower in seeder populations (E. umbellata), regardless of an apparently higher gene flow among them. No differences in genetic differentiation among populations were found between the two species. The occurrence of less favourable climatic conditions for post-fire recruitment in the western Mediterranean compared to the south-western CFR may affect seeder populations more strongly than resprouter and may thus account for lower levels of within-population genetic diversity in the seeder E. umbellata. In addition, putatively higher migration rates in the seeder E. umbellata, may contribute to reduce its potential for genetic differentiation. This study provides evidence that high divergence of seeder populations is not a general rule in fire-prone, Mediterranean-type ecosystems.  相似文献   

7.
Understanding the processes of biological diversification is a central topic in evolutionary biology. The South African Cape fynbos, one of the major plant biodiversity hotspots out of the tropics, has prompted several hypotheses about the causes of generation and maintenance of biodiversity. Fire has been traditionally invoked as a key element to explain high levels of biodiversity in highly speciose fynbos taxa, such as the genus Erica. In this study, we have implemented a microevolutionary approach to elucidate how plant‐response to fire may contribute to explain high levels of diversification in Erica. By using microsatellite markers, we investigated the genetic background of seeder (fire‐sensitive) and resprouter (fire‐resistant) populations of the fynbos species Erica coccinea. We found higher within‐population genetic diversity and higher among‐population differentiation in seeder populations and interpreted these higher levels of genetic diversification as a consequence of the comparatively shorter generation times and faster population turnover in the seeder form of this species. Considering that genetic divergence among populations may be seen as the initial step to speciation, the parallelism between these results and the pattern of biodiversity at the genus level offers stimulating insights into understanding causes of speciation of the genus Erica in the Cape fynbos.  相似文献   

8.
Enriched genomic libraries were used to isolate and characterize dinucleotide microsatellite loci in Erica coccinea, a South African Cape fynbos heath species with distinct resprouter and seeder populations. Microsatellites were required to investigate the effect of the contrasting demographic pattern driven by these two post-fire responses in the population genetic structure of seeder and resprouter forms within this species. Eight microsatellite loci were characterised and amplified a total of 106 alleles in 2 samples each of 30 individuals from 1 resprouter and 1 seeder population. Mean allele numbers were 7.88 and 11.0 for the resprouter and seeder population, respectively. Both populations showed similar average observed and expected heterozygosity levels, H O(resprouter) = 0.683, H O(seeder) = 0.696; H E(resprouter) = 0.726, H E(seeder) = 0.756, and average positive inbreeding coefficients F IS(resprouter) = 0.058, F IS(seeder) = 0.080. This set of microsatellite loci will be used to conduct a population genetic survey of seeder and resprouter populations throughout the range of the species. Cross-species transferability was also assayed in four other South African and four European species of the genus Erica, supporting their potential use for population genetic analyses.  相似文献   

9.
We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1‐hectare plots along a coast‐to‐interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis to objectively categorize plots into climate zone groups. Climate variables, vegetation composition and various diversity measures were compared across climate zone groups using ANOVA and nonmetric multidimensional scaling. Differences in climatic variables that relate to summer moisture availability and winter freeze events explained the majority of variance in measured conditions and coincided with three chaparral assemblages: maritime (lowland coast where the summer marine layer was strongest), transition (upland coast with mild summer marine layer influence and greater winter precipitation), and interior sites that generally lacked late summer water availability from either source. Species turnover (β‐diversity) was higher among maritime and transition sites than interior sites. Coastal chaparral differs from interior chaparral in having a higher obligate seeder to facultative seeder (resprouter) ratio and by being dominated by various Arctostaphylos species as opposed to the interior dominant, Adenostoma fasciculatum. The maritime climate influence along the California central coast is associated with patterns of woody plant composition and β‐diversity among sites. Summer fog in coastal lowlands and higher winter precipitation in coastal uplands combine to lower late dry season water deficit in coastal chaparral and contribute to longer fire return intervals that are associated with obligate seeders and more local endemism. Soil nutrients are comparatively less important in explaining plant community composition, but heterogeneous azonal soils contribute to local endemism and promote isolated chaparral patches within the dominant forest vegetation along the coast.  相似文献   

10.
Vivian LM  Cary GJ 《Annals of botany》2012,109(1):197-208

Background and Aims

Resprouting and seed recruitment are important ways in which plants respond to fire. However, the investments a plant makes into ensuring the success of post-fire resprouting or seedling recruitment can result in trade-offs that are manifested in a range of co-occurring morphological, life history and physiological traits. Relationships between fire-response strategies and other traits have been widely examined in fire-prone Mediterranean-type climates. In this paper, we aim to determine whether shrubs growing in a non-Mediterranean climate region exhibit relationships between their fire-response strategy and leaf traits.

Methods

Field surveys were used to classify species into fire-response types. We then compared specific leaf area, leaf dry-matter content, leaf width, leaf nitrogen and carbon to nitrogen ratios between (a) obligate seeders and all other resprouters, and (b) obligate seeders, facultative resprouters and obligate resprouters.

Key Results

Leaf traits only varied between fire-response types when we considered facultative resprouters as a separate group to obligate resprouters, as observed after a large landscape-scale fire. We found no differences between obligate seeders and obligate resprouters, nor between obligate seeders and resprouters considered as one group.

Conclusions

The results suggest that facultative resprouters may require a strategy of rapid resource acquisition and fast growth in order to compete with species that either resprout, or recruit from seed. However, the overall lack of difference between obligate seeders and obligate resprouters suggests that environmental factors are exerting similar effects on species'' ecological strategies, irrespective of the constraints and trade-offs that may be associated with obligate seeding and obligate resprouting. These results highlight the limits to trait co-occurrences across different ecosystems and the difficulty in identifying global-scale relationships amongst traits.  相似文献   

11.
Climate change is causing fire regime shifts in ecosystems worldwide. Plant species with regeneration strategies strongly linked to a fire regime, such as obligate seeders, may be particularly threatened by these changes. It is unclear whether changes in fire regimes or the direct effects of climate change will be the dominant threats to obligate seeders in future. We investigated the relative importance of fire-related variables (fire return interval and fire severity) and environmental factors (climate and topography) on seedling establishment in the world’s tallest angiosperm, an obligate seeder, Eucalyptus regnans. Throughout its range, this species dominates the wet montane forests of south-eastern Australia and plays a keystone role in forest structure. Following major wildfires, we investigated seedling establishment in E. regnans within 1 year of fire as this is a critical stage in the regeneration niche of obligate seeders. Seedling presence and abundance were strongly related to the occurrence of fire but not to variation in fire severity (moderate vs. high severity). Seedling abundance increased with increasing fire return interval (range 26–300 years). First-year seedling establishment was also strongly associated with low temperatures and with high elevations, high precipitation and persistent soil water availability. Our results show that both climate and fire regimes are strong drivers of E. regnans seedling establishment. The predicted warming and drying of the climate might reduce the regeneration potential for some obligate seeders in future and these threats are likely to be compounded by changes in fire regimes, particularly increases in fire frequency.  相似文献   

12.
Summary In a mature, even aged stand of mixed chaparral, Rhus laurina (facultative resprouter) had consistently higher water potentials and deeper roots than Ceanothus spinosus (facultative resprouter) and Ceanothus megacarpus (obligate seeder). For two years following a wildfire, the same stand of chaparral had resprouts with higher survivorships, predawn water potentials, stomatal conductances, photosynthetic rates and shoot elongation rates than seedlings. Supplemental irrigation of seedlings during summer months removed differences between resprouts and seedlings suggesting that the cause of such differences was limited water availability to the shoot tissues of seedlings. After two years of postfire regrowth, mean seedling survivorship for the obligate seeder (C. megacarpus) was 42%, whereas seedling survivorship for facultative resprouters was only 18% (C. spinosus) and 0.01% (R. laurina). Our results are consistent with the hypothesis that lack of resprouting ability among obligate seeders is offset by an enhanced ability to establish seedlings after wildfire, allowing obligate seeders to maintain themselves in mixed populations through many fire cycles.  相似文献   

13.
A higher frequency of natural selection is expected in populations of organisms with shorter generation times. In fire‐prone ecosystems, populations of seeder plants behave as functionally semelparous populations, with short generation times compared to populations of resprouter plants, which are truly iteroparous. Therefore, a stronger signature of natural selection should be detected in seeder populations, favoured by their shorter generation times and higher rates of population turnover. Here we test this idea in Erica coccinea from the Cape Floristic Region, which is dimorphic for post‐fire regeneration mode. We measured three floral traits supposedly subject to natural selection in seeder and resprouter populations. We then compared phenotypic trait variation with neutral genetic variation in each group of populations using PSTFST comparisons to detect signatures of natural selection in seeders and resprouters. We found a strong signature of selection in seeder populations, but not in resprouters. Furthermore, anthers of seeders were more exserted (and larger) than those of resprouters. These differences were maintained at sites where seeders and resprouters co‐occurred, suggesting that phenotypic plasticity or adaptation to different growth environments are unlikely explanations for trait variation. These results provide empirical support for the hypothesis that the genetic signature of natural selection is certainly more intense in seeder than in resprouter populations, favoured by their comparatively faster generation turnovers. Increased frequency of natural selection would increase differentiation among populations, thus promoting speciation in pyrophytic seeder lineages of the Cape flora.  相似文献   

14.
In ecosystems subject to regular canopy fires, woody species have evolved two general strategies of post‐fire regeneration. Seeder species are killed by fire and populations regenerate solely by post‐fire recruitment from a seed bank. Resprouter species survive fire and regenerate by vegetative regrowth from protected organs. Interestingly, the abundance of these strategies varies along environmental gradients and across regions. Two main hypotheses have been proposed to explain this spatial variation: the gap dependence and the environmental‐variability hypotheses. The gap‐dependence model predicts that seeders are favoured in sparse vegetation (vegetation gaps allowing effective post‐fire recruitment of seedlings), while resprouters are favoured in densely vegetated sites (seedlings being outcompeted by the rapid crown regrowth of resprouters). The environmental‐variability model predicts that seeders would prevail in reliable rainfall areas, whereas resprouters would be favoured in areas under highly variable rainfall that are prone to severe dry events (leading to high post‐fire seedling mortality). We tested these two models using distribution data, captured at the scale of quarter‐degree cells, for seeder and resprouter species of two speciose shrub genera (Aspalathus and Erica) common in fire‐prone fynbos ecosystems of the mediterranean‐climate part of the Cape Floristic Region. Contrary to the predictions of the gap‐dependence model, species number of both resprouters and seeders increased with values of the Normalized Difference Vegetation Index (a widely used surrogate for vegetation density), with a more marked increase for seeders. The predictions of the environmental‐variability hypothesis, by contrast, were not refuted by this study. Seeder and resprouter species of both genera showed highest richness in environments with high rainfall reliability. However, with decreasing reliability, seeder numbers dropped more quickly than those of resprouters. We conclude that the environmental‐variability model is better able to explain the abundance of woody seeder and resprouter species in Southern Hemisphere fire‐prone shrublands (fynbos and kwongan) than the gap‐dependence model.  相似文献   

15.
Predicting changes in vegetation structure in fire-prone arid/semi-arid systems is fraught with uncertainty because the limiting factors to coexistence between grasses and woody plants are unknown. We investigated abiotic and biotic factors influencing boundaries and habitat membership in grassland (Triodia or ‘spinifex’ grassland)-shrubland (Acacia aneura or ‘mulga’ shrubland) mosaics in semi-arid central Australia. We used a field experiment to test for the effects of: (1) topographic relief (dune/swale habitat), (2) adult neighbour removal, and (3) soil type (sand/clay) on seedling survival in three shrub and two grass species in reciprocal field plantings. Our results showed that invasion of the shrubland (swale) by neighbouring grassland species is negated by abiotic limitations but competition limits shrubland invasion of the grassland (dune). All species from both habitats had significantly reduced survival in the grassland (dune) in the presence of the dominant grass (Triodia) regardless of soil type or shade. Further, the removal of the dominant grass allowed the shrubland dominant (A. aneura) to establish outside its usual range. Seedling growth and sexual maturation of the shrubland dominant (A. aneura) was slow, implying that repeated fire creates an immaturity risk for this non-sprouter in flammable grassland. By contrast, rapid growth and seed set in the grassland shrubs (facultative sprouters) provides a solution to fire exposure prior to reproductive onset. In terms of landscape dynamics, we argue that grass competition and fire effects are important constraints on shrubland patch expansion, but that their relative importance will vary spatially throughout the landscape because of spatial and temporal rainfall variability.  相似文献   

16.
Several Cape species of the genus Erica are known to present seeder and resprouter phenotypes, and this variation seems to have a genetic basis. Therefore, this genus provides ideal model systems for using to elucidate the evolution of nonsprouting or seeder and resprouter life-histories in woody, fire-recruiting plants. A simple simulation model was developed to identify, under life-history optimality, the ecological conditions (viz. rainfall conditions and fire frequency) that conferred a selective advantage to the seeder phenotype over the resprouter in a given Cape Erica species. The model illustrated that the seeder life-history was able to invade and replace a resprouter population only under a mild mediterranean climate, with short, moderate summer droughts. This simulation approach will contribute to a better understanding of the biogeographical pattern of seeder and resprouter lineages of one of the paradigmatic fynbos woody taxa throughout the Cape floristic region.  相似文献   

17.
Current fuel loads and distribution suggest that fire events are infrequent and of a low intensity in the regenerated dry sclerophyll forests of the Victorian box‐ironbark ecosystem. However, many box‐ironbark species possess traits consistent with fire‐cued regeneration. It is unclear the degree to which human disturbance may have altered fire regimes in these forests. The infrequent and low‐intensity fire regime suggested by current fuel dynamics may pose a threat to the persistence of fire‐cued species. Obligate seeders such as those of the Fabaceae and Mimosaceae, common in box‐ironbark understoreys, may be particularly vulnerable if inter‐fire intervals exceed seed longevity. This study used seed burial trials to examine seed dormancy and longevity in five legume species to explore their capacity to regenerate under an infrequent, low‐intensity fire regime. All species displayed dormancy and longevity patterns consistent with other south‐east Australian legumes. Before burial, dormancy levels were high for all species (98–100%). After 3 years, storage under in situ and ex situ conditions, dormancy in Pultenaea prostrata remained at pre‐burial levels with virtually no seed becoming non‐dormant. Over time, some Acacia seed became non‐dormant under both in situ and ex situ storage, with the pattern varying among species. Longevity also varied between species. Variation in the dormancy and longevity patterns observed in these obligate seeder legumes suggests two strategies: (i) releasing a portion of soil‐stored seed from dormancy during the inter‐fire period to permit inter‐fire recruitment; and (ii) retaining most soil‐stored seed as dormant during the inter‐fire interval. Both strategies represent potential weaknesses under a long fire interval regime. The first relies on dormancy release translating to successful recruitment and requires ongoing inter‐fire input into the soil seed bank. The second relies on seed longevity exceeding the inter‐fire interval. Whether either is more suitable to coping with long‐term infrequent fire requires long‐term monitoring.  相似文献   

18.
The ancient Gondwanan family Proteaceae has its greatest speciation in fire‐prone environments of Australia. Fire response is either by seedling recruitment from parent plants that succumb to fire (obligate seeders), or survival and resprouting from protected buds (resprouters). Starch is the main source of energy for resprouting and in roots is restricted to parenchyma tissue. This study compared the size and distribution of storage parenchyma and the magnitude of starch reserves in roots of several proteaceous species from different genera in relation to their fire response and taxonomy. Cross‐sections (2 μm) of roots of 51 resprouter and 42 seeder species from 12 genera were stained for starch. Areas of cortex and ray parenchyma along with starch grain density were measured using image analysis software (Assess 2.0) and comparable samples of root tissue were assayed chemically for starch. Starch, where present, predominated in ray and cortex tissue with a greater percentage in resprouters (13.4 ± 1.03) than seeders (1.8 ± 0.26); these results correlated significantly with the chemical assay for starch (r = 0.93, P < 0.0001). Resprouters also had more storage parenchyma (56.9 ± 1.72%) than seeders (41.9 ± 1.91%) mostly due to broader rays (17.5 ± 1.22%) compared with seeders (8.2 ± 0.16%). Percentage of cortex tissue was similar for seeders and resprouters (39.4 ± 2.24 and 33.7 ± 2.04 respectively). Anatomical preferences for storage site were consistent within genera and broad suprageneric groupings. This study shows that histological analysis of root starch is a reliable predictor of resprouting capacity in Proteaceae and that patterns of storage tissue within genera, together with the persistence of parenchyma devoid of starch in seeders, are consistent with response to fire and suggests homoplastic evolution of this response within the family.  相似文献   

19.
Stirlingia latifolia, a common shrub of Banksia woodlands ofSW Australia, is a highly successful resprouter species recoveringfrom fire by multiple sprouting of new shoots from its upperroot stock. in comparison with the congeneric fire-sensitive(obligate seeder) species Stirlingia tenuifolia it exhibitsa low shoot:root dry weight ratio and high concentrations ofstored starch in the cortical tissue of its roots. The relationshipbetween root reserves of starch and development of newly sproutingshoot material following fire is examined in S. latifolia afterspring and summer burns. During the initial 2-5 month periodafter fire, levels of stored starch in the roots fall by 50-75%,followed by a slow increase as plants reproduce and the attainmentof pre-fire starch levels by 1·5-2 years after the fire.Starch reserves of roots can be further reduced by shading theregenerating shoots to limit their input of photosynthates andalmost totally eliminated by monthly removal of successive flushesof new shoots over a 10-12 month period. New shoots continueto sprout until all the starch is eliminated. The data are discussedin relation to the fire-induced reproduction of S. latifoliaand its ability to thrive in very frequently burnt habitats.Copyright1993, 1999 Academic Press Fire response, Proteaceae, resprouter, shoot:root ratio, starch storage, Stirlingia latifolia  相似文献   

20.
The processes which determine the structure of plant communities vary across spatial and temporal scales. Climatic factors are more likely to influence community structure at a regional scale with more transient environmental effects such as disturbance or demographic interactions having a greater influence at local scales. Understanding these differences is important for managing communities at a landscape scale. Triodia spp. grasslands are the most extensive plant community in Australia, covering 1.4 million km2, and yet little is known about the processes which structure these communities. We collected data on six sympatric Triodia spp. at the regional, landscape and local scale across the 325 000 ha property, Mornington Wildlife Sanctuary, in the Kimberley region of northern Western Australia to investigate the processes which structure this community. Regionally we looked for correlations between species distributions and substrate or rainfall. At the landscape scale we collected data on substrate, drainage and vegetation type and at the local scale we determined the extent to which individuals form mono‐specific stands both along and across the contour gradient. Only one species, T. aeria, was found to be substrate specific and only T. epactia was restricted to the drier southern end of the property. The other species were not restricted by substrate or rainfall at the regional scale and were found to be habitat generalists at the landscape scale. All species grew in mono‐specific stands with little to no mixing at shared boundaries. However, this pattern broke down when crossing the contour gradient on hillsides. The results suggest rainfall may influence the distribution of some Triodia spp. at a regional scale with interspecific competition, due to differences in post‐fire regeneration niches, structuring the community at the local scale. At the landscape scale community structure appears to be influenced by feedback mechanisms involving differences in the post‐fire regeneration strategies of sympatric species and subsequent competition for establishment microsites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号